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1. INTRODUCTION

Many industrial processes inevitably change over
time for a variety of reasons that include: equip-
ment changes, different operating conditions, or
changing economic conditions. Consequently, a
fundamental control problem is how to provide
effective control of complex processes where sig-
nificant process changes can occur, but cannot
be measured or anticipated. The conventional so-
lution is conservative controller tuning for worst
case conditions. However, this approach can re-
sult in poor control system performance for more
typical conditions. Alternatively, adaptive control
strategies are available where the controller pa-
rameters and/or control structure are modified
on-line as conditions change (Åström and Witten-
mark, 1995).

This paper is concerned with a special class of
adaptive control strategies referred to as switch-
ing control or multi-model control (Johansen and
Murray-Smith, 1997; Hespanha, 2001). The moti-
vation for multi-model control is that for many
complex technical processes, the local behavior
can be captured at least approximately by a set
of relatively simple models. Also, a correspond-
ing feedback controller can be designed for each
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individual model. For these situations, an adap-
tive control approach based on selecting the best
model (and controller) for the current conditions
provides a promising approach. Selection of the
performance criterion and switching strategy is a
key design issue.

2. MULTI-MODEL PID CONTROL

In multi-model control, a bank of candidate mod-
els (and/or controllers) are specified a priori.
Then a supervisory controller selects the most
appropriate model (or controller) for the current
conditions. For each model, a suitable controller
can be designed off-line. The on-line controller
switching is based on the performance evalua-
tion of the bank of models (and/or controllers).
Control problems involving transitions between
known operating regimes are readily handled by
a multi-model approach (Johansen and Murray-
Smith, 1997). Multi-model control is also appli-
cable to more general control problems where
operating regimes cannot be determined a pri-
ori (Narendra and Balakrishnan, 1997; Hespanha,
2001). For example, the capabilities of multi-
model control have been successfully demon-
strated for drug infusion control where variability
and unpredictability are key issues (Schott and
Bequette, 1997).

In this paper, we consider a multi-model strategy
for PID controllers that is based on a set of



simple linear dynamic models. Each model has
the same structure but different values of the
model parameters. Grids of parameter values are
assigned based on an assumed range for each
model parameter. The ranges can be determined
from a priori knowledge of expected operating
conditions. For example, ranges for process gains
and time constants can be specified based on
physical knowledge such as the maximum and
minimum values of temperatures and product
flow rate. The grid spacing does not have to be
constant.

In Section 3 the multi-model strategy is compared
to a novel adaptive control strategy where the
controller is automatically re-tuned after poor
performance is detected (Wojsznis and Blevins,
2002). The re-tuning is based on re-estimating
model parameters from recent input/output data.

A block diagram for the multi-model control strat-
egy considered in this paper is shown in Figure 1,
where u is the input, y is the output, d is the
unmeasured disturbance, and ysp is the setpoint.
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Fig. 1. Block diagram of multi-model control.

The model parameters θ̂ for the current condi-
tions are determined by calculating a performance
index for each model. For example, the low-pass
filtered squared prediction error for each model,
πi, can be calculated,

πi(k) = λπi(k − 1) + (1− λ)ε2
i (k) (1)

where εi(k) denotes the one-step prediction error
for model i at time k. The filter constant λ can
be interpreted as a forgetting factor, as will be
discussed later.

At each time k, the performance index of the
currently chosen model, πc(k), is compared with
the values for the other models. If

πc(k) > (1 + h)min
i

πi(k) (2)

the model with the smallest value of π is selected
and the corresponding controller is implemented.
In Eq. (2), h > 0 is a hysteresis parameter
that prevents excessive switching. Both in theory
and in practice, it is important that excessive
switching be avoided. The use of a hysteresis
term is a convenient approach for fulfilling this
requirement.

2.1 Process model and unmeasured disturbances

Unmeasured disturbances can be a significant
problem for adaptive control strategies, including
multi-model control. For example, additive dis-
turbances can result in adaptation of model pa-
rameters when the parameters have not actually
changed. The resulting incorrect model parame-
ters can produce very poor control. For multi-
model control applications, the unknown distur-
bance can be approximated as a bias term for
either the input or the output. Consequently, the
bank of models can include different disturbance
magnitudes, as well as different values of the other
model parameters.

In this paper, the multi-model control strategy
is based on a single-input, single-output model,
namely, a first-order plus time-delay model with
an additive input disturbance:

yi(k + 1) = aiy(k) + bi(u(k − `i) + di),

i = 1, .., M (3)

The model parameters are ai, bi, di and time delay
`i, where subscript i denotes the model index. For
the simulation examples in Section 3, the param-
eters ai and `i are assumed to be known. Thus,
the model bank consists of models in the form of
(3) with different values of bi and di. When an
unmeasured disturbance occurs, it is mapped to
an approximately equivalent disturbance di in the
model bank. Although the disturbance estimate is
only a rough approximation of the actual distur-
bance, it can result in excellent switching control
as demonstrated by the simulations in Section 3.

