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Abstract: A new tracking controller scheme is presented for a class of nonlinear
composite system using dynamic neural networks. Lyapunov stability theory is
used to guarantee a uniform ultimate boundedness property for the tracking error
and all other signals in the closed loop. The controller derived is smooth. In
addition, the performance criteria of the mean-square performance are provided
to quantify the control performance of proposed method. No a priori knowledge
of an upper bound on the ”optimal” weights and modelling errors is required.
Numerical simulation examples are used to illustrate and clarify the theoretical
results.Copyright c©2005 IFAC
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1. INTRODUCTION

Tracking is the key issue in control systems per-
formance, in which the state of a given plant is
forced to follow a prespecified bounded reference
trajectory (Rovithakis, 1999). In the linear sys-
tems case, the problem has found a satisfactory
solution, even if the system contains parametric
and dynamic uncertainties, or even if external
disturbances affect its dynamics.

However, analogous results have not been re-
ported when the controlled system is nonlinear
composite systems. Due to their massive paral-
lelism, very fast adaptability and inherent approx-
imation capabilities, neural networks have exten-
sively been used mostly as approximation models
of unknown nonlinearities. Therefore, the complex
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systems that includes uncertain and possibly un-
known nonlinearities have been dealt with mainly
through a neuro-control approach in many litera-
tures (Hunt et al., 1992;Narendra et al., 1990).

The key relationship between neural and adaptive
control arises from the fact that neural networks
can approximate arbitrarily well the static and
the dynamic nonlinear systems. Thus one can
substitute an unknown system by a neural net-
work model, which is of known structure but con-
tains a number of unknown parameters (synap-
tic weights), plus a modelling error term. Thus
transforming the original problem into a nonlinear
robust adaptive control problem. The bridge to
connect the theory with applications in neuro-
control literature was provided by Lyapunov sta-
bility theory. A number of interesting works have
already appeared in this direction (Chen et al.,
1995;Rovithakis et al., 1997;Rovithakis et al.,
1994;Lewis et al., 1995).



Based on dynamic neural networks, tracking con-
trol of affine nonlinear systems is discussed in
literature (Rovithakis, 1999), however there isn’t
analogous research results in the nonlinear com-
posite systems. Composite systems consist of some
subsystems by inner connections, it has practical
application background, for example, composite
systems exist in electric power systems, robot sys-
tems, computer networks, long-distance communi-
cations etc. Thus research on the composite sys-
tems has attracted extensive consideration (Yan
et al., 1998;Zhang, 2000;Zhang, 2002). Composite
systems with matching condition is discussed by
static neural networks in literature (Zhang, 2002).
On the basis of literature (Rovithakis, 1999), we
investigate the problem of tracking control of non-
linear composite systems and performance analy-
sis by dynamic neural networks in this paper. The
following definitions of symbols will extensively be
used through the paper.

Supposing xi = (xi1, xi2, . . . , xini
)T ∈ Rni , |xi|

denotes the usual Euclidean norm of a vector; if
xi is a scalar, then |xi| denotes its absolute value.
Suppose |xi|1 =

∑ni

j=1 |xij |, if Ai is a matrix,
then ||Ai|| denotes the Frobenius norm, defined
as ||Ai||2 =

∑
i,j |aij |2 = tr{AT

i Ai} where tr{·}
denotes the trace of a matrix.

2. PROBLEM FORMULATION

We consider nonlinear composite systems

ẋi=fi(xi)+gi(xi)ui+hi(x), i = 1, 2, . . . , N (1)

where xi ∈ Rni is the states, ui ∈ Rmi is the
control input, fi(xi) is an unknown smooth vector
function, gi(xi) is an unknown matrix function,
hi(x) is an interconnection term. fi(xi), gi(xi),
hi(x) are continuous, locally Lipschitz. The con-
trol objective is to force the state to follow a
given bounded reference trajectory xim ∈ Rni , i =
1, 2, . . . , N , xim is generated from an exosystem of
the form

ẋi = Bim(xim) + him(xm) (2)

where xim ∈ Rni is the states, him(xm) is an in-
terconnection term, whose dynamics are assumed
to be unknown, but satisfy a locally Lipschiz and
a continuity property.

Nonlinear system is described using the dy-
namic neural networks in literature (Rovithakis,
1999;Rovithakis et al., 1994). According to this,
the system (1) is described by the dynamic neural
networks as follows.

