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1. INTRODUCTION

In this paper we consider the following control
problem. A finite family of linear, time-invariant
plants is given, the linear process to be con-
trolled is a piece-wise time-invariant plant that,
from time to time, suddenly switches among the
different possible configurations belonging to the
given family. When and where switching occurs
is not a priori known. It is required to find a
stabilizing controller which, for each possible fixed
configuration of the process, yield an output step
response with some desired time specifications.

Conventional adaptive techniques may not be ade-
quate to cope with this mode-switch control prob-
lem because of the too long time interval needed
for adaptation (Hilhorst et al., 1994; Narendra et

al., 1995). Moreover, even in the case of a fixed
linear, time-invariant plant, too strict response
specifications can not be adequately satisfied by a

single, linear, time invariant controller. For exam-
ple, a controller producing a step response with a
short rise time is like to produce a large overshoot
and/or poorly damped oscillations. On the order
hand, a smooth behaviour of the step response is
often coupled with too long rise and settling times.
To this purpose, fuzzy gain scheduling procedures
have been recently proposed with reference to a
fixed, linear, time-invariant plant (Shamma and
Athans, 1990; Shamma and Athans, 1991; Hang
and Cao, 1996; Visioli, 1999; Raminez and Lee,
2000; Rugh and Shamma, 2000). The main draw-
back of this approach is the lack of a tool for a
rigorous stability analysis.

The method proposed in this paper situates in the
area of supervised switching control (see (Morse,
1995; Narendra et al., 1995; Liberzon, 2003) and
references therein). A group of families of lin-
ear, time-invariant controllers is defined, each one
for each possible configuration of the plant. The



switching among the families and inside each fam-
ily is governed by two supervisors (S1 and S2)
operating at two different hierarchical levels. The
task of the hierarchically higher supervisor (S1)
is to recognize if the currently acting controller
family is appropriate for the actual configuration
of the plant. This is accomplished by means of a
controller falsification procedure detecting closed-
loop instability. Moreover S1 drives the control
law towards that corresponding to the actual op-
erating conditions.

The hierarchically lower supervisor S2 governs
the switching inside each controller family to im-
prove the output step response features obtainable
with a single linear, time-invariant controller. The
switching logic is based on the real time compari-
son of some real positive definite cost functionals
of the output prediction errors.

The present method is based on the hypothesis
that the behaviour of the external reference over
a future, bounded time-interval is available and
that the time intervals between two consecutive
changes of the plant modes and between two
consecutive step changes of the set point are long
enough.

The paper is organized in the following way. Sec-
tion 2 states the control problem, the hierarchical
organization of the supervised switching control
policy is illustrated in section 3, conditions for
closed-loop stability are stated in section 4. Nu-
merical results and concluding remarks are given
in sections 5 and 6 respectively.

2. PROBLEM STATEMENT

Consider the family of linear, time-invariant,
discrete-time, reachable and observable s.i.s.o.
plants P = {P1, · · · , PN}, the linear, piece-wise
time-varying plant Σ to be controlled switches
among the elements of P at some unpredictable
time instants tk, k = 1, 2 · · ·. The initial config-
uration of Σ at t0 = 0 is known, while the new
configuration assumed by Σ at t = tk, is not
known a priori. The external reference r(·) is
assumed to be a piece-wise constant signal gener-
ated as the unforced output response of a s.i.s.o,
switched system denoted by ΣR. At some time
instants t(`), ` = 1, 2, · · ·, r(·) may exhibit jump
discontinuities of arbitrary amplitude. Inside each
interval [t(`−1), t(`)), the switched signal generator
ΣR behaves like a time-invariant system which is

denoted by Σ
(`)
R .

It is required to find an output feedback controller
C, stabilizing Σ and yielding an output response
y(·) of the closed loop system ΣC forced by r(·)
with a little overshoot, well damped oscillations
and a fast transient extinguishment.

The time intervals [tk−1, tk)
∆
= Tk and [t(`−1), t(`))

∆
= T (`) between two switching instants of Σ and
ΣR respectively are assumed to be long enough to
allow the definition of a suitable dwell-time, as it
will be specified later.

To meet the requirements on the transient out-
put response, N families Ci, i = 1, · · · , N , of lin-

ear, time-invariant, stabilizing regulatorsG
(j)
i , j =

1, · · · , Ni, have been designed, each one for each
possible configuration Pi of Σ. The purpose is to
define, for each fixed Pi, an overall time-varying
control strategy picking up the best features of

each single G
(j)
i .

