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Abstract: In this paper we discuss the use of a noncausal approach for the
improvement of PID control, according to a method presented in (Piazzi and
Visioli, 2004). In particular we verify that, despite the proposed methodology is
based on an estimated first-order plus dead time (FOPDT) model of the process,
different identification procedure can be employed for this purpose yielding in any
case to a good result. Further, the role of the unique design parameter is analysed.
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1. INTRODUCTION

It is well-known that Proportional-Integral-Derivative
(PID) controllers are the most adopted controllers
in industry due to the fact that, despite their
relative simplicity, they are capable to solve in
many cases the control task satisfactorily. How-
ever, the tuning of the parameters and the cor-
rect employment of different additional function-
alities such as anti-windup, derivative filtering and
so on, is often a crucial issue to obtain a high
performance. To help the operator to select the
controller gains to address given control specifica-
tions, many tuning formulas have been devised in
the past (O’Dwyer, 2003) and autotuning func-
tionalities are almost always available in com-
mercial products (Leva et al., 2001; Aström and
Hägglund, 1995). The employment of these tuning
formula generally depends on a simple (first or
second order) model of the (possibly high-order)
process to be controlled. In order to get a simple
model of the process in an easy and cost effec-

tive way from an industrial point of view, many
methods have been proposed in the literature.
Obviously, the performance obtained by the con-
trol systems depends on the selected identification
method.
From another point of view, it is also well-known
that good performances both in the set-point
following and in the load disturbances rejection
task are often difficult to achieve at the same
time. This problem is of concern in many appli-
cations and the typical approach in these cases
is to adopt a two degrees-of-freedom controller,
namely, to adopt a feedforward (linear) compen-
sator (Kuo, 1995) (or simply a set-point weighting
strategy (Araki, 1988)). The main disadvantage of
this method is that the reduction of the overshoot
is paid by a higher rise time in the set-point
response. To overcome this drawback, the use of
a variable set-point weight (Hang and Cao, 1996;
Visioli, 1999) or of a feedforward action (Aström
and Hägglund, 1995; Wallen, 2000; Wallen and



ström, 2002; Visioli, 2004) has been proposed.
In (Piazzi and Visioli, 2004) we propose to use a
noncausal approach (namely, based on an input-
output inversion procedure) in order to recover
the set-point following performance when the PID
parameters values are not appropriate for this
task. There, it has been shown that the main merit
of the devised methodology is to provide almost
the same performance despite possible different
values of the PID parameters. However, being
based on an estimated FOPDT process transfer
function, it is necessary to analyse how the result
depends on the estimation method. To this pur-
pose in this paper we address many identification
methods that can be applied in the noncausal
approach. Further, the role played by the unique
design parameter is highlighted.
The paper is organised as follows. In Section 2
the overall noncausal approach is briefly reviewed.
Then, in Section 3 the different considered iden-
tification methods taken from the literature are
described. Results are presented and discussed in
Sections 4 and 5 and finally conclusions are drawn
in Section 6.

2. THE NONCAUSAL APPROACH

The method presented in (Piazzi and Visioli,
2004) is based on the control scheme shown in Fig-
ure 1. Basically, the technique consists of choosing
a desired function to achieve a process output
transition from y0 to y1 and then determining
the command function r that causes the desired
transition by inverting the closed-loop dynamics
by means of a stable inversion procedure. In the
following, without loss of generality we will as-
sume y0 = 0. This command function actually
substitutes the classical step signal.
The process to be controlled is modelled as a
FOPDT transfer function

P (s;K,T,L) =
K

Ts + 1
e−Ls, (1)

where the delay term is then approximated (in
order to have a rational transfer function) by
means of a second order Padé approximation, i.e.
we have

P̃ (s;K,T,L) ∼=
K

Ts + 1

1 − Ls/6 + L2s2/12

1 + Ls/6 + L2s2/12
. (2)

Then, the PID controller transfer function is ex-
pressed as follows:

C(s;Kp, Ti, Td, Tf ) =

Kp

(

1 +
1

Tis
+ Tds

)

1

Tfs + 1

(3)

where Kp is the proportional gain, Ti is the in-
tegral time constant, Td is the derivative time
constant and Tf is the time constant of a first or-
der filter that makes the transfer function proper.