ẋi =−Aixi + Wi1Si1(xi) + Wi2Si2(xi)ui

+WiNSiN (x) + ωi(xi, ui, x) (3)

where Ai is a ni × ni matrix with positive eigen-
values, which for simplicity can be taken diago-
nal. Wi1, Wi2 and WiN are ni × Li1, ni × Li2

and ni × LiN matrices of adjustable synaptic
weights respectively. Si1(xi) is a Li1−dimensional
vector, Si2(xi) is a Li2 × mi matrix, SiN (x)
is a LiN−dimensional vector, they are smooth
monotone functions which select Sigmoid func-
tion; ωi(xi, ui, x) is the modelling error term, it
suffices following assumption.

Assumption 1: There exist appropriately small
positive constants $i such that |ωi(xi, ui, x)| ≤
$i

Following the above mentioned arguments, we can
also describe the unknown dynamics of exosystem
(2) as

ẋim =−Aimxim −WimSim(xim)

−WihSih(xm) + ωi0(xim, xm) (4)

where Aim is a ni × ni matrix with positive
eigenvalues. Wim and Wih are ni × Lim and
ni×Lih matrices of adjustable synaptic weights .
Sim(xim) is a Lim−dimensional vector, Sih(xm)
is a Lih−dimensional vector, they are smooth
monotone functions which select Sigmoid func-
tion; ωi0(xim, xm) is the modelling error term, it
suffices following assumption.

Assumption 2: There exist appropriately small
positive constants $i0 such that |ωi0(xi, xm)| ≤
$i0

Define the tracking error ei of the ith subsystem

ei = xi − xim (5)

Differentiating (5) with respect to time. Define
Aim = Ai + ∆Ai, then we obtain

ėi=−Aiei − W̃i1Si1(xi)− W̃i2Si2(xi)ui

−W̃iNSiN (x)− W̃imSim(xim)− W̃ihSih(xm)

+Ŵi1Si1(xi) + Ŵi2Si2(xi)ui + ŴiNSiN (x)

+ŴimSim(xim) + ŴihSih(xm) + ∆Aixim

+ωi(xi, ui, x)− ωi0(xim, xm) (6)

where Ŵi1, Ŵi2, ŴiN , Ŵim, Ŵih are estimates of
the unknown weight values Wi1, Wi2, WiN , Wim,
Wih, respectively. The parameter errors W̃i1, W̃i2,
W̃iN , W̃im, W̃ih are defined as W̃i1 = Ŵi1 −
Wi1, W̃i2 = Ŵi2 − Wi2, W̃iN = ŴiN − WiN ,
W̃im = Ŵim −Wim, W̃ih = Ŵih −Wih.

From assumption 1, 2 and xim ∈ L∞, we obtain

|∆Aixim + ωi(xi, ui, x)− ωi0(xim, xm)|
≤ |∆Ai‖|xim|+ |ωi(xi, ui, x)|+ |ωi0(xim, xm)|
≤ εi



where εi is an unknown bound.

Thus the tracking control problem can be trans-
formed that we will design the controller of state
feedback and appropriate update law to guarantee
the uniform ultimate boundedness of the tracking
error.

3. CONTROLLER DESIGN

Consider the tracking error equation (6), taking
the following control laws

ui = ui1 + ui2 + ui3 + ui4 (7)

ui1 =
ST

i2(xi)ŴT
i2Ŵi1Si1(xi)

λi1Mi
(8)

ui2 =
ST

i2(xi)ŴT
i2ŴiNSiN (x)

λi2Mi
(9)

ui3 =
ST

i2(xi)ŴT
i2ŴimSim(xim)
λi3Mi

(10)

ui4 =
ST

i2(xi)ŴT
i2ŴihSih(xm)
λi4Mi

(11)

where λi1, λi2, λi3, λi4 are positive design param-
eters, Mi = 1 + ‖Ŵi2‖2‖Si2(xi)‖2.
Taking the following adaptive laws

˙̂
W i1 =−γi1Ŵi1 + kieiS

T
i1(xi) (12)

˙̂
W i2 =−γi2Ŵi2 + kieiu

T
i ST

i2(xi) (13)

˙̂
W iN =−γi3ŴiN + kieiS

T
iN (x) (14)

˙̂
W im =−γi4Ŵim + kieiS

T
im(xim) (15)

˙̂
W ih =−γi5Ŵih + kieiS

T
ih(xm) (16)

where ki, γi1, γi2, γi3, γi4, γi5 are positive design
parameters. So the following theorem 1 can be
seen to hold.

