
MODEL PREDICTIVE CONTROL DESIGN
USING NON-MINIMAL STATE SPACE MODEL

Liuping Wang∗ Peter C. Young∗∗

∗ School of Electrical and Computer Engineering
RMIT University, Melbourne, Australia

∗∗ Centre for Research on Environmental Syst. and Stat.
Lancaster University, LA1 4 YQ, UK

liuping.wang@rmit.edu.au p.young@lancaster.ac.uk

Abstract: This paper examines the design of model predictive control using non-
minimal state space models, in which the state variables are chosen as the set
of measured input and output variables and their past values. It shows that
the proposed design approach avoids the use of an observer to access the state
information and, as a result, the disturbance rejection, particularly the system
input disturbance rejection, is significantly improved when constraints become
activated. In addition, the paper shows that the system output constraints can be
achieved in the proposed approach, which provides a significant improvement over
the general observer based approach.Copyright c©2005 IFAC
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1. INTRODUCTION

There are three general approaches to MPC de-
sign. Each approach uses a unique model struc-
ture. In the earlier formulations, Finite Impulse
Response (FIR) and Step Response models were
favoured. FIR model-based design algorithms in-
clude Dynamic Matrix Control (DMC) (Cutler
and Ramaker, 1979) and the quadratic DMC for-
mulation of Garcia and Morshedi (Garcia and
Morshedi, 1986). However, they are limited to
stable plants and often require large model or-
ders. Transfer function models give a more par-
simonious description of process dynamics and
are applicable to both stable and unstable plants.
Representatives of transfer function model based
predictive control include the predictive control
algorithm of Peterka (Peterka, 1984) and the Gen-
eralized Predictive Control (GPC) algorithm of

Clarke and colleagues (Clarke et al., 1987). Trans-
fer function model-based predictive control is of-
ten considered to be less effective in handling mul-
tivariable plants but the present paper will contest
this issue: it will show that the non-minimal state
space form that is defined most transparently by
the transfer function model provides an excellent
basis for MPC. GPC has also been analyzed using
the framework of state space methods (Bitmead
et al., 1990).

The general framework of MPC using state space
models follows the fundamentals of state estima-
tion feedback control that exploits the separa-
tion (certainty equivalence) theorem, in which the
state feedback control law utilizes state estimates
generated by a state observer. In conventional lin-
ear state feedback control, the observer dynamics
are assumed to be faster than the dynamics of
state feedback control and, hence, the error signal



between the observer and the actual system is
assumed to converge to zero at a much faster
rate. However, when the system constraints be-
come activated in MPC, nonlinearity dominates
the properties of the state feedback control system
and the effect of observer dynamics becomes a
much more complicated issue.

The presence of the observer is also a problem in
more general terms since it can lead to robust-
ness problems and the need for introducing some
method of ‘loop transfer recovery’: see (Bitmead
et al., 1990); also the discussion on this topic in
(Taylor et al., 2000a), which shows how observer-
free state space control, based on the non-minimal
state space model used in the present paper (see
below), avoids these difficulties. Through a simu-
lation example, based on a double integrator sys-
tem, this present paper examines some of the is-
sues that are associated with the observer and the
effect of input disturbances when constraints be-
come activated. It is shown that not only does the
closed-loop performance deteriorate significantly
in terms of input disturbance rejection when plant
input constraints become activated, but it is also
difficult to impose plant output constraints in the
presence of observer.

To overcome the observer-based obstacles to good
MPC design, the present paper discusses the
design of MPC systems using the special Non-
Minimal State Space (NMSS) model structure
mentioned above, in which the state variables
correspond to the measured plant input, output
and their past measured values, as defined by the
structure of the system transfer function model.
The NMSS structure in this special form was
first discussed in detail by the second author
and his colleagues (Young et al., 1994; Wang
and Young, 1988), including the introduction of
the Proportional Integral Plus (PIP) control sys-
tem that provides the practical embodiment of
such NMSS control. Since these seminal papers
were published, NMSS-PIP analysis has been
used successfully as a basis for the design and
practical implementation of advanced control sys-
tems in many different areas of application (e.g.
(Young et al., 1994; Lees et al., 1998; Chotai et
al., 1998; Taylor et al., 2000b; Taylor et al., 2001).
The most recent generalization and unification of
the NMSS-PIP concept is discussed in Taylor et
al (Taylor et al., 2000a), which shows how it can
exactly mimic other well known control systems,
including Generalized Predictive Control (GPC)
and standard Linear Quadratic Gaussian (LQG)
control, while providing greater inherent flexibil-
ity and power than either of these.

