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1. INTRODUCTION

The topic of this contribution is the robustness
analysis of time delay systems of retarded type
(Bellman and Cooke, 1963) of the form

_x(t) =

qX
i=0

Aix(t� � i) (1)

where Ai; i = 1; :::; q are real matrices of size n�n
and 0 = �0 < �1 < ::: < � q are time delays.

The characteristic function of system (1) is a
quasipolynomial which can be written as

f(s) = sn +
n�1X
k=0

mX
l=0

�kls
ke��ls (2)

where 0 = �0 < �1 < ::: < �m are linear
combinations of delays � i; i = 1; :::; q and �kl;
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k = 0; :::; n � 1; l = 0; :::;m are multilinear
combinations of the coe¢ cients of matrices Ai;
i = 1; :::; q:

The quasipolynomial f(s) is of the retarded type
and has a �nite number of roots in any right half
complex plane. In what follows we assume that
f(s) have no roots on the imaginary axis of the
complex plane. It is well known that the stability
of the quasipolynomial (2) implies that of the time
delay system (1).

In this paper we consider the stability problem
for a class of uncertain systems (1) where the
characteristic function involves a polytope of qua-
sipolynomials of retarded type.

Our approach is within the graphical framework.
The main goal is to reduce the computational
complexity associated with the evaluation of the
value set of the family along the imaginary axis.
The main ingredients of the substantial reduc-



tion we achieve is based on the following ideas:
The �rst one is an extension of the Finite Inclu-
sion/Exclusion Theorems obtained for polynomi-
als in (Rantzer, 1989) and (Djaferis, 1995) to the
case of quasipolynomials. Indeed, this allows to
perform the stability analysis of the quasipolyno-
mial family based on the location on the complex
plane of the value set of the family computed for
a �nite number of frequencies only. The second
one, is the well known fact that the convexity of
the polytopic family is inherited by its value set,
which allows to restrict our search to the set of
extreme quasipolynomials of the family. The third
one is that the stability of the extreme quasipoly-
nomials of a family can be determined from that of
the subset of so-called essential quasipolynomials
given in (Kharitonov and Zhabko, 1994).

The note is organized as follows: In section 2 the
argument principle, and related stability results
for quasipolynomials are reminded, and in sec-
tion 3 we prove new, easier to verify, stability
conditions for the Finite Nyquist Theorem which
plays a central role in our work. In section 4, we
prove the Finite Inclusion Theorem for polytopic
families of quasipolynomials and for interval fam-
ilies of quasipolynomials. In Section 5, we give an
e¢ cient algorithm for the practical utilization of
the Finite Inclusions Theorem. Finally, in Section
6 we present some illustrative examples and the
note ends with some concluding remarks.

2. STABILITY OF RETARDED
QUASIPOLYNOMIALS WITH KNOWN

COEFFICIENTS

In this section we recall that the numerical change
of the argument of a quasipolynomial in a given
interval on the imaginary axis allows to conclude
on its stability. First, we begin with the following
proposition.

Proposition 1. (Santos et al., 2003a) Let 0 <
" � �

2 be given and � the positive root of the
polynomial equation C0�

n+C1�
n�1 � � �+Cn�1� =

sin( "2 ); where 0 � Ck =
Pm

l=0 j�klj ; k = 0; :::; n�
1; l = 0; :::;m: Then, the change of the argument
of f(j!) for ! 2 [R;1); with R � 1

�"
; is bounded

by ":

The analysis of the contributions of a Nyquist
contour to the argument of f(j!) along with the
Argument Principle leads to the following result.

Theorem 2. (Santos et al., 2003b) Let 0 < " � �
2

be given and let �[0;jR] be the net change of the
argument of f(j!) for ! 2 [0; R], with R given
in Proposition 1. Then, the unique integer N � 0
that satis�es the inequality

�" < N� � (n�
2
� �[0;jR]) < " (3)

is equal to the number of roots of f(s) with
Re(s) > 0.
The above result gives the number of roots inside
a Nyquist contour in the right half plane by
computing the net change of the argument on a
�nite segment of the imaginary axis. For N = 0
and 0 < " � �

2 ; the following stability condition
is obtained.
Corollary 3. (Santos et al., 2003b) Let 0 < " � �

2
be given and let �[0;jR] be the net change of the
argument of f(j!) for ! 2 [0; R]; where R is given
by Proposition 1, then f(s) is stable if and only if

n
�

2
� �
2
< �[0;jR] < n

�

2
+
�

2
: (4)

3. FINITE NYQUIST THEOREM FOR REAL
QUASIPOLYNOMIALS

In this section, we introduce and prove new con-
ditions for the Finite Nyquist Theorem for qua-
sipolynomials. These conditions are equivalent to
those provided in (Santos et al., 2003b), but these
are easier to verify because more information on
how the �rst and last arguments must be chosen
is given.