Theorem 1: Consider the error equation (6). The
control laws (7)-(11) together with the adap-
tive laws (12)-(16) guarantee the uniform ulti-
mate boundedness of |ei|, ‖Ŵi1‖, ‖Ŵi2‖, ‖ŴiN‖,
‖Ŵim‖, ‖Ŵih‖ with respect to the set υi = {Vi(t) :
Vi ≤ µi

ci
}. where

ci = min{2(ki1 − 1
4 )

ki
, γi1, γi2, γi3, γi4, γi5}

µi = ε2
i k

2
i +

γi1

2
‖Wi1‖2 +

γi2

2
‖Wi2‖2

+
γi3

2
‖WiN‖2 +

γi4

2
‖Wim‖2 +

γi5

2
‖Wih‖2

ki1 >
1
4

Proof: Firstly consider the ith subsystem, take the
Lyapunov function candidate as follow:

Vi =
ki

2
eT
i ei +

1
2
tr{W̃T

i1W̃i1}+
1
2
tr{W̃T

i2W̃i2}

+
1
2
tr{W̃T

iNW̃iN}+
1
2
tr{W̃T

imW̃im}

+
1
2
tr{W̃T

ihW̃ih}. (17)

Differentiating (17) with respect to time, where
Ai = aiIi, substituting (7)–(11) and (12)–(16)
into it we get

V̇i ≤−kiai|ei|2+kie
T
i Ŵi1Si1(xi)+kie

T
i ŴiNSiN (x)

+
kie

T
i Ŵi2Si2(xi)ST

i2(xi)ŴT
i2Ŵi1Si1(xi)

λi1Mi

+
kie

T
i Ŵi2Si2(xi)ST

i2(xi)ŴT
i2ŴiNSiN (x)

λi2Mi

+
kie

T
i Ŵi2Si2(xi)ST

i2(xi)ŴT
i2ŴimSim(xim)

λi3Mi

+
kie

T
i Ŵi2Si2(xi)ST

i2(xi)ŴT
i2ŴihSih(xm)

λi4Mi

+kie
T
i ŴimSim(xim) + kie

T
i ŴihSih(xm)

+εiki|ei| − γi1tr{ŴT
i1W̃i1}

−γi2tr{ŴT
i2W̃i2} − γi3tr{ŴT

iNW̃iN}
−γi4tr{ŴT

imW̃im} − γi5tr{ŴT
ihW̃ih} (18)

where

tr{ŴT
i1W̃i1}=1

2
‖Ŵi1‖2+

1
2
‖W̃i1‖2− 1

2
‖Wi1‖2 (19)

tr{ŴT
i2W̃i2}=1

2
‖Ŵi2‖2+

1
2
‖W̃i2‖2− 1

2
‖Wi2‖2 (20)

tr{ŴT
iNW̃iN}=1

2
‖ŴiN‖2+1

2
‖W̃iN‖2−1

2
‖WiN‖2(21)

tr{ŴT
imW̃im}=1

2
‖Ŵim‖2+1

2
‖W̃im‖2−1

2
‖Wim‖2(22)

tr{ŴT
ihW̃ih}=1

2
‖Ŵih‖2+

1
2
‖W̃ih‖2− 1

2
‖Wih‖2(23)

substituting (19)-(23) into (18) we obtain



V̇i ≤−kiai|ei|2 + ki(1 +
1

λi1
)|ei|‖Ŵi1‖|Si1(xi)|

+ki(1 +
1

λi2
)|ei|‖ŴiN‖|SiN (x)|

+ki(1 +
1

λi3
)|ei|‖Ŵim‖|Sim(xim)|

+ki(1 +
1

λi2
)|ei|‖Ŵih‖|Sih(xm)|+ εiki|ei|

−γi1

2
‖W̃i1‖2 − γi1

2
‖Ŵi1‖2 +

γi1

2
‖Wi1‖2

−γi2

2
‖W̃i2‖2 − γi2

2
‖Ŵi2‖2 +

γi2

2
‖Wi2‖2

−γi3

2
‖W̃iN‖2 − γi3

2
‖ŴiN‖2 +

γi3

2
‖WiN‖2

−γi4

2
‖W̃im‖2 − γi4

2
‖Ŵim‖2 +

γi4

2
‖Wim‖2

−γi5

2
‖W̃ih‖2− γi5

2
‖Ŵih‖2+

γi5

2
‖Wih‖2 (24)

