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Abstract: Generalized likelihood ratio test (GLRT) for directional residual based fault 
isolation is studied in this paper. The conditional probability of correct fault isolation is 
used to measure the performance of the test. The explicit form of this probability is derived 
with the help of two GLRT invariant properties and the standard fault isolation subspace. 
The effect of linear transformation is studied as well. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
A broad class of model-based fault detection and 
diagnosis methods is built on the concept of 
analytical redundancy (Willsky, 1976). Discrepancies 
of measured and predicted plant outputs are 
expressed as residuals which can be enhanced by 
algebraic manipulations to facilitate the isolation of 
faults. The directional residual method is one of the 
enhancement techniques that makes residuals always 
point in a specific direction in response to a particular 
fault (Gertler, 1998). 
 
If noise is present and the fault is deterministic but 
unknown, Generalized Likelihood Ratio Test 
(GLRT) (Van Trees, 1968) is usually used to isolate 
the fault. Although GLRT is a well-established 
method, its performance is seldom discussed (Scharf, 
1994). In this paper, the conditional probability of 
correct isolation (PCI) is presented as the measure of 
the GLRT performance. Two invariant properties of 
the GLRT statistic are investigated, which reveal the  
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fact that the explicit form of the PCI can be obtained 
in a simple and standardized fault isolation subspace.  
 
Since linear transformation can be applied to 
optimize fault isolation (Basseville, 1997, 2003), its 
effect on the GLRT performance is further studied. 
The problem is simplified to a situation where the 
linear transformation can be decomposed as rotation 
and scaling operations. The PCI for the transformed 
residual is expressed as a function of the rotation and 
scaling factors. 

 
 

2. PROBLEM STATEMENT 
 
Consider the case of two possible faults in a linear 
static system. The residual is expressed as: 
 

NvLfr += ,   (1) 
where  

],[ 21 llL =  contains two vectors representing 
two fault response directions; 

]',[ 21 fff = contains the size of each fault; 



 ),0(~ INv  is the noise; 

Σ== ')cov( NNr , 1−Σ exists. 
 
It is assumed that a fault has been detected; the task 
of fault isolation is to decide which type of fault 
occurred. The hypotheses are: 
 

NvflrH += 111 :  
NvflrH += 222 :   (2) 

where Rff ∈21,    
 
Because 1f  and 2f  in eq. (1) are deterministic and 
unknown, the maximum likelihood method can be 
applied first to estimate the faults; then the estimates 
can be used to perform the likelihood ratio test as if 
they were true fault magnitudes. This procedure is 
called the generalized likelihood ratio test (GLRT), 
namely, 
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The decision rule for the two-fault case is: 
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The threshold 2η  is normally chosen to be 0. 
 

 
3. PCI DEFINITION 

 
With the GLR test, once the fault response directions 
and the GLRT threshold are determined the fault 
decision regions are fixed. Under the condition that 
the i-th fault is present with known magnitude if , 
define the probability of the correct isolation (PCI) 
as:  

 ∫
Ω

=
i

ii
dRfRpfP iHriHI )|()( ||   (6) 

where iΩ   is the decision region of the i-th fault in 
the residual space; R is the observation in the residual 
space. 

 
Calculating the PCI directly from the PDF of 21g  is 
difficult. The following sections will show another 
way to obtain the explicit form of the PCI, with the 
help of the standard fault isolation subspace. 
 

 
4. GLRT INVARIANT PROPERTIES 

 
Lemma 1: For any residual vector  
 NvLfr +=  
and its linear transformation 
 NvTLfTrTrT ''' +==   (7) 

if 1−T exists, then the GLRT statistic remains 
invariant.  
 
This can be proved by verifying )'()( 2121 RTgRg =  
for any residual sample R. 
 
Now denote  
 vfLvLfNrNr +=+== −− 11  (8) 
From Lemma 1 we have  
 )()( 2121 RgRg =   (9) 
 
This means we can always consider the residual only 
with the identity covariance matrix.  
 

For a subspace < L > defined by matrix [ ]21, llL = , 
the corresponding projection matrix is 
 

 ( ) '' 1 LLLLPL
−=   (10) 

 
Considering eq. (5) with I=Σ , examine the GLRT 
statistic of the projection of residual R  on space L :  
 
 )(21 RPg L RPPPRRPPPR LlLLlL 12

'''' −=   

RPRRPR ll 12
'' −= )(21 Rg=  (11) 

Eq. (11) means the subspace defined by [ ]21, llL =  
contains the full fault isolation information. We call 
the subspace < L > fault isolation space. The result of 
eq. (11) can be concluded as: 
 
Lemma 2: For any residuals with identity covariance 
matrix, the GLRT is invariant under transformations 
that preserve the fault isolation space. 
 

 
5. STANDARD FAULT ISOLATION SUBSPACE 

 
Regardless of the dimension of the original residual 
space, we can always work in the fault isolation 
subspace, because, as stated in Lemma 2, all fault 
related information is contained in this subspace, and 
the rest of the residual space contains nothing but 
noise. For the cases where there are only two faults in 
the system, this subspace is a plane defined by 

],[ 21 llL = .  
 