Theorem 4. The quasipolynomial f(s) is stable if
and only if there exists an integer r � 1; angles
�i 2 R for i 2 N; 0 � i � r and real frequencies
0 = !0 < !1 < � � � < !r � R; where R is de�ned
in Proposition 1, such that

�0 = 0; (5)

n
�

2
� �
2
< �r < n

�

2
+
�

2
; (6)

8 0 � i < r � 1 : j�i+1 � �ij � � (7)
8 0 � i � r : f(j!i) 6= 0 (8)

8 0 � i � r : arg f(j!i) � �i (mod 2�): (9)

Proof.
Su¢ ciency:
Observe �rst that condition (3) of Theorem 2
implies that

n
�

2
�N� � " � �[0;jR]� n

�

2
�N� + "; 0 � " <�

2
:

Since N is a nonnegative integer, �[0;jR] is such
that

�[0;jR] < n
�

2
+
�

2
: (10)

In the following, we prove that n�2 �
�
2 < �[0;jR]:

Observe �rst that without any loss of generality
we may assume that all di¤erences �j+1� �j have
the same sign. If it is not the case and there exists
j < r � 2, such that �j+2 � �j+1 and �j+1 � �j
have opposite sign then either

0 � �j+2 � �j+1 < � and� � < �j+1 � �j � 0;



or

�� � �j+2 � �j+1 < 0 and 0 < �j+1 � �j � �:
In both cases �� < �j+2��j < � holds. Moreover,

�r � �0 =
r�1X
i=0

(�i+1 � �i)

=

j�1X
i=0

(�i+1 � �i) + �j+2 � �j+1

+ �j+1 � �j +
r�1X
i=j+2

(�i+1 � �i)

=

j�1X
i=0

(�i+1 � �i) + �j+2 � �j

+
r�1X
i=j+2

(�i+1 � �i): (11)

So, we can exclude �j+1 and !j+1 from our consid-
erations. In this way, in a �nite number of steps,
we arrive at the situation when all di¤erences
�i+1 � �i; have the same sign. Furthermore, it
follows from (5) and (6) that these di¤erences are
positive.
Now, observe that

�[0;jR] �
r�1X
i=0

j�i+1 + 2ki+1� � �i � 2ki�j : (12)

As jXj � jX + 2�kj holds for all integer k and all
X such that jXj � �; (12) it follows that

�[0;jR] �
r�1X
i=0

j�i+1 � �ij :

All the di¤erences are positive,

�[0;jR] �
r�1X
i=0

j�i+1 � �ij =
r�1X
i=0

(�i+1 � �i)

= �r � �0; (13)

then it follows from (6) that

�[0;jR] > n
�

2
� �
2
: (14)

Finally, from (13) and (14) and Corollary 3 we
conclude that the quasipolynomial f(s) is stable.
Necessity:
Now, we assume that the quasipolynomial f(s)
is stable. It follows from (2) and Lemma 2.14 in
(Stépán, 1989) that f(0) is a positive real number,
therefore, we can chose !0 = 0 and �0 = 0: Next,
according to Corollary 3, n�2�

�
2 < �[0;jR] < n

�
2+

�
2 and we can de�ne

�i = i
�

2
; i = 0; :::; n� 1;

�n = (n� 1)
�

2
+ � < �[0;jR]; j�j � 1:

Observe that (5), (6) and (7) are satis�ed. Finally,
let !i; i = 0; :::; n be the smallest value of the

frequency such that arg f(j!i) = �i with !i >
!i�1; i � 1. The result is proved.

4. STABILITY OF QUASIPOLYNOMIALS
WITH UNCERTAIN COEFFICIENTS

In what follows, we show that the Finite Nyquist
Theorem can be employed to study the robust
stability of a polytopic family of retarded qua-
sipolynomials. This result is named the Finite
Inclusions Theorem (F.I.T.).