Select ki = ki1+ki2+ki3+ki4+ki5
ai

, ki1, ki2, ki3, ki4, ki5 >
0. According to definition of Si1(xi), SiN (x),
Sim(xim), Sih(xm). We get |Si1(xi)| ≤ si1,
|SiN (x)| ≤ siN , |Sim(xim)| ≤ sim, |Sih(xm)| ≤
sih. where si1, siN , sim, sih are known positive
constant. Choose design parameter λi1, λi2, λi3,
λi4. λi1 ≥ kisi1√

2ki2γi1−kisi1
, λi2 ≥ kisiN√

2ki3γi3−kisiN

,

λi3 ≥ kisim√
2ki4γi4−kisim

, λi4 ≥ kisih√
2ki5γi5−kisih

then (24) becomes

V̇i =−(ki1 − 1
4
)|ei|2 − γi1

2
‖W̃i1‖2 − γi2

2
‖W̃i2‖2

−γi3

2
‖W̃iN‖2 − γi4

2
‖W̃im‖2 − γi5

2
‖W̃ih‖2

+ε2
i k

2
i +

γi1

2
‖Wi1‖2 +

γi2

2
‖Wi2‖2

+
γi3

2
‖WiN‖2+

γi4

2
‖Wim‖2+

γi5

2
‖Wih‖2(25)

Let

ci = min{2(ki1 − 1
4 )

ki
, γi1, γi2, γi3, γi4, γi5}(26)

(25) becomes

V̇i ≤−ciVi + µi (27)

where

µi = ε2
i k

2
i +

γi1

2
‖Wi1‖2 +

γi2

2
‖Wi2‖2

+
γi3

2
‖WiN‖2 +

γi4

2
‖Wim‖2 +

γi5

2
‖Wih‖2

ki1 >
1
4

choosing Vi > µi

ci
, then

V̇i < 0 (28)

Thus, we can prove the uniform ultimate bound-
edness of Vi with respect to the set υi = {Vi(t) :
Vi ≤ µi

ci
}.

If Vi is outside υi then V̇i ≤ 0. on the other hand,
If Vi is inside υi then Vi is bounded by µi

ci
.

For nonlinear composite system, we employ Lyaounov
function as follows

V =
N∑

i=1

Vi (29)

Differentiating (29) with respect to time we obtain

V̇ ≤
N∑

i=1

(−ciVi + µi) (30)

choosing Vi > µi

ci
, then

V̇ < 0 (31)

So V is uniformly ultimately bounded. According
to definition of V , we can conclude that |ei|,
‖Ŵi1‖, ‖Ŵi2‖, ‖ŴiN‖, ‖Ŵim‖ and ‖Ŵih‖ also are
uniformly ultimately bounded.

from (7)-(11) and theorem 1, we obtain

|ui| ≤ (
si1

λi1
+

siN

λi2
+

sim

λi3
+

sih

λi4
)
µi

ci
(32)

namely, we get the set Ui

Ui={ui : |ui| ≤ (
si1

λi1
+

siN

λi2
+

sim

λi3
+

sih

λi4
)
µi

ci
}

Corollary 1: the control laws (7)-(11) are uni-
formly ultimately bounded with respect to the set
Ui

4. PERFORMANCE ANALYSIS

From (27) we get

0 ≤ Vi(t) =
µi

ci
+ [Vi(0)− µi

ci
]e−cit (33)

from (17) and (33)

|ei(t)|=





√
2
ki

Vi(0), if Vi(0) >
µi

ci√
2
ki

µi

ci
, if Vi(0) ≤ µi

ci

(34)

given any positive constant Ri >
√

2µi

kici
there

exist a finite Ti0

Ti0 =




− 1

ci
ln

ki

2 R2
i − µi

ci

Vi(0)− µi

ci

, if ei(0) > Ri

0, if ei(0) ≤ Ri

such that ei(t) enters the ball BRi at time t ≤ Ti0.

And the ultimate bound of ei(t) namely
√

2µi

kici
is

independent of initial condition.



