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Abstract: This paper focuses on the dynamic behavior ofgg®metworks consisting of a
reactor with highly exothermic chemical reactions thatuwaeith different rates, connected
via a high material recycle stream to an external heat exgdray employing singular
perturbation arguments, we show that the dynamics of theidered process networks
typically exhibits three distinct time scales, the fastese, in which the temperature
dynamics evolve, a fast one, owing to the presence of theréastions, and a slow time
scale due to the presence of the reactions with slow reacies. We derive reduced—order
models for the dynamics in each time scale and outline aaltaontroller design framework
that accounts for this time scale separation. Finally, wevige an example and illustrative
numerical simulation result€opyright (€2005 IFAC
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1. INTRODUCTION the exception. Indeed, the majority of available studies
concerning such networks (Ali and Alhumaizi, 2000;

Networks of chemical reactors with external heat Henderson and Cornejo, 1989; Dadedical., 1997)
exchangers are commonly employed in the case ofjnyvolve polymerization processes that are character-
hlgh'y exothermic/endothermic reactions, achieving ized by Vasﬂy different reaction rates. These stud-
an effective heat transfer through large circulation jes have highlighted several control challenges posed
rates of the reaction mass through the heat exchangepy such systems, including the difficulty of tuning
(Seideretal., 1999). In our previous work (Baldeaand p|D and model-based controller due to the very stiff,
Daoutidis, 2004), we examined the energetic aspectsj|-conditioned process models. For such networks,
of reactor-external heat exchanger process networksmodel ill-conditioning originates in the presence of
and showed that the energy dynamics of such net-heat transfer, material floand the chemical reactions
works evolve in a fast time scale, rapidly reaching with different reaction rates. The different rates of
an equilibrium manifold, while the material balance these phenomena are reflected in the presence of terms
dynamics of the entire network evolve in a slow time of different magnitudes in the material and energy
scale. balance equations, causing model stiffness and also

In the present paper, we focus on reactor—externalindicating a possible multiple time scale behavior.

heat exchanger process networks in which reactionsvia a singular perturbation analysis, we show that
with largely different rates occur. In practical appli- the dynamics of the reactor—heat exchanger network
cations, this situation represents the rule, rather thanwith multi-rate reactions typically exhibits three time

scales, and obtain non-stiff, reduced—order models
1 Partial support for this work by ACS-PRF, grant 38114-AC# an of the dynamlcs_ in each time scale. We also outline
NSF-CTS, grant 0234440 is gratefully acknowledged. a controller design framework that accounts for the
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network’s multiple time scale behavior. Finally, we
illustrate our analysis with an example.

whereU denotes the overall heat transfer coefficient
in the heat exchanger amtlithe heat transfer area. Let
us now define:

Throughout our derivations, we use the standard order

of magnitude notatiod(.).

2. MODELING OF REACTOR-EXTERNAL HEAT
EXCHANGER NETWORKS WITH MULTI-RATE
KINETICS

R

L

-

Fig. 1. Schematic diagram of a process network with
external heat exchanger

R

We consider a process network, comprising of a re-
actor and a heat exchanger, as in Figure 1. A&t
denote the reactor holdup/x the holdup in the tube
side of the heat exchanger and> the holdup in the
shell side. LetF, be the feed flowrate to the reac-
tor, F' the effluent flowrate from the network;. the
coolant flowrate andR the recycle flowrate. Lef,

be the temperature of the feed stredfthe reactor
temperature] ' the temperature of the reaction mass
in the tube-side of the heat exchand&s,, andT¢ the
inlet and outlet temperature of the cooling medium,
respectivelyC components are present in the network
and participate iR stoichiometrically independent
reactions, with reaction rates, i« = 1,...,R and
stoichiometric matrixs € IR“*®. We denote the heat

of reaction vector bAH = [AH, ..., AHRz]T.