4.1 Robust stability of a polytopic family
of quasipolynomials

Let us consider a polytopic family of quasipolyno-
mials described by

F (s) =

(
TX
l=1

�lfl(s)j �l � 0;
TX
l=1

�l = 1

)
; (15)

where fl(s); l = 1; :::; T are quasipolynomials of
the form (2). We know from the Edge Theorem
(Fu et al., 1989) that the family F (s) is robustly
stable if and only if all the edges of F (s) are
stable. Then a reduction of the number of one
parameter families analyzed can be achieved by
using the Zero Exclusion Principle with the help
of the concept of value set that follows.

For a given a frequency ! 2 R, the value set of
F (s) at this frequency is de�ned as

VF (!) =

(
TX
l=1

�lfl(j!)j �l � 0;
TX
l=1

�l = 1

)
:

The Zero Exclusion Principle states that one can
conclude on the stability of the family F (s) by
observing the graphical behavior in the complex
plane of the value set VF (!) for all frequencies
! � 0: The main inconvenient of this technique
is that involves many computations. Therefore it
would be desirable to have a similar graphical
result with less computations.

We propose a graphical result which also uses the
value set VF (!) of the family F (s) for a �nite
number of frequencies to determine its robust
stability. If the value set lies in appropriately
de�ned sectors for this set of frequencies, then
the family F (s) is stable. Due to the fact that
the convexity of the polytopic family is inherited
by the value set, for each ! 2 R the value set
VF (!) is the convex hull of the complex numbers
fl(j!); l = 1; :::; T: As a consequence, we just
need to know the vertices of VF (!) in order to
determine the sector inclusions. In what follows,
we see that The Finite Nyquist Theorem can be
extended to robust stability analysis purposes.



This result is actually a corollary of the Finite
Nyquist Theorem.

Theorem 5. The polytopic family de�ned in (15)
is robustly stable if there exists r � 1 sectors
Si = f�ej� j � > 0; ai < � < big for 0 � i � r
and real frequencies 0 = !0 < !1 < � � � < !r such
that

a0 = b0 = 0; (16)

n
�

2
� �
2
� ar < br � n

�

2
+
�

2
; (17)

8 0 � i < r � 1 :

maxfbi+1 � ai; bi � ai+1g � �; (18)

8 1 � l � T; 8 0 � i � r :

fl(j!i) � Si = f�ej� j � > 0; ai < � < big: (19)

Proof. For l = 1; :::; T condition (19) implies
that for all i; fl(j!i) 6= 0 and there exists an
argument � 2 (ai; bi) such that arg fl(j!i) � �
(mod 2�) : Then conditions (16) and (17) imply
that � satis�es the conditions (5), (6), (8) and (9)
of Theorem 4. Furthermore, from the inequality��� � �0�� < sup

� 2 (a; b)
�0 2 (c; d)

��� � �0�� = maxfd� a; b� cg;
it follows from (18) that condition (7) is also
satis�ed, hence every fl(s); l = 1; :::; T is stable.
The conditions (19) imply that fl(j!i); l = 1; :::; T
belong to the sectors Si: Since the value set
VF (!i); i = 0; :::; r is the convex hull of the
complex numbers fl(j!i); l = 1; :::; T; condition
(19) implies that the value set VF (!) also belongs
to the sector Si; then all the elements of this
family satisfy Theorem 4 hence they are stable
and we conclude that the family F (s) is robustly
stable.

4.2 Robust stability of an interval quasipolynomial
family

A particular example of polytopic families is an
interval family of quasipolynomials of the form (2)
described by

I =

8<: sn +
Pn�1

k=0

�Pm
l=0 �kls

k
�
e��ls;

�kl 2 [�kl; �kl];
k = 0; :::; n� 1; l = 0; :::;m:

9=; (20)

The total number of vertex quasipolynomials gen-
erated by this class of uncertainty is 2n(m+1) be-
cause each coe¢ cient akl; k = 0; :::; n � 1; l =
0; :::;m has two extreme points.

According to the explanation of the previous sub-
section, we can apply the Finite Inclusion The-
orem to study the robust stability of (20) con-
sidering the family I as a polytopic family of
2n(m+1) vertex elements. Nevertheless, the main

inconvenient of this approach is the large num-
ber of elements that we have to manage. We
can achieve a further reduction of the number of
vertexes because, as shown in (Kharitonov and
Zhabko, 1994), the set of essential vertexes of the
whole family I is at most 4m+1: It is given by the
set

UI =

(
mX
l=0

p
(zl)
l (s)e�ls;

zl 2 f1; 2; 3; 4g;
l = 0; :::;m;

)
(21)

where p(zl)l (s) are the polynomials

p
(1)
l (s) = �0l + �1ls+ �2ls

2 + �3ls
3 + � � � ;

p
(2)
l (s) = �0l + �1ls+ �2ls

2 + �3ls
3 + � � � ;

p
(3)
l (s) = �0l + �1ls+ �2ls

2 + �3ls
3 + � � � ;

p
(4)
l (s) = �0l + �1ls+ �2ls

2 + �3ls
3 + � � � :

Now, according to Theorem 5, we only have to
verify the inclusions of the elements of the set
UI into each sector Si: Then we can state the
following result for the robust stability analysis
of the interval quasipolynomial I.