It has to be noted that the PID controller can
be tuned according to any of the many methods
proposed in the literature (O’Dwyer, 2003) or even
by a trial and error procedure. However, since the
purpose of the dynamic inversion procedure is the
attainment of high performances in the setpoint
following task, disregarding of the controller gains,
it is sensible to select the PID parameters aim-
ing only at obtaining good load rejection perfor-
mances.
The desired output function is chosen as a third-
order polynomial parameterized by the transition
time τ (see (Piazzi and Visioli, 2001; Piazzi and
Visioli, 2004) for further details), i.e.

yd(t; τ) = y1

(

−
2

τ3
t3 +

3

τ2
t2

)

. (4)

Then, the (rational) closed-loop transfer function
is determined as

H(s) :=
C(s)P̃ (s)

1 + C(s)P̃ (s)
(5)

and the stable inversion procedure described in
(Piazzi and Visioli, 2004) is applied in order
to determine the closed-form expression of the
command input r(t;K,T,L,Kp, Ti, Td, Tf , τ) that
provides the desired output function (4). It has
to be noted that r(·) is defined and bounded
over the interval (−∞,+∞) and from a practi-
cal point of view it is necessary to truncate it
(with arbitrary precision), resulting therefore in
an approximate generation of the desired output
yd(t; τ). This yields to a pre-action and a post-
action time (Perez and Devasia, 2003).
In (Piazzi and Visioli, 2004) it has been high-
lighted than in addition to provide good set-point
following performances, the great merit of the
methodology is its capability of providing basi-
cally the same step response for very different
tuning of the PID parameters. It has to be noted
in any case that, although the stable inversion
procedure can be applied to any stable rational
transfer function, in order to determine a closed-
form expression of r(t;K,T,L,Kp, Ti, Td, Tf , τ)
(so that the actual command signal can be simply
calculated by substituting the system parameters
in the symbolic expression, making the method
suitable to implement in single station controller
in addition to Distributed Control Systems), the
process dynamics has to be modelled as a FOPDT
transfer function (1) and then approximated by
(2). Thus, as the devised technique is model based,
it is interesting to evaluate the role played by the
adopted identification procedure in the achieved
performances. Further, it is necessary to evaluate
better the role of the design parameters τ as well.
Remark 1. It is worth stressing that the de-
vised methodology is indeed different from filter-
ing (causally) the set-point (or, equivalently, from
adopting a set-point weight). Indeed, by filtering
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Fig. 1. The dynamic inversion based control
scheme.

the set-point, performances are recovered when a
too aggressive tuning has been selected and ex-
cessive overshoot is avoided by increasing the rise
time. Conversely, by using a noncausal approach,
set-point following performances are recovered for
differently “wrong” settings of the parameters (for
example, even if they determine a sluggish re-
sponse).

3. IDENTIFICATION METHODS

Many methods for the estimation of a FOPDT
transfer function have been proposed and proven
to be effective in the literature. Here we consider a
few methods that are suitable for industrial (PID)
control, as they are based on simple and cost-
effective experiments that are typically employed
in industrial practice, namely, the application of a
step signal to the process input (open-loop exper-
iment) or of a relay feedback (closed-loop experi-
ment). As the purpose of this paper is to evaluate
the application of the different methods in the
noncausal approach rather than evaluating and
comparing the effectiveness of each method in es-
timate an accurate FOPDT model, measurement
noise is not taken into account in the following.

3.1 Methods based on step response

The following methods based on the evaluation
of an open-loop step response, where different
approaches are exploited, have been considered:

a) the well-known area method (Aström and
Hägglund, 1995, page 24);

b) the least squares method proposed in (Sung
et al., 1998), which is based on the integrated
process input and output signals;

c) the least squares method based on the use of
Laguerre functions described in (Wang and
Cluett, 2000, chapter 2);

d) the least squares method proposed in (Wang
et al., 2001) applied to FOPDT transfer
function.