For disturbance di, a constant grid spacing is
reasonable. However, for the gain parameter bi,
it is more appropriate to use a logarithmically
spaced grid.

2.2 Forgetting of past data

In adaptive control applications, past data must
be discounted (i.e., forgotten) in order to have the
adaptive controller to respond in a timely manner
to process changes. Typically, a forgetting factor is
employed such as λ in (1), where 0 ≤ λ ≤ 1. The
specification of λ involves an inherent tradeoff. If λ
is too large, the adaptation is too sluggish while if
λ is too small, the adaptation is overly aggressive
resulting in loss of relevant information and exces-
sive adaptation. In this paper, an ad hoc forgetting
of past data is employed. The basic premise is that
when there is little input excitation, forgetting of
past data is suspended by setting λ = 1. On the
other hand, when there is sufficient excitation, λ is
set equal to a specified constant, λ0. Two metrics
are considered as measures of the degree of process
excitation:



(1) The prediction error, ε = y − yc.
(2) The control error, e = ysp − y.

During a period where the metric exceeds a speci-
fied threshold, λ is set equal to λ0 < 1. Otherwise,
it has the nominal value of one and no forgetting
of past data occurs.

Both of these alternatives are evaluated in Section
3. The threshold for each metric was chosen to
be ten times larger than the expected value for
normal operating conditions.

2.3 Controller design

The PID controller design included a low pass
filter of the error signal:

Gc(s) = Kc

(
1 +

1
τIs

+ τDs

)(
1

τfs + 1

)
(4)

The controller was designed using a first-order-
plus-time-delay (FOPTD) model that corresponds
to (3) with no disturbance:

y(s)
u(s)

=
Ke−Ls

τs + 1
(5)

The controller parameters were calculated using
an IMC design procedure (Morari and Zafiriou,
1989) and implemented as the equivalent discrete-
time version.

3. SIMULATIONS

In this section, the proposed switching PID con-
troller (SPID) is evaluated in simulation studies
for two examples: (i) a physical nonlinear model
of the UCSB pH neutralization process (Hall and
Seborg, 1989), and (ii) an approximate FOPTD
model of the process. The stirred tank neutralizer
has three dilute inlet streams: base (NaOH), acid
(HNO3), and buffer (NaHCO3). The exit stream
pH is controlled by adjusting base flow rate Q3

while the liquid level is regulated by manipulating
acid flow rate Q1. The buffer flow rate Q2 is the
major unmeasured disturbance. The pH neutral-
ization process is highly nonlinear as indicated by
the static map shown in Fig. 2.

The linear model serves as a simple approximate
model for the nonlinear pH process. This model is
in the form of Eq. (5) and the nominal parameter
values are K = 1, τ = 3.6 min, and L = 0.75
min. For the pH process, only the process gain
K varies significantly for the normal range of
operating conditions. Thus, in order to keep the
simulation relatively simple and illustrative, the
time constant τ and the delay L were assumed
to be constant. Only the process gain K and the
assumed input disturbance d were varied.
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Fig. 2. pH gain variation.

The parameter ranges and grid spacing of the
parameters were based on a reasonable range of
operating conditions for the physical process. The
gains in the model bank varied between 0.3 and
22, with ten logarithmically-spaced values of the
gain, both above and below the nominal value of
one. For the input disturbances in the model bank,
59 equally-spaced values were assumed for the
interval between -2.9 and +2.9. Thus, the model
set consisted of a total of 1239 models for each
simulation. However, similar results were obtained
for model banks with much smaller numbers of
models. The hysteresis parameter h in Eq. (2) was
set equal to 1.

In the simulation studies, five PID control strate-
gies were evaluated:

(1) A nominal controller designed for the nomi-
nal model in (5) with IMC parameter, τc =
1.5 min.

(2) A conservatively-tuned controller designed
for a ”high gain condition” of K = 3.5. This
controller was designed using τc = 0.75 min.

(3) A multi-model (switching) controller with
the forgetting factor based on the prediction
error.

(4) A multi-model (switching) controller with
the forgetting factor based on the control
error.

(5) An adaptive controller based on “multiple
model interpolation (MMI)” and intermit-
tent controller re-tuning.

In the MMI adaptive control strategy developed
by Emerson Process Management (Wojsznis and
Blevins, 2002), after poor controller performance
is detected, data are collected for a specified pe-
riod of time (e.g., the open-loop settling time).
Then the model parameters are re-estimated and
the corresponding model-based controller is up-
dated. Various criteria can be used to detect poor
controller performance. In this application, data
collection is initiated when the control error ex-
ceeds 100 times the expected value for nominal
conditions. Then data were collected for a period



of 10 min. The FOPTD model and IMC controller
design for the SPID approach were also used for
the re-tuning method. However, an output dis-
turbance, rather than an input disturbance, was
assumed.