Corollary 6. The interval quasipolynomial family
I de�ned in (20) is robustly stable if there exist
r � 1 sectors Si = f�ej� j � > 0; ai < � < big
for 0 � i � r and real frequencies
0 = !0 < !1 < � � � < !r such that the conditions

a0 = b0 = 0;

n
�

2
� �
2
� ar < br � n

�

2
+
�

2
;

8 0 � i < r � 1 :
maxfbi+1 � ai; bi � ai+1g � �;

0 � i � r :
UI(j!i) � Si = f�ej� j � > 0; ai < � < big:

with UI(s) de�ned in (21), are satis�ed.

5. PRACTICAL APPLICATION OF F.I.T.

Our proposal for the practical utilization of the
Finite Inclusions Theorem to determine the robust
stability of a family F (s) of quasipolynomials is
based on the following general strategy. We �rst
need to determine if the corresponding central
quasipolynomial f0(s) is stable. If so, then we de-
termine a set of frequencies W = f!0; !1; : : : ; !rg
in order to verify all the conditions of Theorem
5. Let A(!) and B(!) be the real and imaginary
parts of f0(j!): Plotting A(!) vs B(!) in the
complex plane for 0 � ! < 1 gives a curve that
goes from the real positive axis to the left of the
complex plane passing at least through n quad-
rants because f0(s) is stable. For each frequency
! for which this curve crosses the imaginary or
real axis we can assure that the value set VF (!)



also crosses the same axis. These frequencies are
a good initial choice for the frequencies of the set
W: If these frequencies do not allow to conclude
on the stability, additional frequencies are added
to the set W:

The above describe general strategy is imple-
mented with the following algorithm.

5.1 F.I.T. Algorithm

Step 1. Given the polytopic family F (s) de-
scribed by (15) use Corollary 3 to determine the
stability of the central quasipolynomial f0(s) =
1
T

PT
l=1 fl(s): If f0(s) is stable then follow with

Step 2, otherwise the algorithm stops and the
family F (s) is not robustly stable.

Step 2. Determine a set of frequencies W =
f!0; !1; : : : ; !rg to evaluate the conditions of the
Finite Inclusions Theorem and set i = 0:

Step 3. For the frequency !i of the set W; deter-
mine the sector Si

:
= (ai; bi) such that F (j!i) �

Si:

Step 4. For the frequency !i+1 of the set W;
determine the sector Si+1

:
= (ai+1; bi+1) such that

F (j!i+1) � Si+1:

Step 5. Compute 
 = max fbi+1 � ai; bi � ai+1g :

Step 6. If 
 � �; then i = i + 1 and go to Step
3. If 
 � � and i = r � 1 go to Step 8.

Step 7. If 
 > �; set � = 0 and do the following:

a).- determine a frequency !� 2 (!i; !i+1)
and a sector S�

:
= (a�; b�) such that F (j!�) � S�:

b).- compute 
� = max fb� � ai; bi � a�g
where (ai; bi) was determined in Step 3.

c).- If 
� � �; then set !i = !� and go
to Step 4.

d).- If 
� > � and � � 4; then � = �+1
and return to point a).

e).- If 
� > � and � > 4 the algorithm
stops, and we can not say wether F (s) is or not
robustly stable.

Step 8. If the conditions ��
2 � a0 < b0 � �

2
and n�2 �

�
2 � ar < br � n�2 +

�
2 are satis�ed

then F (s) is robustly stable, otherwise add a
new frequency !r+1 = R and determine the sector
Sr+1 such that F (j!r+1) � Sr+1:

Step 9. Compute 
 = max fbr+1 � ar; br � ar+1g :
If 
 � � verify that ��

2 � a0 < b0 � �
2 and

n�2 �
�
2 � ar+1 < br+1 � n

�
2 +

�
2 hold. If both are

satis�ed then F (s) is robustly stable, otherwise
we can not say wether F (s) is or not robustly
stable.