It has to be noted that whereas methods a) and
d) yield directly to a FOPDT transfer function,
methods b) and c) actually yield to a rational
transfer function of arbitrarily chosen order. Thus,
in these cases, a fourth order transfer function
with relative order equal to one has been es-
timated first. Then, it has been reduced to a

FOPDT model by adopting the model reduction
method proposed in (Sung et al., 1998).

3.2 Methods based on relay feedback

Relay feedback based methods (Hang et al., 2002)
are the most adopted methods where a closed-loop
experiment is used for automatic tuning of PID
controllers. Actually, the original idea is to employ
the relay feedback to estimate the ultimate gain
and the ultimate period of the system. However,
recently, various techniques have been devised in
order to estimate a FOPDT transfer function. The
following ones have been considered in this paper:

e) the standard method with a symmetric re-
lay without hysteresis. The FOPDT transfer
function is then determined by straightfor-
ward calculations (see for example (Yu, 1999,
chapter 2));

f) the technique based on the use of a biased
relay (with hysteresis) (Hang et al., 2002);

g) the method described in (Wei et al., 2002)
where two points on the Nyquist curve (the
one where the phase is -90 deg in addi-
tion to that where the phase is -180 deg)
are estimated. The FOPDT transfer function
parameters are then estimated by assuming
the knowledge of the process gain (note that
this can be simply estimated by considering
steady-state values of the input and the out-
put);

h) the method in which an asymmetrical relay
is adopted (Srinivasan and Chidambaram,
2003);

i) the method based on the so-called curvature
factor of the process response described in
(Luyben, 2001).

It turns out that the addressed techniques repre-
sent rather different approaches.

4. RESULTS

The influence of the estimation method in the
approach based on the input-output inversion has
been evaluated on different benchmark systems
(Aström and Hägglund, 2000):

P1(s) =
1

Ts + 1
e−s T = 0.5, 1, 2, 5, 10 (6)

P2(s) =
1

(Ts + 1)2
e−s T = 0.5, 1, 2 (7)

P3(s) =
1

(s + 1)n
n = 3, 4, 8 (8)

P4(s) =
1

(s + 1)(0.5s + 1)(0.52s + 1)(0.53s + 1)
(9)

For each of these systems, a FOPDT model has
been estimated with the techniques considered



in Section 3. Then, the PID controller has been
tuned, by means of a genetic algorithm (Houck et
al., 1995) in which the nominal process transfer
function has been considered, in order to minimize
the integrated absolute error defined as

IAE =

∫

|e(t)|dt (10)

where e(t) is the difference between the set-point
value and the process output, when a step load
disturbance occurs on the control system. Thus,
in order to analyse the effect of the identification
method just on the inversion approach and not on
the PID controller tuning, the best PID parame-
ters (in the sense of those that provide the best
load disturbance response) have been adopted for
each case. Hence, the tuning of the PID con-
troller depends only on the considered process
and it is independent from the adopted identifi-
cation method (i.e. we have the same tuning for
each process disregarding the adopted estimation
method).
Then, for each estimated process transfer function
the command signal r(t;K,T,L,Kp, Ti, Td, Tf , τ)
has been calculated with different values of τ and
two values have been calculated with respect to
the closed-loop response, namely, the integrated
absolute error with respect to a step set-point sig-
nal and the integrated absolute error with respect
to the desired output response (4), i.e.:

IAEa =

∫ +∞

t0

|y1 − y(t)|dt (11)

and

IAEb =

∫ +∞

t0

|yd(t) − y(t)|dt (12)

where t0 is the time instant in which the process
output y leaves the zero value, so that the dead
time of the process and the preaction time do not
bias the result.
For the sake of brevity and clarity, hereafter we
will focus on few significant results which are rep-
resentative of the behavior of the overall method-
ology. For example, consider processes P3(s) with
n = 3 and n = 8 (see (8)). The values of the PID
parameters for these systems are reported in Table
1 (Tf = 0.01 in both cases), whilst the parameters
of the FOPDT transfer functions estimated with
the different techniques are shown in Tables 2
and 3. The values of IAEa and IAEb for different
values of the specified output transition time τ
that have been obtained by employing the nine
considered identification methods are plotted in
Figures 2-5 respectively. For clarity, the nine plots
in each figure have not been always labelled, be-
cause they are actually very difficult to distinguish
in some cases. Indeed, it is worth stressing the
general result more than providing detailed quan-
titative results. Note however that the value of
IAEa obtained by applying a step set-point signal

Table 1. PID parameters for the consid-
ered processes.