By exploiting a similar NMSS model formulation
to that used in the above references, the approach
to MPC design proposed in the present paper

maintains the simplicity of the framework for
previous MPC design using state space models,
as developed by the first author. At the same
time, it successfully overcomes the difficulties and
performance deterioration when plant operational
constraints are present and important in design
terms.

2. MODEL PREDICTIVE CONTROL DESIGN
USING A NON-MINIMAL, INPUT-OUTPUT

STATE SPACE MODEL

2.1 Model Structure

We assume that the plant to be controlled has
p inputs and q outputs. The discrete mathemat-
ical model to be used in the design is captured
by the following difference equation relating the
uniformly sampled input u(k) and output y(k):

y(k) +A1y(k − 1) +A2y(k − 2)

+ . . .+Any(k − n)

= B1u(k − 1) +B2u(k − 2)

+ . . .+Bnu(k − n) + ξ(k) (1)

We assume that the disturbance ξ(k) is a ran-
dom walk type of disturbance; more specifically,
∆ξ(k) = ξ(k)− ξ(k− 1) is zero mean white noise.
Equation (1) can also be presented in terms of
differenced input and output variables, yielding
embedded integral action in the MPC system 1 .

∆y(k) +A1∆y(k − 1)

+ . . .+An∆y(k − n)

= B1∆u(k − 1) +B2∆u(k − 2)

+ . . .+Bn∆u(k − n) + ∆ξ(k) (2)

In a similar manner to that used in the above
references on NMSS-PIP control system design,
the NMSS state vector ∆xm(k)T is chosen as:
[∆y(k)T . . . ∆y(k−n+1)T ∆u(k−1)T . . . ∆u(k−
n+1)T ] where dim(∆xm) = p×(n−1)+q×n = m.
Then the NMSS model is defined as follows,

∆xm(k+1) =Am∆xm(k)+Bm∆u(k) + Ωm∆ξ(k)

∆y(k + 1) =Cm∆xm(k + 1) (3)

where Am =

1 In previous NMSS-PIP formulations (see the cited ref-
erences), integral action and the associated type-one servo
performance is ensured by adding an additional integral-
of-error state, which clearly provides an alternative formu-
lation of the problem.
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BTm =
[
BT1 0 0 . . . 0 Ip 0 0

]

Cm =
[
Iq 0 0 . . . 0 0 0 0

]

Choosing a new state variable vector,

x(k)T =
[

∆xm(k)T y(k)T
]

we have

x(k + 1) =Ax(k) +B∆u(k) + ξ̄(k)

y(k) =Cx(k) + η(k) (4)

where A, B and C are matrices corresponding to
the forms defined by

A =
[

Am 0
CmAm Iq

]
;B =

[
Bm

CmBm

]

C =
[

0 Iq
]

where 01, 0m and 02 are zero matrices with
dimensions m × q, q ×m and q × 1 respectively,
and Iq×q is a unit matrix with dimension q. In
the sequel, the dimensionality of the augmented
state space equation is taken to be δ = m+q, and
Equation (4) is referred as the ‘composite design
model’.

There are two points worth mentioning here. The
first is related to the eigenvalues of the composite
design model. Note that the characteristic equa-
tion of the model is

ρ(λ) = det

[
λI −Am 01

−CmAm (λ− 1)Iq×q

]

= (λ− 1)qdet(λI −Am) (5)

Hence, the eigenvalues of the composite model are
the union of the eigenvalues of the plant model
and the q eigenvalues being on the unit circle of
the complex plane. The second point is that it
can be verified (Wang, 2001) that the z-transfer
function of the composite model is

C(zI −A)−1B =
z

z − 1
Cm(zI −Am)−1Bm (6)

Hence, the composite model is detectable and
stabilizable if the plant model is detectable and
stabilizable, and has no transmission zeros on the
unit circle.

2.2 State feedback control using predictive principle

Note that at the sampling instant ki, ki > 0,
the state variable vector x(ki) is available through
measurement and storage of appropriate previous
measurements. Following the standard approach
in MPC, the future state variables can be ex-
pressed as the function of future control trajectory
by defining vectors,

X =
[
x(ki + 1/ki)T . . . x(ki +Np/ki)T

]T

∆U=
[
∆u(ki)T ∆u(ki+1)T . . .∆u(ki+Nc−1)T

]T

in which

X = Fx(ki) + Φ∆U (7)

where,

F =




A

A2

A3

..

