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1. INTRODUCTION

The optimal recursive filtering algorithms for lin-
ear stochastic systems are well-known and widely
used in various fields (Liptser and Shiryaev, 1978;
Davis, 1977; Pugachev and Sinitsyn, 1987). For
practical applications of those methods the whole
information about the first and second order mo-
ments of noises in dynamics as well as in obser-
vation system is necessary. Inaccurate definition
of the moments can lead to serious difference be-
tween the real filtering errors and their nominal
values (Sage and White, 1977).

In (Bertsekas and Rhodes, 1971; Morris, 1976)
the minimax approach was applied to systems
with uncertain deterministic disturbances, and
the guaranteed estimate problem solution was
obtained. Models with deterministic disturbances

1 This work was supported by INTAS (YSF 04-83-3623)

were also investigated in (Matasov, 1998), and
discrete stochastic dynamic models were investi-
gated in (Golubev et al., 1989; Katz and Tim-
ofeeva, 1994; Verdu and Poor, 1984). Some new
valuable results for minimax filtering of processes
in discrete-time systems with uncertain dynam-
ics and perturbations are presented in (Li et al.,
2002). Statistically uncertain models described by
stochastic differential equations were examined in
(Matasov, 1998; Bobrik et al., 1997; Orlov and
Basin, 1995; Borisov and Pankov, 1998). Rather
general results were obtained only for stationary
systems by applying the spectral methods. The
theory for time-dependent differential systems im-
plies the necessity of solving the nonsmooth vari-
ational problem when using the local optimiza-
tion criterion (Matasov, 1998). It is a complicated
problem unless some serious simplifications are
made.



In this paper, a model described by a system
of stochastic differential equations with piecewise
continuous coefficients is considered. It is assumed
that the noise intensities in dynamics and observa-
tion equations are not known exactly, but belong
to some known uncertainty sets. The estimate ac-
curacy is determined by the integral mean-square
criterion.

The minimax filter is obtained by solving the dual
optimization problem (Borisov and Pankov, 1998;
Pankov and Miller, 2001). Using this approach the
criterion saddle point existence is proved, and is
shown, that the minimax estimator can be ex-
pressed analytically as a function of the dual op-
timization problem solution. The main objective
of this paper is to provide an effective convergent
numerical method, which makes possible to solve
the dual optimization problem and, hence, to de-
rive the minimax filtering algorithm.

2. THE MODEL DEFINITION

Consider the following continuous-time observa-
tion model:

dyt = atytdt + btdwt, y0 = 0, (1)

dzt = ctytdt + dtdwt, t ∈ [0, T ]. (2)
In (1),(2) yt ∈ Rp is the system state and zt ∈ Rq

is the observation vector at time t ∈ [0, T ]. The
process wt ∈ Rr is supposed to be homogeneous
random process with orthogonal increments:

Kw(t, τ) = cov(wt, wτ ) = γ min(t, τ),
M[wt] = 0.

(3)

The matrix-valued functions at, bt, ct and dt are
assumed to be known and piecewise continuous.
The intensity γ is not known, but belongs to some
set of positively definite matrices: γ ∈ Γ ⊂ Rr×r.
It is assumed also that the observation model is
nonsingular (Liptser and Shiryaev, 1978): ∃C > 0
such that ∀t ∈ [0, T ] and ∀µ ∈ Rq: ‖µ‖ = 1

inf
γ∈Γ

µ∗dtγd∗t µ ≥ C. (4)

Let ŷt be a nonanticipating linear estimate for yt

given the observations Zt = {zτ , 0 ≤ τ ≤ t}. Then
ŷt can be represented as follows:

ŷt = F (Zt) =

T∫

0

g(t, τ)dzτ , g(t, τ) = 0 ∀τ > t.

(5)

In (5) F is a filter operator and g(t, τ) is it’s
weighting function. Denote F the set of filters (5),
satisfying the condition M

[
‖ŷt‖2

]
< ∞. This set

is convex and closed but unbounded in general.