Process Kp Ti Td

P3(s), n = 3 20.48 0.75 0.73

P3(s), n = 8 1.05 4.40 2.62

Table 2. Estimated FOPDT transfer
function parameters for P3(s), n = 3.

Method K T L

a 1 1.64 1.41
b 1 1.83 1.28
c 1 1.87 1.28
d 1 2.18 0.87

e 1 1.54 0.99
f 0.99 4.41 0.97
g 1 2.35 1.14
h 1 4.35 0.99

i 0.65 2.94 1.04

Table 3. Estimated FOPDT transfer
function parameters for P3(s), n = 8.

Method K T L

a 1 2.88 5.25
b 1 3.15 5.25
c 1 3.15 5.25

d 1 4.24 3.88
e 1 3.81 5.13
f 1 4.66 5.09
g 1 3.67 4.79

h 1 3.85 5.14
i 2.40 10.51 4.32
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Fig. 2. IAEa for different values of τ obtained by
considering the nine different identification
methods for P3(s), n = 3.

instead of the inversion based command signal is
0.94 for the third-order process and 4.57 for the
eighth-order one.
For a better analysis of the technique, Figure 6
shows the different outputs obtained for increasing
values of τ (i.e. τ = 0.1, 1, 2, . . . , 10) when the
process P3(s) with n = 3 has been estimated with
method d) (see subsection 3.1).
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Fig. 3. IAEb for different values of τ obtained by
considering the nine different identification
methods for P3(s), n = 3.
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Fig. 4. IAEa for different values of τ obtained by
considering the nine different identification
methods for P3(s), n = 8.
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Fig. 5. IAEb for different values of τ obtained by
considering the nine different identification
methods for P3(s), n = 8.
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Fig. 6. Process P3(s) (n = 3) outputs with
different values of τ .

5. DISCUSSION

From all the results obtained, the following con-
siderations can be done:

• as expected, the desired transition time τ
handles the trade-off between robustness
and aggressiveness (and control activity),
independently from the adopted estimation
method. Indeed, by increasing the value of
τ the desired response is obtained more ac-
curately (IAEa decreases), although this im-
plies that IAEa increases as the rise time
increases. In any case good performances are
obtained for low values of τ (thus, excessively
high values of τ are not worth to being em-
ployed);

• the considered estimation methods are prac-
tically equivalent, because very often they
provide basically the same performances and
in case a method is worse than another for a
given process and a given value of τ , it can be
better for another process and another value
of τ (see for example method d) in Figures 4
and 5). The only exception is the method i)
(Luyben, 2001) when the process dynamics is
rather different from being FOPDT, mainly
because it does not provide a very accurate
estimation of the process gain;

• if the PID controller is well tuned from the
point of view of minimising the value of IAEa

for a step set-point signal, then the inversion
based approach might give a higher value
of IAEa than using a step set-point signal.
However, it has to be taken into account
that a low value of the integrated absolute
error is often achieved at the expense of high
overshoots, high control activity and poor ro-
bustness and these latter aspects are almost
always of major concern in the industrial



context. Indeed, they can be easily handled
by the devised noncausal approach.

6. CONCLUSIONS

In this paper, the use of a noncausal approach
for the improvement of PID control proposed in
(Piazzi and Visioli, 2004) has been further inves-
tigated. The methodology is based on the deriva-
tion of a parameterized closed-form expression of
the command signal to be applied to the closed-
loop system in order to achieve a desired out-
put transition. Predefined performances can be
obtained almost independently from the tuning
of the PID parameters and from the employed
model estimation method. Further, the presence
of the desired output transition time τ as a design
parameter allows the user to easily handle the
trade-off between aggressiveness and robustness
(in the sense that the desired output is accurately
achieved). It appears therefore that the devise
technique appears to be suitable to implement in
the industrial context.
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