.

ANp


Φ=




B 0 . . . 0
AB B . . . 0

A2B AB . . . 0
...

ANp−1B ANp−2B . . . ANp−Nc−1B




where C̄ ((q × Np) × (n × Np)) is an Np-block
diagonal matrix with the C matrix in Equation (4)
sitting on its diagonal. Assume that the future set-
point trajectory is governed by s(ki+1), s(ki+2),
s(ki + 3), . . ., s(ki +Np), and write

S =
[
s(ki + 1)T s(ki + 2)T . . . s(ki +Np)T

]T
(8)

Then the cost function for set-point following can
be chosen as follows:

Js = (S − Y )T Q̄(S − Y ) + ∆UT R̄∆U (9)

where Q̄ has dimension of (q×Np)× (q×Np) and
Q̄ > 0. By substituting (8) into (9), we obtain the
optimal control trajectory as

∆U = −(ΦT C̄T Q̄C̄Φ + R̄)−1ΦT C̄T Q̄(C̄Fx(ki)− S) (10)

For the quadratic cost function Js, without hard
constraints, the resultant control system is in
the form of linear time invariant state feedback
control: see Equation (10). This point becomes
clearer when we let

Ks = (ΦT C̄T Q̄C̄Φ + R̄)−1ΦT C̄T Q̄C̄F

Rs = (ΦT C̄T Q̄C̄Φ + R̄)−1ΦT C̄T Q̄S

Notice that the above matrices only depend on
the plant model parameters and the set point tra-
jectory within the prediction horizon (assumed in-
variant for the majority of applications), thus they
are constant matrices for linear, time-invariant



systems. From the receding horizon control prin-
ciple, the actual incremental control signal at time
ki is

∆u(ki) = −ksx(ki) + rs (11)

where ks and rs are the first p rows of the ma-
trices Ks and Rs respectively. Equation (11) is in
the standard form of linear, time invariant, state
feedback control. The integral action is inherent in
this the predictive control system since the control
input is calculated as:

u(ki + 1) = u(ki) + ∆u(ki) (12)

Note that this state space approach leads to a
simple framework for predictive control design.
However, with the specific choice of the NNMSS
state variables used here, the framework does not
require the use of observers for the estimation
of the state variables. This particular advantage
will be highlighted in the later simulation studies
(see Section 3). In comparison with the design
approaches using a state observer, the state space
model (3) is no longer in the form of a minimal
structure and, as a consequence, the A, B and
C matrices have higher dimensionality. For large
dimensional systems, this might lead to difficulties
in forming the F and Φ matrices in Equation
(7). This problem could be avoided using the ba-
sis function approach proposed in (Wang, 2004),
where the predictive control gain matrices are
calculated sequentially.

3. MODEL PREDICTIVE CONTROL OF
DOUBLE INTEGRATING PLANT

Consider a continuous-time, double integrator
plant that is sampled at an interval ∆t = 1 second.
This system is used in this example to compare
the performance of the model predictive control
algorithms using state space design frameworks
with and without using observers. A step input
disturbance with amplitude of −10 is added to
the plant input at the 4th second of time in the
simulation. In the MPC design, the prediction
horizon, Np, is selected to be 150 samples and
the control horizon Nc is chosen to be 3. The
weighting on the output error Q̄ is the unit matrix
and the weighting on ∆u is chosen to be the unit
matrix. For pedagogical reasons, we choose this
‘toy’ example with the intention of making the
comparative studies more transparent.

The corresponding discrete-time transfer function
model is

G(z) =
0.5(z + 1)
(z − 1)2

(13)

so that the NMSS model is given by:

xm(k + 1) =Amxm(k) +Bmu(k)

y(k) =Cmxm(k) (14)

where,

Am=




2 −1 0.5
1 0 0
0 0 0


 ;Bm=




0.5
0
1


 ;

Cm=
[

1 0 0
]

This NMSS model is augmented to yield the
state space model, as shown in Equation (4)
for the design of the model predictive controller.
For comparative purposes, the conventional MPC
state space design using an observer is applied to
the same process. In the observer-based design,
the system matrices for the double integrator
example are:

Am =
[

1 1
0 1

]
; Bm =

[
0.5
1

]
; Cm =

[
1 0

]

The augmented model for this plant is given by

x(k + 1) =Ax(k) +B∆u(k)

y(k) =Cx(k) (15)

where A =




1 1 0
0 1 0
1 1 1


 ; B =




0.5
1

0.5


 ; C =

[
0 0 1

]