Let Pw ∈ Pw be the distribution law of the process
wt, where Pw is the set of all distributions which
satisfy (3) with γ ∈ Γ.

For every Pw ∈ Pw the estimate ŷt accuracy is
determined by the following integral mean-square
criterion

J(F, Pw) = M




T∫

0

ξ∗t Σtξtdt


 , (6)

where M [·] is the expectation operator (with
respect to the distribution Pw); ξt = ŷt− yt is the
estimate error; Σt is given piecewise continuous
weighting matrix function, Σt = Σ∗t and Σt ≥ 0,
t ∈ [0, T ] (a matrix inequality A ≥ B means that
the matrix A−B is positively semidefinite one).

Using (1)-(3), (5), (6) it can be shown by straight-
forward calculations that

J(F, Pw) = JT (F, γ) =

T∫

0

tr[ΣtRt(F, γ)]dt, (7)

where Rt(F, γ) is the error ξt covariance matrix,
which depends only on the operator F and the
intensity matrix γ.

3. MINIMAX FILTER

Denote argmax
x∈X

f(x) (argmin
x∈X

f(x)) the set of

points of maxima (minima) of f(x) on the set X.

Definition 1. The operator F̂ is minimax one with
respect to JT (F, γ) criterion on the set F × Γ if

F̂ ∈ argmin
F∈F

sup
γ∈Γ

JT (F, γ). (8)

If the set Γ contains only one point Γ = θ, then the
Kalman-Bucy filter provides the operator which is
minimax with respect to JT (F, γ) (Morris, 1976;
Verdu and Poor, 1984). For the case (1),(2) we
have

dŷt = atŷtdt + Kt(θ)(dzt − ctŷtdt), ŷ0 = 0, (9)

Kt(θ) = (Rt(θ)c∗t + btθd
∗
t )(dtθd

∗
t )
−1, (10)





Ṙt(θ) = atRt(θ) + Rt(θ)a∗t +
+btθb

∗
t −Kt(θ)dtθd

∗
t K

∗
t (θ),

R0(θ) = 0.
(11)

The equation (8) describes the direct minimax
optimization problem, and the following equation
describes the dual optimization problem:

γ̂ ∈ argmax
γ∈Γ

J0
T (γ), (12)

where J0
T (γ) = inf

F∈F
JT (F, γ) is the dual criterion.

Theorem 1. Let Γ be a convex compact set of
positively definite matrices γ satisfying (4). Then



1. the dual criterion J0
T (γ) has the following

analytical representation:

J0
T (γ) =

T∫

0

tr[ΣtRt(γ)]dt, (13)

where Rt(γ) is determined by (10), (11) with
θ = γ;

2. the dual problem (12) solution γ̂ exists;
3. the pair (F̂ , γ̂), where F̂ = FK(γ̂) is the

Kalman-Bucy filter (9)-(11) with θ = γ̂,
forms the saddle point of JT (F, γ) on F × Γ;

4. the guaranteed value ĴT of criterion (7) is
equal to

ĴT =

T∫

0

tr[ΣtRt(γ̂)]dt = J0
T (γ̂). (14)

The proof is given in the Appendix.

Corollary 1. The operator F̂ = FK(γ̂) is a mini-
max one on F × Γ:

sup
γ∈Γ

JT (F̂ , γ) ≤ sup
γ∈Γ

JT (F, γ), ∀F ∈ F .

The operator F̂ is recurrent and is determined by
(9)-(11) with θ = γ̂.

Now consider the same problem on the extended
set of admissible operators. Let F0 be the set of all
nonanticipating estimation operators, so F ∈ F0

if ŷt = F (Zt) is measurable with respect to the
σ-field generated by Zt = {zτ , 0 ≤ τ ≤ t},
t ∈ [0, T ], and M

[‖ŷt‖2
]

< ∞. Let Pw be the set
of all distributions of the process {wt, t ∈ [0, T ]},
satisfying (3) while γ ∈ Γ. Let also JT (F, Pw) be
the integral mean-square criterion determined on
F0 × Pw by (6).