If the noise covariance matrix is the identity matrix, 
the decision lines for the GLRT consist of the points 
with equal distances to the fault response lines. 
Because the fault response lines are straight, it 
follows that the decision lines are straight as well. 
They are always bisectors of 21, ll and are always 
orthogonal.  
 
Thanks to the orthogonal property of the decision 
lines, the residual space can always be rotated so that 
the decision lines become the coordinate axes. With 
the identity matrix being the noise covariance matrix, 
the noise-induced part of the residual does not change 
under pure rotation. We call the fault isolation 



subspace standard fault isolation subspace when the 
noise covariance matrix is the identity matrix and the 
decision lines are the axes. The standard fault 
isolation subspace is shown in Fig. 1. 
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Fig. 1 Fault response directions and decision lines  

in standard fault isolation subspace 
(note: the decision lines, iπ  in the original fault isolation 

subspace, are denoted iπ~  in the standard fault isolation subspace) 
 
In the standard fault isolation subspace, the fault 
response directions are symmetrical about the axes. 
We can always rotate the primary residual space and 
place 1l  in Quadrant I of the fault isolation subspace, 

and 2l  in Quadrant IV of the fault isolation subspace. 

Thus the rotated 1l  and 2l  become 
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Since the coordinates are the bisectors of 21
~

,
~ ll , it is 

always true that 
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The fault-induced residual in the fault isolation plane 
can be expressed as: 
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where iii lf ~
=ρ , i=1,2 are fault to noise ratio; 

αα −, are fault response angles for fault 1 and fault 2 

respectively; 
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6. PCI CALCULATION 
 
In the fault isolation subspace with normalized noise 
distribution, the decision region for fault 1 is 
Quadrant I and Quadrant III of the subspace. The 
probability of correct isolation (PCI) for fault 1 
becomes: 
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Define 
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the conditional probability of correct isolation for 
fault 1 becomes 
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7. PCI UNDER LINEAR TRANSFORMATION 
 
Once the probability of correct isolation is obtained, 
it is interesting to know how it can be changed under 
linear transformation. Assume the residual is 
transformed from the 0r  space to the 1r  space. 
According to the GLRT invariant properties 
expressed in Lemma 1 and 2, the general linear 
transformation can be narrowed down to a simplified 
situation: 
 
We can assume that the original residual space 

0r contains the standard fault isolation subspace. Any 
other residual space with the same dimension can be 
transformed to it without changing the GLRT 
statistics. 
 
We can also assume that the new residual space 1r  
has identity noise covariance matrix, and it contains 
the fault isolation subspace only. The removal of the 
noise-only subspace will not change the PCI. This is 
a two-dimensional space for pair-wise fault isolation.  
 
Define the original residual 0

~r  as 

000
~~ vfLr +=     (18) 

where  
0

~r  is an 10 ×n  residual vector; 30 ≥n ; 

]
~

,
~

[~
02010 llL =  is the standard fault isolation subspace 

containing two fault response directions; 
f is the fault vector; 

),0(~0 INv  is the noise vector.  



Denote the transformed residual 1r  as: 

 0001 '~'~' vTfLTrTr +==   (19) 
where  

1r  is a 2-dimensional residual vector; 
Ir =)cov( 1  

T is an 20 ×n linear static transformation matrix. 
 
Starting from this simplified situation, we will first 
check the changes in the fault isolations subspace 
after the linear transformation and then express the 
new PCI as a function of the linear transformation. 
 
Lemma 3: Given the original residual defined in eq. 
(18) and the transformed residual defined in eq. (19), 
the effect of linear transformation in the fault 
isolation subspace is equivalent to rotating the fault 
response directions with an angle β  and applying a 
pure scaling matrix  
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where 
10 1 ≤< k , 10 2 ≤< k    

Proof: 
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where is 1T  a 2x2 matrix. 
 
According to the 1r  definition in eq. (19), we have 

ITT =' ⇒ ITTTT =+ 2211 ''  (22) 
⇒ 2211 '' TTITT −=   (23) 

 
Applying principal component decomposition, we 
have  

'' 11111 UUTT Λ=    (24) 
'' 22222 UUTT Λ=   (25) 

where 
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21,UU are orthonormal matrices; iλ are non-negative 
real numbers. Then eq. (23) becomes 
 

( ) ''' 22222211 UIUUUITT Λ−=Λ−=    (28) 
 
Both eq. (24) and eq. (28) are principal component 
decompositions of 11 'TT . Since such decomposition 
is unique, apart from the order of the eigenvectors 
and eigenvalues, we know that 1Λ  and ( )2Λ−I  
contain the same set of eigenvalues of 11 'TT . By 
adjusting the sequence of column vectors in 1U , we 
can have 

21 Λ−=Λ I    (29) 

⇒ 10 1,1 ≤≤ λ , 10 2,1 ≤≤ λ  (30) 
Note that 
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If  01,1 =λ  or 02,1 =λ , then 1T  has rank defect, then 