We assume that the thermal effect of the reactions is
very high and that the adiabatic operation of the reac-

tor is not possible. In order to control the reactor tem-

perature, the reaction mass is recycled at a high rate
(compared to the feed) through the heat exchanger. Fo

simplicity, we consider the density and heat capacity
of the reactants and producis §nd C,) and of the
cooling medium used in the heat exchanger énd
Cpe) to be constant, and, andC,, to be of compara-
ble magnitudei.e. C),/Cyc = k¢, = O(1). Assuming

that all units are modeled as lumped parameter sys-
tems, the model of the CSTR-external heat exchange

network becomes:
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where the subscript denotes steady-state values.
Since the recycle flowratd?, is much larger than
the reactor feedr,,, ¢ <« 1. Also, we define the
scaled (potentially manipulated) inputs = F,/F,s,

up = F/Fs,up = R/R, andu. = F./F.s, and the
O(1) quantitykp = F;/F,s. The model of Eq. 1 thus
becomes:

M = Fos(u, — kpuy) ®3)
C= IX?UO(CO C)+Sr
T = };O;UO(TO -T)— ClvaHTr—i—
1lj\j[SUR(TR -T)
o= L 3 un(T = Ta) = Goap=(Te = Tc)
Tc = %(TCO —Tc) + OZ]@C (Tr —Tc)

For useful energy removal, the rate of heat removal
from the reactor by the recycle streaRC,(T" —
Tr))s, must be of the same magnitude as the rate of
heat generation by the chemical reactiodsi, =
(~AH"rM),,ie:

AH;

kag = 57— =0(1 4
an= e, 0 @
Equivalently,

AH; = %k:AHFOSCp(T —TR)s (5)

IQur assumption (valid in most practical applications)
that k., = O(1) implies that the flowrate of the
external cooling utility stream in the heat exchanger
will be in direct relationship with the reaction mass
throughput,i.e. a high recycle rate will require a
high coolant flowrate. Hence, we can assume that
F.s/Rs = k., = O(1) and consequently,/F.s =
O(e). Also, we assume thqug]\—f}c is sufficiently large

so that the cross—stream heat transfer rate in the heat
exchanger is of the same order of magnitude as the net
rate at which heat is input to the heat exchanger by the
recycle streani:

(UA(Tr — Tc))s B
RO, =T, °W

(6)

or, that the time constants for heat transfer and mass
transport are of the same order of magnitude,

UA
Cp,Mp
P =k,

RS/MR B

O(1)



or, using Eq. 2,CM = kn FO@ . With the above T Fos (T, - T) 1FOSUR(TR_T)

_|_ —
notation, the dynamic model of the process network M M
|n. Fig. 1 can be written as: _1 kan e (T — TR)SAHTK
MZFOS(’UJO—/{FUJC) (7) EAHS
. 1 F,q 1 kpF,s
F,, _ > 1os _ _ 2 %hlos _
C=—%u,(Cy—C) + 81 Tr= g (T =Tr) = 2757 =(Tr = To)
. F, 1F - 1k Fos 1 khkchos
ZTos ., _ To = - (Teo — T - (Tr — T
1= uo(To = T) + -5 Fur(Tp —T) c EMCU(C )+ 2 Mo ( o)
1 kAH T
T AH, os(T' = Tr):AH 1 Due to the presence of reaction rates and flow rates
] 1F,, 1kyF,, of different magnitudes and of fast heat transfer, the
Tr= P ur(T —Tr) — M (Tr — Tc) above model is stiff, its stiffness being captured by the
1k ; 1 llzhk r small singular perturbation parameteysande.
oo — Mrtos _ - cpt os _
Te = M ue(Teo —To) + M (T =Tc) iy the following section we show, via a singular per-

turbation analysis, that the dynamics of the network
Turning now to the kinetic model, we consider that the (1) exhibits multiple (specifically, three) time scales,
reaction rates are expressed as: and obtain non-stiff, reduced—order models of the dy-
namics in each time scale.
T, = k?i?zi (Q) (8)

3. MODEL REDUCTION AND CONTROL

wherek; is a temperature-dependent rate constant that

represents a measure of the characteristic time of the/Ve proceed with our analysis starting from the fastest
reaction, and’; : R — TR is a function of the time scale, and, to this end, let us consider, with-
concentrationg” of the components involved in the out loss of generality, that < eg. Defining the
respective reaction. We assume that, by comparing the'stretched”, fastest time scate= /<, Eq. 7 becomes:
rate constantg; in the temperature range of interest,

two sets of reactionsy s fast reactions an® — Ry aM _ eF,(up — kpuy) (13)
slow reactions can be identified, which allows us to  d7
i : ac F,
express the matri§ as: ﬁ . ( Uo(Cy — C) + Ser +
Sr = Sar, + 7, ©) o (,;y)
. —oydiag(r;)r
Without loss of generality, we shall consider that the 67-:}i & !