A pole-assignment strategy is used to design an
observer based on the model (15). The set of ob-
server’s poles are chosen to be (0.01, 0.0105, 0.011)
corresponding to a fast dynamic response. The re-
sultant observer gain is Job=[1.968 0.9688 2.9685]T .
(The deadbeat observer for this case has a gain
of Jd = [2 1 3] the difference is negligible
in terms of dynamic responses).The closed-loop
eigenvalues for the predictive control systems are
identical except that the NMSS-MPC system has
an extra pole at the origin of the complex plane.
The identical poles are 0.2262± j0.05086, 0.3938.

3.1 Case A. Input amplitude constraint.

Figure 1 shows the comparison of the results ob-
tained in the case of input amplitude constraints,
where the control signal was limited to between
−12 and 12. It is clear from the plots that the
NMSS-MPC control system produces faster dis-
turbance rejection with much smaller magnitude
in the plant response. It is interesting to note that
the control signal recovers from the saturation in
a shorter time interval .

3.2 Case B. Input rate-of-change constraint.

Figure 2 shows the comparative results for in-
put rate-of-change constraints. In the first case,
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Fig. 1. Closed-loop response with control ampli-
tude constraints (−12 ≤ u(k) ≤ 12.).Top fig-
ure: output response; bottom figure: control
signal response (Solid line: observer based
design; solid-star line: NMSS design).

the input rate-of-change ∆u(k) was constrained
between −15 and 15. It is seen from the plots
that the MPC using the observer-based design
produces oscillatory control and plant output sig-
nals. In contrast, the non-minimal NMSS-MPC
structure has no difficulty in coping with the input
rate-of-change. In fact, the performance is almost
identical to the case where no constraints are im-
posed. To further investigate this issue, when the
limits of rate-of-change are reduced to −8 and 8,
the MPC using the observer-based design became
unstable, whilst the NMSS-MPC control system
produced a closed-loop system with satisfactory
performance (see Figure 3).

3.3 Case C. Output constraint.

Figure 4 shows the comparative results in the
case of output constraints, where the target is
to maintain the plant output signal within the
limits of −16 and 6. It is clear again that the
model predictive control using observer-based de-
sign is unable to maintain the plant output within
the specified limits. In contrast, the NMSS-MPC
control system successfully maintains the output
signal within these limits.

3.4 Discussion

When constraints become activated, MPC be-
comes a nonlinear control system. As a result,
the separation principle that is the cornerstone of
state estimation-based feedback control, no longer
holds true. From the above case studies, it is
seen that the observer errors generated in this
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Fig. 2. Closed-loop response with control rate-of-
change constraints (−15 ≤ ∆u(k) ≤ 15). Top
figure: output response; middle figure: control
signal response; bottom figure: rate-of-change
in control signal (Solid line: observer based
design; solid-star line: non-minimal NMSS
design).
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Fig. 3. Closed-loop response with control rate-
of-change constraints (−8 ≤ ∆u(k) ≤ 8).
Top figure: output response; middle figure:
control signal response; bottom figure- rate-
of-change in control signal (observer based
design is unstable and not shown; solid-star
line: NMSS design)

manner result in a larger deterioration in per-
formance than that experienced in the case of
linear, state estimation-based feedback control. In
particular, larger observer errors often activate
the constraints and produce more deterioration
in the closed loop performance. And output con-
straints will not work at all unless the observer
produces almost perfect estimation of the un-
observed states. The new NMSS-MPC controller
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Fig. 4. Closed-loop response with output con-
straints (−16 ≤ y(k) ≤ 6). Top figure: out-
put response; bottom figure: control signal
response (Solid line: observer based design;
solid-star line: non-minimal NMSS design).

avoids the use of the observer by directly accessing
and exploiting only the measured plant input and
output information. As a result, the constraints
become activated only when the actual system
operation is beyond the specified limits.

4. CONCLUSIONS

This paper has proposed a model predictive con-
trol (MPC) algorithm using a non-minimal state
space (NMSS) structure. By choosing the set of
state variables that corresponds to the measured
plant input, output and their past values, as de-
fined by the structure of the transfer function
model, a state observer is no longer required as
part of this NMSS-MPC design. As a result, the
closed-loop performances for disturbance rejection
in the presence of constraints are significantly
improved, as demonstrated by the simulation ex-
ample. In addition, plant output constraints can
be effectively utilized when required.
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