Theorem 2. The pair (F̂ , P̂w), where F̂ = FK(γ̂),
γ̂ is the solution of (12), (13) and P̂w is the distri-
bution of the Wiener process ŵt with covariance
cov(ŵt, ŵτ ) = γ̂ min(t, τ), forms the saddle point
of JT (F, Pw) on F0 ×Pw.

4. THE DUAL PROBLEM SOLUTION

In this section it is shown how the dual optimiza-
tion problem (12) can be numerically solved in the
general case.

Let FK(θ) ∈ F be the Kalman-Bucy filter for
some θ ∈ Γ. Then it can be shown (Lemma 1
in Appendix) that

JT (FK(θ), γ) = tr[H∗
T (θ)γ],

where HT (θ) = {Hij(θ, T )} and

Hij(θ, T ) =

T∫

0

tr[ΣtRt(θ, Lij)]dt, (15)





Ṙt(θ, Lij) = Ψt(θ)R(θ, Lij)+
+Rt(θ, Lij)Ψ∗t (θ) + ψt(θ)Lijψ

∗
t (θ),

R0(θ, Lij) = 0,
(16)

Ψt(θ) = at −Kt(θ)ct,
ψt(θ) = Kt(θ)dt − bt,

(17)

and Kt(θ) is determined by (10), (11).

From the dual criterion definition we derive

J0
T (γ) = tr[H∗

T (γ)γ], and γ̂ ∈ argmax
γ∈Γ

tr[H∗
T (γ)γ].

The iterative algorithm of the dual problem solu-
tion is as follows.

Algorithm 1. 1. Choose some initial value γ(0) ∈
Γ and set k = 0.

2. Calculate Hk = HT (γ(k)) using (15)-(17).
3. Solve the linear programming problem

γ̃(k) ∈ argmax
γ∈Γ

tr[H∗
kγ].

4. Compute δk = tr[H∗
k∆γ(k)], where ∆γ(k) =

γ̃(k) − γ(k).
If δk ≤ 0, put γ̂ = γ(k) and terminate the

iterative process.
If δk > 0, go to step 5.

5. Solve the one-dimensional maximization prob-
lem

λk ∈ argmax
λ∈[0,1]

J0
T (γ(k) + λ∆γ(k)).

6. Set γ(k+1) = γ(k) + λk∆γ(k), increase k by 1
and go to step 2.

The convergence of the sequence {γ(k)} to the set
of the dual problem (12),(13) solutions, i.e.

Γ0 = argmax
γ∈Γ

T∫

0

tr[ΣtRt(γ)]dt,

is stated below.

Denote ρ(x, X) = inf
y∈X

‖x − y‖, i.e. the distance

between the point x ∈ Rn and the subset X ⊂ Rn.

Theorem 3. Under the conditions of Theorem 1

1. if the iteration process stops after a finite
number k∗ of iterations, then γ(k∗) ∈ Γ0, and

ĴT =
T∫
0

tr[ΣtRt(γ(k∗))]dt;

2. if k → ∞, then ρ(γ(k), Γ0) → 0, and
T∫
0

tr[ΣtRt(γ(k))]dt → ĴT .

The proof of this theorem is mostly the same as
the proof of the similar result for discrete systems
provided in (Pankov and Miller, 2001).



5. THE GUARANTEED ERROR VARIANCE

In conclusion, let us consider the problem of
determination of the estimate ŷt accuracy for
every t ∈ [0, T ]. Let l ∈ Rp and ηt = (l, ξt)
be a linear combination of the error ξt = ŷt −
yt components. Lemma 1 in Appendix implies
D [ηt] = tr[g∗t γ], where matrix gt depends on l and
γ̂, and γ is the exact intensity of the process wt in
(1), (2). Since γ ∈ Γ, the guaranteed value D0

t of
the variance D [ηt] is the solution of the following
linear programming problem:

D0
t = max

γ∈Γ
tr[g∗t γ], t ∈ [0, T ].