5.2 Some comments on the FIT Algorithm

Now, we give some important comments on the
algorithm presented.

(1) For the numerical computation of �[0;jR] in
Proposition 1, an appropriate discretization
� step of [0; jR] must be chosen in order to
get a correct computation of �[0;jR]:

(2) To get W in Step 2; determine all the fre-
quencies ! � 0 for which Re f0(j!) or
Im f0(j!) are zero and select only the fre-
quencies for which there is a true change of
arg f0(j!):

(3) Step 7 permits to add a new frequency !� 2
(!i; !i+1) when two consecutive sectors (Si;
Si+1) are not in the same semi-plane, i.e.

 > �: The parameter � sets how many times
this procedure is done. If this limit is reached
the algorithm stops because it is impossible
to satisfy the condition (18) of the Theorem
5, therefore we can not say anything about
the stability or instability of F (s):

(4) To determine Si
:
= (ai; bi) such that F (j!i) �

Si; compute the set �i =
h
�1i ; :::; �

T
i

i
, here

�li; l = 1; :::; T; is the completed argument
of fl(j!i) 2 C; l = 1; :::; T; for !i: Then
ai = min (�i)� �; bi = max (�i) + �; � > 0 is
chosen by the user.

An important result of our research is the imple-
mentation of this algorithm in MatLab. A detailed
description of the algorithm and the correspond-
ing programs is available in (Santos, 2004).

6. ILLUSTRATIVE EXAMPLES

In what follows we present two examples that were
analyzed using the above mentioned toolbox. All
the sectors are given in radians.

Example 7. Consider the following polytopic com-
bination of quasipolynomials corresponding to 4
extreme points of the stability chart of an inverted
pendulum studied in (Stépán and L., 2000):

F (s) =

(
4X
l=1

�lfl(s); �l � 0;
4X
l=1

�l = 1

)
(22)

where

f1(s) = s
2 � 58:86 + (60:699375 + 8:09325s)e�0:1s;

f2(s) = s
2 � 58:86 + (73:575 + 8:09325s)e�0:1s;

f3(s) = s
2 � 58:86 + (73:575 + 14:344182s)e�0:1s;

f4(s) = s
2 � 58:86 + (60:699375 + 14:344182s)e�0:1s:

The corresponding frequencies and sectors that
satisfy the F.I.T. conditions computed using
FIT_POLITOPICA are shown in Table 1. The



conclusion is that the family (22) is robustly
stable.
Table 1. Frequencies and sectors for Example 7.

i !i Si : ai bi
0 0 S0 : �0:0175 0:0175
1 1:7426 S1 : 0:0694 1:4909
2 3:3908 S2 : 0:1534 2:1994
3 4:5240 S3 : 0:2460 2:5266
4 5:6097 S4 : 1:0819 3:3377
5 10:5468 S5 : 1:7573 3:5110

The graphical behavior of the value sets of the
family (22) for the frequencies of Table 1 is
depicted on Figure 1.

Fig. 1. Frequencies and sectors for Example 7.

Example 8. Consider the polytopic family of qua-
sipolynomials

Q = s3+a20s
2+a10s+a00+(a21s

2+a11s+a01)e
�3s

(23)
where

a20 2 [14:5; 17]; a10 2 [11:5; 12:5]; a00 2 [15:5; 16:5];
a21 2 [0:8; 2:9]; a11 2 [2; 3]; a01 2 [1; 2:5]:

The total number of vertexes of this family are
26 = 64 but, according to (Kharitonov and
Zhabko, 1994) the essential vertexes are only
42 = 16: The corresponding frequencies and sec-
tors that satisfy the F.I.T. conditions computed
using FIT_INTERVALO are shown in Table 2.
The conclusion is that the family (23) is robustly
stable.

Table 2. Frequencies and sectors for Example 8.

i !i Si : ai bi
0 0 S0 : �0:0175 0:0175
1 1:0199 S1 : 1:1119 2:0361
2 3:1249 S2 : 3:0865 3:1898
3 27:0000 S3 : 4:0960 4:2190

The value sets of (23) for the frequencies of the
Table 2 are depicted with an appropriate scaling
on Figure 2.

7. CONCLUDING REMARKS

The conditions of the Finite Nyquist Theorem
are improved. The Finite Inclusions Theorem for

Fig. 2. Frequencies and sectors for Example 8.

robust stability of quasipolynomials is proved. An
algorithm for the practical utilization of this result
is also given. The e¤ectivity of this algorithm
which was implemented in Matlab is illustrated
with two examples.
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