Theorem 2: For the closed loop system (6)-(16),
the mean-square values of |ei|, ‖W̃i1‖, ‖W̃i2‖,
‖W̃iN‖, ‖W̃im‖, ‖W̃ih‖ are bounded by


1

t

t∫

0

|ei(τ)|2dτ




1
2

=





√√√√ 2µi

kici
+

2
[
Vi(0)− µi

ci

]

ki
,

if Vi(0) >
µi

ci√
2
ki

µi

ci
, if Vi(0) ≤ µi

ci

(35)


1

t

t∫

0

‖W̃i1(τ)‖2dτ




1
2

≤Di=





√
2µi

ci
+2

[
Vi(0)−µi

ci

]

, if Vi(0)>
µi

ci√
2µi

ci
, if Vi(0)≤ µi

ci

(36)


1

t

t∫

0

‖W̃i2(τ)‖2dτ




1
2

,


1

t

t∫

0

‖W̃iN (τ)‖2dτ




1
2

,


1

t

t∫

0

‖W̃im(τ)‖2dτ




1
2

,


1

t

t∫

0

‖W̃ih(τ)‖2dτ




1
2

≤Di(37)

proof: integrating (34) over [0,t] we get

t∫

0

|ei(τ)|2dτ≤ 2µi

kici
t+

2
kici

[Vi(0)−µi

ci
]
(
1−e−cit

)
(38)

from which we distinguish two possible cases.

case 1: Let Vi(0) ≤ µi

ci
and (38) becomes


1

t

t∫

0

|ei(τ)|2dτ




1
2

=
√

2
ki

µi

ci

case 2: Let Vi(0) > µi

ci
. from (38) we obtain


1

t

t∫

0

|ei(τ)|2dτ




1
2

=

√√√√ 2µi

kici
+

2
[
Vi(0)− µi

ci

]

ki

Thus, we have proven (35). Similarly, we can prove
(36) and (37) after observing that from (33)

‖W̃i1‖2, ‖W̃i2‖2, ‖W̃iN‖2, ‖W̃im‖2, ‖W̃ih‖2

=
µi

ci
+ 2

[
Vi(0)− µi

ci

]
e−cit

5. SIMULATION

In this section, we consider the simple composite
system

Fig. 1. The trajectory of x1m

Fig. 2. The trajectory of x2m

ẋ1 = −x1 + 0.2sinx1 + x1u1 + x2

ẋ2 = −x2 + 0.2sinx2 + x2u2 + x1

The problem is to develop a control law that forces
the practical system states to follow the given
reference bounded trajectory xm. Fig. 1,2 show
the reference signals.

Since the practical system states are unknown. A
third order dynamic neural network is used as a
model of the practical system . namely

ẋ1 =−a1x1 +
3∑

i=1

w11is
i
11(x1)

+
2∑

j=1

w12js
j
12(x1)u1 +

3∑

i=1

w1Nis
i
N (x2)

ẋ2 =−a2x2 +
3∑

i=1

w21is
i
21(x2)

+
2∑

j=1

w22js
j
22(x2)u2 +

3∑

i=1

w2Nis
i
N (x1)

Similarly, A third order dynamic neural network
is used as a model of the reference system, namely

ẋ1m =−a1mx1m +
3∑

i=1

w1mis
i
1m(x1m)

+
3∑

i=1

w1his
i
1h(x2m)



Fig. 3. The trajectory of x1 and x1m

Fig. 4. The trajectory of x2 and x2m

ẋ2m =−a2mx2m +
3∑

i=1

w2mis
i
2m(x2m)

+
3∑

i=1

w2his
i
2h(x1m)

The initial values are chosen as follows

x1 = x2 = x1m = x2m = 0,

w12j = w22j = −0.1, j = 1, 2
w11i = w21i = w1Ni = w2Ni = −0.1

w1mi = w2mi = w1hi = w2hi = −0.1, i = 1, 2, 3
we take the parameters

λi1 = λi2 = λi3 = λi4 = 4, i = 1, 2

γi1 = γi2 = γi3 = γi4 = γi5 = 0.001, i = 1, 2
a1 = a2 = 8, a1m = a2m = 4, k1 = k2 = 800

The simulation results are presented in Figs.3 and
Figs.4. Figs.3 shows the trajectory of the states x1

and x1m; Figs.4 shows the trajectory of the states
x2 and x2m, from the above figures it obviously
shows that the practical system states converge
to the reference trajectory after short time, the
simulation results show that the controller design
method is valid.

6. CONCLUSIONS

We discussed the problem of the tracking control
for a class of nonlinear composite system that

can be modelled by dynamical neural networks.
More specifically, we aim at designing a controller
that will force the actual system states to follow
a given bounded reference trajectory. Lyapunov
stability theory was used to guarantee a uniform
ultimate boundedness property for the tracking
error and all other signals in the closed loop, the
controller derived is smooth. In addition, the per-
formance criteria of the mean-square performance
are provided to quantify the control performance
of proposed method. Numerical simulation exam-
ple is used to illustrate and clarify the theoretical
results.
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