0
~' LT , the fault response matrix after transformation, 

has rank defect, which means there is only one fault 
response direction. This is not acceptable for 
directional residual based fault diagnosis. Thus we 
only consider the situation where 
  

10 1,1 ≤< λ , 10 2,1 ≤< λ   (32) 
Let  
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From eq. (24), we have 
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Thus 1V  is an orthonormal matrix. From eq. (33) we 
know '1T  can be written as 
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where 1U , 1V are orthonormal matrices, and 
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From eq. (32), we know 
 

 10 1 ≤< k , 10 2 ≤< k   (37) 
 
Bringing eq. (14), the fault response matrix for 
residual 1r  becomes 
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0,1120,11
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ff rKVUTrKVU
fLTKVUfLTTfLT

⋅=⋅+⋅=
==

 (38) 

 
Bringing eq. (38) to eq. (19), the residual 1r  becomes 
 

10,11101
~~' vrKVUvfLTr f +=+=  (39) 

Compare 1r  with 
 

110,1112 '~' vUrVKrUr f +⋅⋅==  (40) 

The full-rank rotation matrix 1U  will not affect the 
PCI; we are interested in the effects of K and 1V  only. 
 
Since 1V  is an orthonormal matrix, it can be 
expressed as 
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This effectively shows the transformation as the 
combination of rotation and scaling (Fig. 2 shows a 
typical linear transformation decomposition.). End of 
proof. 
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Fig. 2 Linear Transformation Decomposition in 
the Fault Isolation Subspace 

(In the first figure, the fault response directions are rotated with an 
angle β ; in the second figure, a scaling operation with 

1, 23
1

1 == kk  is applied to the rotated fault response directions) 

 
 
Now we express the PCI of 1r  in terms of the 
rotation factor β  and the scaling matrix K . 
According to eq. (42), the fault induced residual in 
the 2r  space is 
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Bring (14) to (43) 
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Rewrite 2,fr as 
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1γ  and )( 0 βα +  belong to the same quadrant; 2γ  
and )( 0 βα +−  belong to the same quadrant. 
 
The new PCIs after the linear transformation are: 
 
 

( ) ( ))sin(*)cos(* 111 αραρ −⋅−= erfcerfcPCI    
( ) ( ))sin(*)cos(* 11 αραρ erfcerfc ⋅+   (53) 

 
( ) ( ))sin(*)cos(* 222 αραρ erfcerfcPCI ⋅−=  

( ) ( ))sin(*)cos(* 22 αραρ −⋅+ erfcerfc   (54) 
 

 
8. NUMERICAL EXAMPLES 

 
Consider a 3-residual 2-fault linear static system 
  

NvLfr +=    
where  
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Assume that when a fault happens, the actual sizes of 
each type of fault are 31 =f , 52 =f ; assume there is 
a residual observation ]'2,1,1[−=R . 
 
The following are examples of calculating the PCI 
and of the linear transformation decomposition. 
 
Example 1: PCI Calculation 
 

Let  vfLrNr +== −1 . 



From Lemma 1 we know )()( 2121 RgRg = . 
 
According to the discussion about the standard fault 
isolation subspace in Section 5, linear transformation 
matrices (such as rT shown below) can be applied to 
the uncorrelated residual r  to obtain the standard 
fault isolation subspace.  
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The new transformed residual becomes 
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where the new fault response matrix 
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defines the standard fault isolation space and where 

),0(~0 INv . 
 
According to eq. (14), the fault-to-noise ratios and 
the fault response direction angle are derived as 
follows: 
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Example 2: Linear Transformation Decomposition  
 
Applying an arbitrary linear transformation matrix 
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From eq. (24), eq. (33) and eq. (36), 
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}1,1370.0{},{ 2,11,1 diagdiagK == λλ  

According to Lemma 3, the effect of T  on the fault 
isolation subspace is a combination of rotation and 
scaling. From eq. (41) and (36), the rotation angle 
and scaling factors are: 
 

πβ 0369.0= , 0.13701 =k , 12 =k  
 

 
9. CONCLUSION 

 
The performance of the generalized likelihood ratio 
test (GLRT) for pair-wise directional residual based 
fault isolation is studied in this paper. Two invariant 
properties of the GLRT statistics are addressed, along 
with the idea of standard fault isolation subspace, to 
obtain the explicit form of the conditional probability 
of correct isolation (PCI). The effect of linear 
transformation is studied as well. It is shown to be a 
combination of rotation and scaling on the fault 
isolation subspace. The new PCI’s are expressed as 
functions of the rotation angle and scaling factors. 
 
The result about the linear transformation’s effect on 
the PCI can be used to optimize the fault isolation 
performance. When applying a linear static matrix to 
the primary residual space, the equivalent rotation 
and scaling operations will usually increase the PCI 
of one fault while decreasing that of the other, thus 
the overall fault isolation performance changes under 
linear transformation. An optimization method has 
been developed (Hu, 2004) to find the point where 
the overall fault isolation performance reaches its 
best. It is applicable to any linear dynamic system 
that uses the pair-wise directional residual method for 
fault isolation. Details will be presented in a later 
paper. 
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