3. THE HIERARCHICAL SWITCHING
SCHEME

The time-invariant feedback connection of any

fixed element G
(j)
i ∈ Ci with the corresponding

Pi is denoted by Σ
(j)
i and its output is denoted by

y
(j)
i (·). The time-varying feedback connection of a
fixed Pi ∈ P with the time-varying controller gen-
erated by the switching inside Ci is denoted by Σi.

The time-invariant error system E
(j)
i is given by

the series connection of the time-invariant exter-
nal reference generator Σ

(`)
R with Σ

(j)
i , its unforced

output response originating from an arbitrary, ini-

tial internal state of E
(j)
i is denoted by e

(j)
i (·) and

is given by e
(j)
i (·) = r(·) − y

(j)
i (·). Without any

loss of generality it is assumed that no controller

G
(j)
i , j = 1, · · · , Ni, stabilizes P`, for i 6= `.

For any fixed configuration Pi of the plant Σ,
the hierarchically lower supervisor S2 governs the
switching among the elements of the correspond-
ing stabilizing Ci according to the following logic.

At time t = 0, an ”a priori” chosen G
(j̄)
i is

connected to Pi. At the same time, and before

the next output y
(j̄)
i (t+1) of Σ

(j̄)
i is acquired, the

output prediction errors e
(j)
i (t + k), k = 0, · · · , L,

of systems Σ
(j)
i , j = i, · · · , Ni, are computed. Each

e
(j)
i (t+ k), j = 1, · · · , Ni, is computed setting the

corresponding E
(j)
i in the same initial conditions

of E
(j̄)
i at t = 0. At each time instant t, the proce-

dure of prediction computation is repeated setting

each E
(j)
i , in the same conditions of E

(l)
i , where

suffix l corresponds to the controller G
(l)
i ∈ Ci

connected to Pi at the same time instant. The idea
is to exploit the output prediction errors to foresee
the future performances in the case the actual

G
(l)
i be changed and in the case it be kept acting.

To this purpose the following cost functionals are
defined for j = 1, · · · , Ni,

J
(j)
i (t) =

L
∑

k=1

[e
(j)
i

2
(t+ k)(1 + p(k))] +



+ p1

L1
∑

k=1

max
(t+k)∈Im

∣

∣

∣
e
(j)
i (t+ k)

∣

∣

∣
. (1)

Parameter p(k) is a penalty term whose initial
value is zero and is increased by one whenever

a sign change of e
(j)
i (t+k) is observed, the second

term of functional (1) is like an infinity norm
which penalizes the maximum absolute error, pa-
rameter L1 is the number of oscillations observed
in the prediction horizon L, Im is the number of
error samples belonging to the m-th oscillation,
parameter p1 is a free design positive, penalty
term.

At each time instant t, supervisor S2 switches the

actual G
(j)
i towards the controller producing the

minimum index J
(j)
i (t).

For each interval Tk, k = 1, 2, · · ·, supervisor S2

starts governing the switching inside the proper
family Ci L time instants before a predicted dis-
continuity at t = t(`) of r(·) and stops after

the switching time interval T
(s)
i related to Pi has

elapsed. The length of T
(s)
i is chosen as L+ T

′(s)
i ,

where T
′(s)
i is the estimated maximum time in-

terval for the output y
(j)
i (·) of Σ

(j)
i j = 1, · · · , Ni,

to settle around a prescribed percentage of the
steady-state after each t(`). Each switching inter-

val T
(s)
i ∈ Tk is followed by a dwell-time Dk,`,

where suffixes k and ` mean that Dk,` is the ` −
th dwell-time occurring inside Tk. The minimal
length of each Dk,` is related to the particular

plant configuration Pi, and is denoted by D̃i, it
will be computed in section 4 on the basis of sta-
bility conditions. During each D̃i neither abrupt
changes of r(·) nor transitions from Pi to Pj

(i 6= j) are allowed. The difference Dk,`−D̃i is the
(possibly null) time interval where switching is not
forbidden but does not take place because neither
plant transitions occur nor reference changes are
expected within the next L steps.

The two tasks of the hierarchically higher super-
visor S1 are to detect the switching instants from
Pi to Pj and to drive the control law towards the
appropriate family Cj .

By assumption, the closed loop system ΣC be-
haves like a linear, time-invariant one inside each
Dk,` , ` = 1, 2, · · ·. This allows S1 to accom-
plish its task of detecting the switching instants,
by means of the following controller falsification
procedure.