Since Γ is a compact set, there exists γ̃t such that
D0

t = tr[g∗t γ̃t]. Obviously, γ̃t depends on (l, t,γ̂)
and does not coincide with γ̂ in general. Therefore,
D0

t ≥ tr[g∗t γ̂] = l∗Rt(γ̂)l, t ∈ [0, T ].

In particular, if the set Γ has a “maximal point”
γ0, i.e. γ ≤ γ0, ∀γ ∈ Γ, then

γ̃t = γ̂ = γ0, t ∈ [0, T ],

so D0
t = l∗Rt(γ0)l, and Rt(γ0) is the unim-

provable guaranteed value of the covariance of
the estimation error ξt = ŷt − yt, ŷt = F̂ (Zt),
F̂ = FK(γ0).

6. EXAMPLE

Let the system (1), (2) be stationary on t ∈ [0, 1]
with the following coefficients:

at =




0.7 0.2 −0.1
0.2 −0.1 0.7
0.3 0.0 0.6


 ,

bt =




0.7 0.1 0.2 0 0 0
0.2 0.4 0.3 0 0 0
−0.1 0.3 0.6 0 0 0


 ,

ct =




0.5 0.4 0.1
0.3 1.0 −0.2
0.1 0.4 0.6


 ,

dt =




0 0 0 1.0 0.2 −0.2
0 0 0 −0.2 0.3 0.3
0 0 0 0.5 0.3 0.6


 .

The initial value y0 = 0.

Assume γ = diag(S1, S2) ∈ Γ, where diag(S1, S2)
denotes a block-diagonal matrix, and the uncer-
tainty set Γ is determined by the following ele-
mentwise constraints:

Γ = { γ : γ = diag(S1, S2),
S̄1 − d · E ≤ S1 ≤ S̄1 + d · E,
S̄2 − d · E ≤ S2 ≤ S̄2 + d · E, },

d = 0.1, E is a (3× 3)-matrix of unities, and

S̄1 =




0.9 −0.4 0.2
−0.4 0.7 0.1
0.2 0.1 0.6


 , S̄2 =




0.5 0.0 0.0
0.0 0.8 0.0
0.0 0.0 0.1


 .

The accuracy of the estimate is determined by
criterion (6) with Σt = 1, t ∈ [0, 1]. Under the
assumptions of Theorem 1 the minimax filtering
problem solution is determined by (9)-(11) with
θ = γ̂, where γ̂ is the dual problem solution.
For obtaining this solution Algorithm 1 was used
with the initial conditions S

(0)
1 = S̄1, S

(0)
2 = S̄2.

The criterion value for γ(0) = diag(S(0)
1 , S

(0)
2 ) is

JT (FK(γ(0)), γ(0)) = J0
T (γ(0)) = 0.4690.

The solution obtained is γ̂ = diag(Ŝ1, Ŝ2), where

Ŝ1 =




1.0 −0.4626 0.2778
−0.4626 0.8 0.2
0.2778 0.2 0.7


 ,

Ŝ2 =




0.6 0.0566 0.0516
0.0566 0.9 0.0079
0.0516 0.0079 0.2


 ,

and the criterion value is J0
T (γ̂) = 0.5887.

The robustness of the obtained estimate ŷt is
determined by the guaranteed value D0

t of the
variance Dt = D [ηt], where ηt = ((1, 0, 0)∗, ξt) =
ξ1
t . In section 5 it is shown that D0

t is a solution
of the following problem

D0
t = max

γ∈Γ
tr[g∗t γ], t ∈ [0, T ], (18)

where gt = {gij(γ̂, l, t)} ∈ Rr×r,

gij(γ̂, l, t) = l∗Rt(γ̂, Lij)l, t ∈ [0, T ], (19)

and Rt(·) is determined by (16),(17).

Note, that the linear programming problem (18)
with element-wise constraints on γ has the ana-
lytical solution. Let Γ = {γ : γ

ij
≤ γij ≤ γij},

then D0
t = tr[g∗t γ̃t], where

γ̃ij(t) =
{

γij , gij(t) ≥ 0,
γ

ij
, gij(t) < 0.