first R — Ry reactions are slow. As a consequence of (T

0os
our previous assumption, there exists a large parame- ;- ~— (To =T) + (T =T)
ter k7, the smallest of the large rate constahjseval- 1N T
uated at some nommal temperatudrg,,,, such that TAH os(T' = Tr)sAH 1
L — k s

5 < 1for¢ = R — Rf and * = k? = O( ) dTR F,, knFos

1 T M ur(T —Tr) — (Tr —Tc)
fori = Ry +1...R. By denotings, = —, we can T R R

k% dTc  kyFo, EnkepFos
rewrite Eq. 9 (Vora and Daoutidis, 2001) : dr Mg uc(Teo —To) + Mc (Tr —Tc)

Sr = S.r, + iSfdiag(k])ff (10) _Th_en, we consider the limi¢ — 0, corregponding to
= Er== ' infinitely large recycle and cooling medium flowrates

and infinitely fast heat transfer in the heat exchanger.

M temperature stabilization and regulation objectives.

We also make the assumption that: In this limit, we obtain the following description of the
AHT diag(F)i ; = O(er) (11) process network dynamics in the fastest time scale:
===f f dT FOS

M 'LLR(TR — T) (14)
whereAH ; is the vector of the reaction enthalpies of kan

the fast reactions. This assumption essentially implies —EFOS(T —Tr)sAH 1

that the highly exothermic reactions are occurring in s

the slow (dominant) time scale. Uk _ Fos (T —Tr) — il (Tr — Tc)

dr ~ Mg * B T R

Thus, the general model of the reactor-heat exchangerdTC ko Fs knkepFos

network with large material recycle acting as a heat 3~ = 7 ue(Teo —To) + T Mo (Tr —To)

carrier, and featuring multi-rate kinetics, can be writ-

ten as: Notice that the large recycle and coolant flowrates

M = F,s(uo — kpuy) (12) 4z anduc are the only manipulated inputs available

Fos 1 . .\ [ [ ’
= o(Cy — C) + Sary + ;ﬂdlag(ki)zf in the fastest time scale, and can be used to address



Turning to the dynamics after the fastest time scale, Under the above—mentioned stoichiometric and ki-
multiplying Eq. 12 bye and considering the limit netic independence conditions, the variablegan
¢ — 0, we obtain the following quasi-steady-state however be computed after one differentiation of the

constraints: constraints (Contou-Care and Daoutidis, 2003), and
FOS . .
0— wp(Tr —T) (15) hence that the mdgex of the DAE system (18) is exactly
M two. Once the variables are computed, a state-space
kan T realization (ODE representation) of the slow dynamics
AH, Fos(T' = Tr)sAH ' r can be obtained. However, the state-space realization
F,, knF,s will not be of minimal order, and a coordinate change
0= Mp ur(T = Tg) - Mr (Tr —Tc) of the type:
kyFys knkepFos 7 M
0= rLos . T o — T WiveplLios To — T /
2 etToe —Te)+ = (T = Te) (| =TOL0) = |eQ) | 9
The constraints in Eq. 15 are linearly independent and n ry

hence, once the large flowrateg anduc are set by
appropriate feedback laws, they can be solved for thewould be necessary in order to obtain a minimal order
quasi-steady-state valués'(M,C) = [T*,Tx,T4]  ODE description of the slow dynamics. If, in the co-

of the variables© = [T, Tr, Tc]. Substituting the  ordinate change (19) we choogé (C) € N(S;T),
value forT™*, we then obtain: . . - =
with N (.) denoting the null space (Gerdtzemnal.,

M = Fos(uo — kruy) (16) 2004), we obtain the following—independent, min-
O = Fos Uo(Cy — C) + Sery(T*) + imal order description of the slow dynamics:
iW - = 1 = Fos(uo — kpuy) (20)
- . ~_ * ol . FOS "
gridlag(kz(T ))Lf g: uo(@ -0) +§,§£5(T )|C=T‘1(C,Q)

which represents the model of the dynamics of the Note that only the small feed and effluent flowrates

process network after the fastest boundary layer. No-y,, anduy are available as manipulated inputs in this
tice that the model in Eq. 16 is still stiff, owing to  slow time scale.

the singular perturbation parametgrwhich captures

the presence of fast and slow reactions, and may stillRemark 1. The arguments presented above indicate
exhibit a multiple time scale behavior. Thus, we pro- that the control objectives in the fastest time scale,
ceed with the model reduction by defining a fast time pertaining to the energy-balance related varialfles
scaler, and, taking the limitz:, — 0, we obtain  andT%, should be addressed using the large flowrates
the following description of the fast dynamics of the vy anduc, whereas the control objectives in the slow

system: time scale (such as controlling the reactor holdup and
dC T R product purity or distribution) should be addressed
dr, _fidlag(k‘(T )Ly 17 usingu, andug.