Let G
(j)
i and E

(j)
i be the controller and the error

system respectively, during the dwell-time D̃i ⊆
Dk,`, let t̄k,` be the first time instant of D̃i, let
t̃k,` be the first time instant after the minimal

interval D̃i has elapsed, and finally let `
(j)
i be the

state dimension of E
(j)
i . As G

(j)
i stabilizes Pi, E

(j)
i

is state-output stable, hence, ∀σ̄ ∈ (0, 1) there

exists a minimum time interval τ
(j)
i (σ̄) such that

∀τ ≥ max
(

`
(j)
i , τ

(j)
i (σ̄)

)

the functional

V (t,mτ) =

t−(m−1)τ
∑

h=t−mτ

(e
(j)
i (h))2, t ≥ t̄k,` +mτ,

m = 1, 2, · · ·, is monotonically converging to zero
as

V (t, τ) < σ̄V (t, 2τ) , t ≥ t̄k,` + 2τ, t→∞, (2)

(Corradini and Jetto, 2000). Supervisor S1 starts

computing e
(j)
i (h) when t = t̄k,` and the func-

tional V (t, τ) when t ≥ t̄k,` + 2τ , while starts
checking inequality (2) as soon as plant transi-
tions are allowed, namely at the first time instant
t = t̃k,` after D̃i. This in turn implies that D̃i

must satisfy the condition

D̃i ≥ 2max
j

{

max
(

`
(j)
i , τ

(j)
i (σ̄)

)}

∆
= ηi (σ̄) . (3)

If for some t̂k ≥ t̃k,` inequality (2) is not satisfied,

this means that G
(j)
i is not anymore a stabilizing

controller for the plant, so that a switching from
Pi to P` , ` 6= i, has surely occurred for some
tk ≤ t̂k.

At t = t̂k supervisor S1 stops checking inequality
(2) and starts the identification of the new config-
uration P` computing the following functionals

Fl(t̂k) =

t̂k+L2
∑

k=t̂k

|yl(k)− y(k)|, l = 1, · · · , N, l 6= i,

where yl(·) and y(·) are the outputs produced
by each model Pl, l = 1, · · · , N, l 6= i and by
the new unknown configuration of Σ respectively,
forced by the same control input produced by the

currently acting controller G
(j)
i ∈ Ci. Switching

is performed towards the controller family corre-
sponding to the model producing the minimum
Fl. The duration L2 of the identification interval
is the maximum number of coefficients of the
transfer function of each Pi, i = 1, · · · , N .

The supervisory action of S1 stops at time t̂k +
L2, otherwise, if S1 does not detect any plant
transition, it stops its supervisory action L time
instants before the next step-change of r(·). In
both cases, the last task of S1 is to drive the
switched controller C towards an a priori chosen

element G
(j)
i of the appropriate family Ci.



4. STABILITY ANALYSIS

Sufficient conditions for the internal stability of
the switched closed loop system ΣC are derived
imposing, for each Pi ∈ P, a minimum length D̃i

to the corresponding dwell-times intervals Dk,`.

It is convenient to subdivide the time axis into
intervals [t′k−1, t

′
k)

∆
= T ′k with

t′k − t′k−1 − 1 = T
(0)
k +

∑

`

T
′′

k,` + L′2,k , (4)

where: t
′

k−1 is the time instant in which supervisor
S1 switches controller C towards family Ci corre-
sponding to the plant configuration Pi identified

at the end of the previous interval T ′k−1, T
(0)
k

is the possibly null initial time interval of T ′k in
which switching inside Ci is stopped because no
abrupt change of the external reference r(·) occurs

(clearly T
(0)
0 = 0 because the first step change of

r(·) occurs in t′0 = 0), T ′′k,` is given by T ′′k,` = T
(s)
i +

Dk,` , L
′
2,k is given by L′2,k = L2+ t̂k− tk. During

interval L′2,k the closed-loop system is frozen on
an unstable configuration.