The evolution of the variance D [ηt] guaranteed
value D0

t is shown on figure 1.

Fig. 1. Guaranteed variance D0
t of ξ1

t .

The matrix function γ̃t = argmax
γ∈Γ

tr[g∗t γ], such

that D0
t = tr[g∗t γ̃], is γ̃t = diag(S̃1(t), S̃2(t)),

where

for t ∈ [0, 0.3)

S̃1(t) =




1.0 −0.3 0.3
−0.3 0.8 0.2
0.3 0.2 0.7


 ,



S̃2(t) =




0.6 −0.1 0.1
−0.1 0.9 −0.1
0.1 −0.1 0.2


 ;

for t ∈ (0.3, 0.46)

S̃1(t) =




1.0 −0.3 0.3
−0.3 0.8 0.2
0.3 0.2 0.7


 ,

S̃2(t) =




0.6 0.1 −0.1
0.1 0.9 −0.1
−0.1 −0.1 0.2


 ;

for t ∈ (0.46, 0.47)

S̃1(t) =




1.0 −0.3 0.3
−0.3 0.8 0.0
0.3 0.0 0.7


 ,

S̃2(t) =




0.6 0.1 −0.1
0.1 0.9 −0.1
−0.1 −0.1 0.2


 ;

for t ∈ (0.47, 1]

S̃1(t) =




1.0 −0.5 0.3
−0.5 0.8 0.0
0.3 0.0 0.7


 ,

S̃2(t) =




0.6 0.1 −0.1
0.1 0.9 −0.1
−0.1 −0.1 0.2


 .

The function γ̃t is piecewise constant on [0, 1], and
γ̃t 6= γ̂ for all t ∈ [0, 1].

7. APPENDIX

The auxiliary results considered below are neces-
sary for the theorem 1 proof.

Let the matrix Lij ∈ Rr×r has all zero elements,
except the element lij which is 1.

Lemma 1. Let θ, γ, γ̂ ∈ Γ, and

IT (θ, γ) = JT (FK(θ), γ),

then

1. IT (θ, γ) = tr[H∗
T (θ)γ], where HT (θ) =

{Hij(θ, T )} ∈ Rr×r,

Hij(θ, T ) =

T∫

0

tr[ΣtRt(θ, Lij)]dt, (20)





Ṙt(θ, Lij) = Ψt(θ)R(θ, Lij)+
+Rt(θ, Lij)Ψ∗t (θ) + ψt(θ)Lijψ

∗
t (θ),

R0(θ, Lij) = 0,
(21)

Ψt(θ) = at −Kt(θ)ct,
ψt(θ) = Kt(θ)dt − bt,

(22)

Kt(θ) is determined by (10), (11).

2. Let ξt = ŷt − yt, ηt = l∗ξt. Then D [ηt] =
tr[g∗t γ], gt = {gij(γ̂, l, t)} ∈ Rr×r,

gij(γ̂, l, t) = l∗Rt(γ̂, Lij)l, t ∈ [0, T ]. (23)

The proof is rather straightforward, and hence is
omitted.

Lemma 2. Let the functional JT (F, γ), F ∈ F ,
γ ∈ Γ, where Γ is a convex subset, satisfy the
following conditions

1. JT (F, γ) is concave in γ on Γ for any F ∈ F ;
2. for any γ ∈ Γ there exists F̃ (γ) ∈ F such

that

inf
F∈F

JT (F, γ) = JT (F̃ (γ), γ);

3. the solution of the dual problem exists:

γ̂ ∈ argmax
γ∈Γ

JT (F̃ (γ), γ);

4. for any γ ∈ Γ, and F̂ = F̃ (γ̂) the following
property is valid:

JT (F̂ , γ) = lim
α→0+

JT (F̃ (γα), γ),

where γα = (1− α)γ̂ + αγ, α ∈ [0, 1].

Then (F̂ , γ̂) is a saddle point of JT (F, γ) on F×Γ.