Without loss of generality, stoichiometric and ki-

netic independence conditions for the fast reactionsRemark 2. A similar analysis can be carried out
can be assumed to hold (Contou-G@aer and Daou-  consideringe, < ¢, in which case the fastest time
tidis, 2003) and Eq. 17 yields the quasi-steady—statescale would originate in the presence of the fast
conditionngf,which specifies a ;—dimensional chemical reactions, and the temperature dynamics
manifold in which the slow dynamics will evolve. would evolve in the fast time scale. Note that the
control implications outlined in Remark 1 would

In order to obtain a description of the slow dynamics, remain unchanged.

we consider the model of Eq. 16 in the limit — 0,
in the original time scalé. Note that, in this limit, the
term ff/sr, containing the rates of the fast reactions,

becomes indeterminate. Definiag= lim. ., f‘f/ET 4. ILLUSTRATIVE EXAMPLE
as this finite, but unknown term, the system of Eq. 16

takes the form: Consider a process network such as the one in Figure

1, with the following sequence of catalytic polymer-

M = Foy(uy — kpuy) (18) ization reactions taking place in the reactor:
Fos . 1.
= o\Lo — U sT” T* d kz T* £ g
C=200(Co = C) + Ser (T) + S diag(ki(T))z A K AR 1)
0=, AK + A" AAK
Eq. 18 represents a differential-algebraic equation AA+K@AAK
model (DAE) of the slow dynamics, and it has a non- AK+ A" a4+ K 22)

trivial index, since the “algebraic” variablescannot .
be directly calculated from the algebraic constraints. AAK + A =5 AAA+ K (23)



The feed strean#, contains the monomet and the 14). Also according to the analysis in Section 3, we
catalystK and its compositior”' 4, Cx,, is assumed  addressed the control of the reactor temperaiune

to be constant. The desired dimér, the undesired this fastest time scale, using the large flowrateas a
trimer AAA, along with the unreacted monomer and manipulated input, and the proportional feedback law:
catalyst are removed at a rate We consider that the

rate constants are (_)f the Arrheniu_s type. The gmou_nt ue =1+ Ko(T — Tsyp) (24)

of heat generated in the polymerization reactions is
high, and thus the reactor cannot be run adiabatically.
The objectives for this process are the control of
the reactor temperatur€ and of the purity of the
product, C44 at the open-loop unstable operating
pointCaa = 6.408 mol/l, T = 359.3 K, at which
conversion ofA and selectivity inAA are favorable,
along with the control of the reactor holdup.

while keepingur = 1. Setting the values of the large
flowratesur anduc allowed us to compute the quasi—
steady state value of the reactor temperaifttreand to
continue the model reduction procedure as described
above. In this case, the fast dynamics of Eq. 17 yields
the following quasi—steady state constraints:

With the assumptions stated above, and defining the 0=Cux (25)
manipulated inputs, = F,/F,s, ur = R/R, and
u. = F./F,., the process model has the form in Eq. 7 0=Caax (26)

(the detailed form of the material and energy balance . o ) ) )
equations for this example is omitted for brevity), Which define the equilibrium manifold in which the

with: slow dynamics of the network evolve. By considering
the limite,, — 0 of the model (16) of the dynamics af-
. T ter the fastest boundary layer, in the original time scale
C=1[Ca Caa Cana Cf Cax Caax] t, we obtained the DAE expression (18) of the slow
C,=[Ca0 00 Ck, 00] dynamics, withz = lim. _o1/6,[Cax Caax]”.
k1 CaC For the reaction network considered in our example, a
-1 -1 0-1-1 gl Ak ; ; e
o 0-1 1 o ko1 CACAx coordinate transformation of the type (19)is= M,
| 0o 0 0 0 1 e G = Ca+ Carx + Cuar, ¢ = Caa + Casx,
S=|_7 0.1 1 1| 0= |keCaaCk
= 1.1 0-1 0 kyCaC s (3 = Caaa + Cak and¢s = Cx — Carx — Caak,
01 1 0-1 ktCAOAAK m = Cagk,n2 = Caax. By applying this coordinate