Denote by Ai,j the dynamic matrix of Σ
(j)
i and

by Φi (·, ·) the state transition matrix of Σi. The
minimal length D̃i of Dk,`, i = 1, · · · , N , is derived
imposing the condition
∥

∥

∥
Φi

(

t+ T
(s)
i + D̃i, t

)∥

∥

∥
< 1, i = 1, · · · , N. (5)

Let

(

max
j
‖Ai,j‖

)T
(s)
i

∆
= Mi and let Ai,n denote

the (stable) a priori unknown dynamic matrix of

the configuration Σ
(n)
i where Σi remains frozen at

the end of a generic switching interval, one has

∥

∥

∥
Φi

(

t+ T
(s)
i + D̃i, t

)∥

∥

∥
≤

≤
∥

∥

∥
AD̃i

i,n

∥

∥

∥
·
∥

∥

∥
Φ
(

t+ T
(s)
i , t

)
∥

∥

∥
≤
∥

∥

∥
AD̃i

i,n

∥

∥

∥
·Mi.

The norm
∥

∥At
i,n

∥

∥ is converging to zero for t going

to infinite, hence there exists a time instant t
(n)
i

such that
∥

∥At
i,n

∥

∥ · Mi < 1, ∀t ≥ t
(n)
i . As Ai,n

is not known a priori, the minimal length D̃i of
the dwell-time must be computed on the basis of

max
n

{

t
(n)
i

}

∆
= θi. Recalling (3), one has:

D̃i = max {ηi(σ̄), θi} . (6)

Condition (6) states an off-line computable lower
bound for the dwell-times Dk,` related to Σ =
Pi, i = 1, · · · , N . Nevertheless, the above con-
dition only holds for the dwell-time Dk,` with

` = 2, 3, · · · The minimum length D̃i of Dk,1 has to

be computed differently because the time interval

T ′′k,1 = T
(s)
i + Dk,1 is preceded by T

(0)
k and by

the interval L′2,k−1 ∈ T ′k−1 over which the closed-
loop system is frozen on an unstable configuration.

As the value of T
(0)
k is not ”a priori” known,

the minimal length D̃i of Dk,1 can be computed

only after interval T
(0)
k has elapsed. Assume that,

at the switching instant tk−1 ∈ T ′k−1, plant Σ
switches from P` to Pi, while the controller C

remains frozen on an element G
(m)
` ∈ C` until

Pi has been identified.

During L′2,k−1 = L2+ t̂k−1− tk−1, the closed-loop
system ΣC is frozen on the unstable configuration,

given by the feedback connection of G
(m)
` with

Pi. Let Ai,`,m denote the dynamic matrix of ΣC

during L′2,k−1, let Ai,j be the stable dynamic

matrix of ΣC ≡ Σ
(j)
i during T

(0)
k ∈ Tk and let

t̃k−1,¯̀ ∈ T ′k−1, the first time instant after the

minimum length D̃i of the last Dk−1,¯̀ ⊂ T ′k−1
has elapsed.

As tk−1 is unknown, the minimal length D̃i ofDk,1

must be computed allowing tk−1 vary all over the
permitted interval [t̃k−1,`, t̂k−1].

Let max
0≤t≤t̂k−1−t̃k−1,`

∥

∥

∥
A
(L2+t)
i,`,m

∥

∥

∥

∆
= Ki,`,m and let

t
′(n)
i be such that Ki,`,m ·

∥

∥

∥

∥

A
T

(0)

k

i,j

∥

∥

∥

∥

·Mi ·
∥

∥At
i,n

∥

∥ <

1, ∀t ≥ t
′(n)
i . By arguing as in equation (6)

and defining max
n

{

t
′(n)
i

}

∆
= θ′i, one has that the

minimal length D̃i of Dk,1 must be computed as

D̃i = max {ηi(σ̄), θ
′
i} . (7)

5. NUMERICAL RESULTS

A family P = (P1, P2, P3) has been obtained
discretizing three continuous time plants with a
sampling period Ts = 0.1s. The transfer function
of each Pi is of the kind P (d) = (b1d+ b0d

2)/(1+
a1d+ a0d

2). The values of the coefficients of P (d)
are reported in Table 1. For each Pi, a family

Ci of Ni = 3 controllers G
(j)
i has been designed

by the pole placement technique. The transfer

function of each G
(j)
i is of the kind G(d) = (q2 +

q1d + q0d
2)/(1 + p1d + p0d

2). To each G
(j)
i a

different set point response speed of the respective

Σ
(j)
i corresponds: G

(1)
i produces a slow response,

G
(3)
i produces a fast response, G

(2)
i produces an

intermediate closed-loop dynamics. The values of
the coefficients of each G(d) are reported in Table
2. Plant Σ is in the configuration P1 in the time
interval T1 = [0, 70s), and in the configuration
P2 in T2 = [70s,∞). The external reference
r(·) is the following piece-wise constant signal:
r(t) = 1,∀t ∈ T (1) = [0, 30), r(t) = 1.5,∀t ∈