The proof of Lemma 2 can be found in (Pankov
and Siemenikhin, 2003). Note, that the result of
Lemma 2 extends the similar result of (Verdu and
Poor, 1984) to the infinite-dimentional case.

Proof of Theorem 1: Let FK(θ) be the Kalman-
Bucy filtering operator given by (9)-(11) for the
case θ ∈ Γ. If γ̂ ∈ argmax

γ∈Γ
inf

F∈F
JT (F, γ), then F̂ ∈

argmin
F∈F

JT (F, γ̂). In this case F̂ = FK(γ̂) ∈ FK ,

where FK is a set of all filters FK(θ), θ ∈ Γ. Hence,
if (F̂ , γ̂) is a saddle point of JT (F, γ) on FK × Γ,
then it is a saddle point also on F × Γ. So the
case F = FK could be considered without loss of
generality. In this case by virtue of Lemma 1 one
can obtain

JT (FK(θ), γ) = IT (θ, γ) = tr[H∗
T (θ)γ],

where HT (θ) is determined by (20)-(22).

If the matrix function Kt(θ) is continuous with
respect to (t, θ) on [0, T ] × Γ, then from (22) it
follows that Ψt(θ) and ψt(θ) are piecewise con-
tinuous with respect to t ∈ [0, T ] and continuous
with respect to θ ∈ Γ. Then from (21) it follows,
that Rt(θ, Lij) are continuous on [0, T ] × Γ, and,
hence, HT (θ) is continuous with respect to θ ∈ Γ
by (20) and the definition of Σt, t ∈ [0, T ].

For any θ ∈ Γ the function IT (θ, γ) = tr[H∗
T (θ)γ]

is linear with respect to γ ∈ Γ and, hence,
is concave on Γ. Let us show, that the dual
optimization problem has a solution.

J0
T (γ) = inf

F∈F
JT (F, γ) = inf

F∈FK

JT (F, γ) =

= JT (FK(γ), γ) = IT (γ, γ) = tr[H∗
T (γ)γ].



Hence, J0
T is continuous with respect to γ on

Γ, as HT (γ) is continuous. The last means that
γ̂ ∈ argmax

γ∈Γ
J0

T (γ) exists, since Γ is compact.

Note, that form Lemma 1 it follows that γ̂ ∈
argmax

γ∈Γ

T∫
0

tr[ΣtRt(γ)]dt, where Rt(θ) is defined by

(11).

Now, let γα = (1− α)γ̂ + αγ, ∀γ ∈ Γ, α ∈ (0, 1].

lim
α→0+

JT (FK(γα), γ) = lim
α→0+

tr[H∗
T (γα)γ] =

= tr[ lim
α→0+

H∗
T (γα)γ] = tr[H∗

T (γ̂)γ],

since HT (γ) is continuous at γ̂ ∈ Γ. Hence, all
conditions of Lemma 2 are fulfilled, and conse-
quently the pair (F̂ , γ̂), where F̂ = FK(γ̂), is a
saddle point of JT (F, γ) on F × Γ.

To complete the proof, it is necessary to show
that Kt(θ) is continuous with respect to (t, θ) on
[0, T ]×Γ. Since Kt(θ) = (Rt(θ)c∗t +btθd

∗
t )(dtθd

∗
t )
−1,

then Kt(θ) is piecewise continuous with respect to
t and continuous with respect to θ, if the same is
valid for Rt(θ) (note, that (dtθd

∗
t )
−1 is continuous

with respect to θ on Γ as follows from the regu-
larity condition (4)). The matrix function Rt(θ) is
a solution of the Riccati equation (11), which can
be expressed in the ordinary form





Ṙt(θ) = (at − btθd
∗
t (dtθd

∗
t )
−1ct)Rt(θ)+

+Rt(θ)(at − btθd
∗
t (dtθd

∗
t )
−1ct)∗+

+bt(θ − θd∗t (dtθd
∗
t )
−1dtθ)b∗t−

−Rt(θ)c∗t (dtθd
∗
t )
−1ctRt(θ),

R0(θ) = 0.