Initially, the five controllers were evaluated for the
linear system in Eq. (5). The results are sum-
marized in Figs. 3 through 5 and Table 1. The
controllers were compared for a setpoint change
at t=5 min, followed by a step disturbance at
t=40 min. For the high gain model (K=3.5), the
nominal controller produce the very oscillatory
response in Fig. 3. However, the switching con-
trollers in Figs. 4 and 5 readily adapt to the chang-
ing conditions without excessive oscillations. The
forgetting factor and estimated model parameters
are also shown in these two figures.
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Fig. 3. Control of high-gain linear model: Nominal
controller (—), conservative controller (- - -),
and setpoint (· · ·).

3.1 The nonlinear pH simulation

The five controllers were further evaluated by hav-
ing the nonlinear pH model serve as the “process”.
Initially, the controllers were tested for a series of
three step changes in the buffer flow rate Q2: a
decrease from 0.55 to 0.07 ml/s at t = 5 min, then
an increase to 1.5 ml/s at t = 30 min, and finally
a return to the initial value at t = 75 min. Note
that the process gain increases as Q2 decreases, as
shown in Fig. 2.

Figure 6 indicates that the nominal PID controller
resulted in an unstable response after the first Q2

disturbance, while the conservatively-tuned con-
troller is stable but rather sluggish for the other
two disturbances. The two switching controllers
in Figs. 7 and 8 provided satisfactory control
for all three disturbances. Their performance is
about the same, regardless of whether the control
error or the prediction error is used to specify the
forgetting factor.
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Fig. 4. Control of high-gain linear model: Switch-
ing controller (—), re-tuning controller (- -
-), setpoint and true values (· · ·). Prediction
error used in forgetting.

Since the re-tuning adaptive controller was ini-
tialized with the nominal controller setting, its
initial response to the first disturbance is also
oscillatory. However, after the ten minute data
collection period finishes at t=20 min, the re-
tuned controller is quite satisfactory. Note that
the “true values” of gain K and disturbance d in
Fig. 6 and subsequent figures are local values for
the current value of Q2. Similar results were ob-
tained for the setpoint changes in Figs. 9 and 10.
The process gain changed by over a factor of seven
during these setpoint changes, as is apparent from
Fig. 2.

Finally, the values of the Integral Absolute Error
performance index for both simulation examples
are reported in Table 1, with the best values
shown in boxes.

4. CONCLUSIONS

A multi-model PID control strategy has been
evaluated in two simulation studies that included
comparisons with three other PID controllers:
a re-tuning adaptive controller and two non-
adaptive controllers. The simulations indicated
that the multi-model controller was quite effec-
tive over wide ranges of unmeasured disturbances
and process changes. The re-tuning strategy also
performed very well, but was slower to respond to
sudden disturbances.



Table 1. The Integral Absolute Errors for the simulations.
Nominal linear system

n-PID c-PID ε-sw. e-sw. re-tune

setpoint 9.2 20.4 9.2 9.2 9.2

disturb. 9.6 21.0 9.0 8.3 9.5

total 18.8 41.4 18.2 17.5 18.7

High-gain linear system

n-PID c-PID ε-sw. e-sw. re-tune

setpoint 24.7 6.6 14.9 22.7 32.1

disturb. 15.1 21.3 25.8 10.5 32.5

total 39.8 27.9 40.7 33.2 64.6
∗ Unstable
∗∗Average value, depends on time of setpoint change

pH system

n-PID c-PID ε-sw. e-sw. re-tune

Q2 0.55 → .07 81.4∗ 14.8 8.5 11.8 19.2

Q2 0.07 → 1.5 25.3∗∗ 41.7 32.7 16.4 42.3

Q2 1.5 → 0.55 12.5 26.5 12.7 4.6 12.1

total buffer 119.2 83.0 53.9 32.8 73.6

setpoint 7 → 8 40.7∗ 13.5 19.8 16.3 31.5

setpoint 8 → 6 19.2∗∗ 40.7 44.5 35.7 46.3

setpoint 6 → 7 13.7 30.4 12.7 10.3 13.3

total setpoint 73.6 84.6 77.0 62.3 91.1

total pH 192.8 167.6 130.9 95.1 164.7
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Fig. 5. Control of high-gain linear model: Switch-
ing controller (—), re-tuning controller (- - -),
setpoint and true values (· · ·). Control error
used in forgetting.
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Fig. 7. Control of pH system, buffer change:
Switching controller (—), re-tuning controller
(- - -), setpoint and true values (· · ·). Predic-
tion error used in forgetting.
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Fig. 8. Control of pH system, buffer change:
Switching controller (—), re-tuning controller
(- - -), setpoint and true values (· · ·). Control
error used in forgetting.
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Fig. 9. Control of pH system, setpoint change:
Nominal controller (—), conservative con-
troller (- - -), and setpoint (· · ·).
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Fig. 10. Control of pH system, setpoint change:
Switching controller (—), re-tuning controller
(- - -), setpoint and true values (· · ·). Control
error used in forgetting.