T (2) = [30, 80), r(t) = 3,∀t ∈ T (3) = [80,∞).
This experimental situation is consistent with the
dwell-time D̃i computed as explained in section
4. Functional (1) has been implemented choosing
L = 3s and p1 = 10. The switching intervals

are T
(s)
1 = 5s, T

(s)
2 = 6s, T

(s)
3 = 10s. The

switching controller started from G
(2)
1 . The results

of the numerical simulation, reported in Figure 1,
show the effectiveness of the proposed controller.
The spike observed around t1 = 70s is due
to the plant transition. Details of two parts of
the simulations are reported in Figure 3 and
4. Both diagrams and parameters reported in
Table 3 evidence the improvement introduced by
switching. The switching sequence is shown in
Figure 2.

Table 1 Parameters of the process family

b1 b0 a1 a0

P1 0.0057 0.0056 −1.9312 0.9418

P2 0.0001 0.0001 −1.9800 0.9802

P3 0.0206 0.0169 −1.5114 0.5488

Table 2 Parameters of the controller families

q2 q1 q0 p1 p0

G
(1)
1 71.79 −135.64 64.00 −0.64 −0.361

G
(2)
1 73.03 −137.18 64.47 −0.63 −0.364

G
(3)
1 84.82 −153.82 69.64 −0.60 −0.397

G
(1)
2 11.98 −23.68 11.70 −1.91 0.911

G
(2)
2 102.9 −201.64 98.74 −1.75 0.750

G
(3)
2 3102 −5458 2416 −0.9 −0.1

G
(1)
3 1.670 −2.52 0.91 −1.52 0.523

G
(2)
3 4.140 −6.11 2.18 −1.32 0.324

G
(3)
3 66.15 −71.53 20.83 −0.36 −0.639

Table 3 Transient response parameters relative
to Figure 3

Rise Time Settling Time Overshoot

3(a) 0.2s 1.5s 13.2%

3(b) 0.1s 4.4s 16.2%

4(a) 0.3s 0.5s 0.0%

4(b) 0.5s 2.4s 6.8%

6. CONCLUSIONS

A class of mode-switch processes has been consid-
ered and a stabilization control problem includ-
ing strict specifications on the transient response
has been formulated. This problem calls for con-
trol algorithms which behave in a less conserva-
tive manner than robust or conventional adaptive
techniques. A switching control policy driven by
a hierarchically organized supervisory policy has

0 20 40 60 80 100 120 140
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s

Fig. 1. Output step response of ΣC .

0 20 40 60 80 100 120 140
1,1

1,2

1,3

2,1

2,2

2,3

3,1

3,2

3,3

s

Fig. 2. Switching sequence starting from G
(2)
1 .

The pair of integers i,j on the ordinate axis

identifies the controller G
(j)
i .

been proposed. The resulting time-varying con-
troller is able to quickly adjust the parameters of
the control law exploiting the information carried
by suitably defined performance indicators. The
reported simulation results confirm the validity of
the newly developed method.

The free design parameters of the control scheme
are the prediction horizon L and the number Ni of

controllers G
(j)
i ∈ Ci, i = 1, · · · , N. When choos-

ing them, numerical considerations should be also
taken into account. The number No of operations
for the on-line computations of functionals (1) is
No ∝ L ·Ni. Hence the choice of L and Ni should
also depend on the length of the sampling period
and on the available computer. A too large value
of L could make the cost functional (1) insensitive
to short term differences, while, in theory, the
greater Ni is chosen, the better it is. In practice,
the value Ni = 3, i = 1, · · · , N, is a reasonable
choice. It corresponds to the possibility of assign-
ing a slow, a fast and an intermediate closed-loop
dynamics. The switching logic is organized in such
a way that the two supervisors never act the same
time. Supervisor S2 only acts during the switching

periods T
(s)
i , where S1 is not acting, therefore

the hierarchical structure of the control scheme
does not represent an additional burden from the
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Fig. 3. Diagram (a): Detail of the output step
response of ΣC ≡ Σ1 over the first 10s of
simulation. Diagram (b): Detail of the output

step response of the time invariant Σ
(2)
1 over

the same time interval of Figure 3(a).

computational point of view. Numerical results
confirmed the validity of the proposed approach.
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