transformation, we obtained the following minimum-

In our analysis of the reaction kinetics, we considered order representation of the slow dynamics:
that the termination reactions (22-23) are fast, and,
accordingly, partitioned the stoichiometric matix 1= Fos(uo — kpuy) (27)

and reaction rate vector as follows: . 1
Cl = ;Fosuo(cAo - Cl) -

1 -1
1o 0 0-1 2kg1(T™)C1Ca — kga(T™)C2Ca
Dl r Rt 0 by = =2 Fostiola + gt (T*) GGt — hga(T*
= 1 0 1 -1 o0 2= 0sUo(2 gl 164 92( )C2<4
0 -1 0 1 1 ‘1‘
ki CaClase kgchCk: CS = _;FOSUOCS + kQQ(T*)<2<4
= ry = | kg1CaCax
kiCaCank o1
kg2CanCr Ca=—Fosuo(Cro — (4)
1

and obtained, under the assumption (11) a model of 1; =0
the polymerization reactor that is in the form of Eq.
12, withe, = ;- andk = 1. We applied the model

reduction framework outlined in Section 3, obtaining
a model of the fastest dynamics of the network (Eq.

7]'2:0

We carried out numerical simulations, using the nom-
. inal values in Table 1. According to the analysis in
Table 1. Nominal values for the process parameters Section 3, after setting the reactor temperature with

Fo 0.5¢/min To 298 K the control law (24), we addressed the control of the
F 0.51/min Teo 283K . .

R 381/min T 350 3K product purityC'4 4 and of the reactor holduM using

Fo 161.50/min Th 206 K the small flowrated’, and F, respectively. Based on
M 501 kg1.0 501/(mol min)  the reduced order model (27) we designed a multi-
Mr 401 kg2,0 4l/(molmin)  variable input—output linearizing feedback controller
Mc 401 kt,0 1301/(mol min)  \yith integral action (Daoutidis and Kravaris, 1994),
Cao 20mol /1 AH  -60000J/mol 0 the first—ord @ dCas
Cro 3moll Ea,  20000J/mol requesting the first-order resporsga + ;1 <4 =

UA  100000JK~'min~! Ea 10000.J /mol Cansp M + B9 = M., with 3, = 45 min and

Kc 0.9 Cpe 2299717t K1 B2 = 45 min. Figure 2 shows an oscillatory open—

Cp 220 /171K~ loop behavior of the network for the given operating




in the product purity. Clearly, the proposed controller
yields the desired performance, being very robust with
respect to the considered disturbances and errors and
imposing the requested first—order response.
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5. CONCLUSIONS
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In this paper, we analyzed the dynamics of a class of
process networks consisting of a highly exothermic re-
actor with external heat exchanger and reaction kinet-
ics featuring fast and slow reactions. We have showed
200} = - - - o that the presence of heat transfer, heat transport and
(i reactions occurring at different rates causes the models
of such networks to be stiff, and that their dynamics
exhibit a time scale separation. Using singular per-
6435 3506 turbation arguments, we showed that the variables in

3604 the energy balance of the process networks considered
oz evolve in the fastest time scale, while the material bal-
- as0s ance equations exhibit fast and slow dynamics. Also
35906 within the framework of singular perturbations, we
oo derived reduced-order, non-stiff models for the fastest,

T 0o T w00 fast and slow dynamics, that are suitable for controller
design. Furthermore, our approach allowed for a ra-
tional separation of the available material flow rates
and/or heat duties into two distinct sets of manipulated
inputs, that act and can be used to address control ob-
jectives in different time scales. Specifically, the large
flowrates and heat duties only act upon the fastest
© 000 2000 3000 4000 0 000 2000 3000 4000 dynamics, while the small ones act in the slow time
scale. Finally, the application of the proposed analysis
Fig. 3. Closed loop evolution of the product purity, re- and model reduction procedure was illustrated through
actor temperature, and the Corresponding manip_an example and numerical simulation results.
ulated inputs. 20% decrease iV A, along with

ab K increase iffz, occur att = 200 min.
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