(24)

The solution of (24) can be expressed as a function
of the matrix of fundamental solutions of the
following system of linear ordinary differential
equations:





π̇(t) = −(at − btθd
∗
t (dtθd

∗
t )
−1ct)∗π(t)+

+c∗t (dtθd
∗
t )
−1ctµ(t),

µ̇(t) = bt(θ − θd∗t (dtθd
∗
t )
−1dtθ)b∗t π(t)+

+(at − btθd
∗
t (dtθd

∗
t )
−1ct)µ(t).

(25)

Let

Π(t, θ) =
[

Π11(t, θ) Π12(t, θ)
Π21(t, θ) Π22(t, θ)

]

be a matrix of system (25) fundamental solutions.
The elements of the matrix functions Πij(t, θ) are
continuous with respect to (t, θ) on [0, T ]×Γ, since
the coefficients in the right-hand side of (25) are
continuous. It is known that Π11(t, θ) is invertible
for any t ∈ [0, T ] and θ ∈ Γ, and Rt(θ) for the
case R0(θ) = 0 can be expressed as

Rt(θ) = Π21(t, θ)Π−1
11 (t, θ).

From the last formulae one can see that Rt(θ) is
continuous with respect to (t, θ) on [0, T ]×Γ. This
completes the proof of Theorem 1.

REFERENCES

Bertsekas D. and Rhodes I.B. (1971). Recursive
state estimation for a set of membership de-
scription of uncertainty. IEEE Trans. Autom.
Control 16(2), 117–128.

Bobrik G.I., Golovan A.A. and Matasov A.I.
(1997). Kalman filter in guaranteeing ap-
proach to the topographic binding problem.
Autom. and Rem. Control (10).

Borisov A.V. and Pankov A.R. (1998). Minimax
filtering in dynamic systems described by sto-
chastic differential equations with a measure.
Autom. and Rem. Control (6).

Davis M.H.A. (1977). Linear Estimation and Sto-
chastic Control. Chapman and Hall.

Golubev G.A., Muravlev O.V. and Pisarev V.F.
(1989). Linear recursive filtering of discret dy-
namic processes with incomplete information
about disturbing processes. Autom. and Rem.
Control (12).

Katz I. Ya. and Timofeeva G.A. (1994). The modi-
fied method of discrepancy in statistically un-
certain estimate problem. Autom. and Rem.
Control (2).

Li L., Luo Z., Davidson T., Wong K. and Bosse E.
(2002). Robust filtering via semidefinite pro-
gramming with applications to target track-
ing. SIAM J. Optim. 12(3), 740–755.

Liptser R.Sh. and Shiryaev A.N. (1978). Statis-
tics of Random Processes. Springer-Verlag.
Berlin.

Matasov A.I. (1998). Estimators for uncertain dy-
namic systems. Kluwer Academic Publ. Dor-
drecht.

Morris J.M. (1976). The kalman filter: a ro-
bust estimator for some classes of linear
quadratic problems. IEEE Trans. Inform.
Theory 22, 526–534.

Orlov Yu. and Basin M. (1995). On minimax fil-
tering over discrete-continuous observations.
IEEE Trans. Autom. Control 40, 1623–1626.

Pankov A.R. and Miller G.B. (2001). Minimax lin-
ear recurrent filtering of uncertain-stochastic
sequences with integral criterion (in russian
only). Information processes 1(2), 150–156.

Pankov A.R. and Siemenikhin K.V. (2003). Min-
imax estimation of random elements with
application to infinite-dimensional statistical
linearization. Proceedings of the II-nd Inter-
national Conference “Identification and Con-
trol Problems” pp. 1277–1291.

Pugachev V.S. and Sinitsyn I.N. (1987). Stochas-
tic Differential Systems: Analysis and Filter-
ing. Wiley. New York.

Sage A.P. and White C.C. (1977). Optimum sys-
tems control. Prentice Hall.

Verdu S. and Poor H.V. (1984). Minimax linear
observers and regulators for stochastic sys-
tems with uncertain second-order statistics.
IEEE Trans. Autom. Control 29(6), 499–511.


