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Abstract: Switched control synthesis is developed for underactuated mechanical systems.
In order to locally stabilize an underactuated system around an unstable equilibrium,
its output is specified in such a way that the corresponding zero dynamics is locally
asymptotically stable. Once such an output has been chosen, the desired stability property
of the closed-loop system is provided by applying a Zeno mode controller, driving the
system to the zero dynamics manifold in finite time. Although the present synthesis
exhibits the Zeno behavior with an infinite number of switches on a finite time interval, it
does not rely on the generation of sliding modes, while providing robustness features
similar to those possessed by their sliding mode counterparts. Theoretical results are
supported by a simulation study made for a Pendubot.Copyright c©2005 IFAC

Keywords: Periodic motion, finite-time convergence, underactuated systems.

1. INTRODUCTION

Stabilization of underactuated systems, forced by
fewer actuators than degrees of freedom, presents a
challenging problem. These systems, as well known
(see, e.g., (Berkemeier and Fearing, 1999; Zhang
and Tarn, 2002)), possess nonholonomic properties,
caused by nonintegrable differential constraints, and
therefore, they can not be stabilized, even locally, by
means of smooth feedback.

In the present paper a switched control synthesis pro-
cedure is developed to locally stabilize underactuated
mechanical systems with unstable equilibria. In order
to locally stabilize such a system around an unstable
equilibrium, an output of the system is specified to
ensure that the corresponding zero dynamics is locally
asymptotically stable. Once such an output has been
chosen, the desired stability property of the closed-

loop system is provided by applying a switched con-
troller, driving the system to the zero dynamics mani-
fold in finite time.

The structure of the switched controller constructed
is inspired from that of (Orlov, 2005; Orlovet al.,
2003c), stabilizing a one-link manipulator in finite
time. Although that controller exhibited the so-called
Zeno behavior (Liberzon, 2003; Lygeroset al., 2003)
with an infinite number of switches on a finite time
interval, it did not rely on the generation of slid-
ing modes, while providing robustness features sim-
ilar to those possessed by their sliding mode coun-
terparts. The so-called second order sliding mode
(Levant, 1993) appeared in the equilibrium point only.
In contrast to standard sliding mode control algo-
rithms which are capable of providing the closed-loop
manipulator with the ultimate boundedness property
only (Lu and Spurgeon, 1997), the Zeno mode-based



controller stabilized the manipulator in finite time,
thus constituting an interesting alternative to standard
sliding mode controllers.

Capabilities of the Zeno mode synthesis procedure,
developed in the paper, are illustrated in a simula-
tion study made for a simple underactuated Pendulum
robot, typically abbreviated as Pendubot.

The rest of the paper is organized as follows. Section
2 is focused on the Zeno mode stabilization of a sim-
ple one degree-of-freedom manipulator, operating un-
der uncertainty conditions. In Section 3, the proposed
Zeno mode synthesis procedure is extended to under-
actuated mechanical systems and its effectiveness is
then illustrated by the numerical simulation of bal-
ancing the Pendubot around its inverted equilibrium.
Section 4 presents some conclusions.

2. ROBUST FINITE TIME STABILIZATION OF
ONE LINK MANIPULATOR

The Zeno mode controller design is first illustrated
with a simple one degree-of-freedom mechanical ma-
nipulator, operating under uncertainty conditions. The
dynamics of the manipulator is governed by

ÿ = ω(y, ẏ, t) + u (1)

wherey is the position of the manipulator,̇y is the
velocity of the manipulator,u is the controlled input,
ω(y, ẏ, t) is a piece-wise continuous nonlinearity that
captures all forces (viscous and Coulomb frictions,
gravitation, etc.), affecting the manipulator.

Operating under uncertainty conditions implies im-
perfect knowledge of the nonlinearityω(y, ẏ, t). This
possibly destabilizing term

ω(y, ẏ, t) = ωnom(y, ẏ, t) + ωun(y, ẏ, t) (2)

typically contains anapriori known nominal part
ωnom(y, ẏ, t) to be handled through nonlinear damp-
ing and an uncertaintyωun(y, ẏ, t) to be rejected. It is
assumed thatωun(y, ẏ, t) is locally bounded

|ωun(y, ẏ, t)| ≤ N for all t ≥ 0 (3)

by an apriori known constantN > 0. Apart from
this, both functionsωnom(y, ẏ, t) andωun(y, ẏ, t) are
assumed to be piece-wise continuous.

The following control law

u = −ωnom(y, ẏ, t)− asign(y)− bsign(ẏ)

−hy − pẏ (4)

subject to

N < b < a−N, h, p ≥ 0 (5)

appears to stabilize the uncertain system (1)-(3) in
finite time.

Until recently, finite time stability of asymptoti-
cally stable homogeneous systems has been well-
recognized for only continuous vector fields (Bhat and
Bernstein, 1997; Honget al., 2001). Extending this re-
sult to switched systems has required proceeding dif-
ferently (Orlov, 2005) because a smooth homogeneous
Lyapunov function, whose existence was proven in
(Rosier, 1992) for continuous asymptotically stable
homogeneous vector fields, can no longer be brought
into play.

The novel techniques that was developed in (Orlov,
2005) has established that the finite time stability of
a switched homogenous system persists regardless of
some inhomogeneous perturbations. In particular, it
has been shown that the inhomogeneous system (1)-
(5) is globally finite time stable whenever condition
(3) holds globally. The local version of this result is as
follows.

Theorem 1.Let a one link manipulator (1)-(3) be
driven by a switched controller (4), (5). Then the
closed-loop system (1)-(5) is locally finite time stable,
uniformly in the admissible uncertainties (2), (3).

Proofof Theorem 1 follows the line of reasoning used
in the proof of Theorem 4.2 of (Orlov, 2005). This
line is applicable to the closed-loop system (1)-(5) be-
cause the stabilizing controller (4), (5) consists of the
nonlinear damping−ωnom(y, ẏ, t), the homogeneous
switching part−asign(y)−bsign(ẏ) and the remain-
der−hy − pẏ that vanishes in the originy = ẏ = 0.
The detailed proof of Theorem 1 is nearly the same as
that of Theorem 4.2 of (Orlov, 2005) and it is therefore
omitted.

The qualitative behavior of the one link manipulator
(1)-(3), driven by the switched controller (4), (5), is as
follows. While approaching the originy = ẏ = 0, the
system trajectories rotate around it. Since by Theorem
1, the closed-loop system is locally finite time stable,
the switching times of the controller have a finite
accumulation point.

Thus, system (1)-(5) does exhibit Zeno behavior with
an infinite number of switches in a finite amount of
time. This system does not generate sliding motions
everywhere except the origin. If a trajectory starts
there at any given finite time, the so-called sliding
mode of the second order appears (Levant, 1993). In
a particular case, when the uncertaintyω(y, ẏ, t) =
ωun(y, ẏ, t) has no nominal part and the control gains
h, p are set to zero, the proposed control law (4)
degenerates to the well-known homogeneous twisting
algorithm (Fridman and Levant, 2002).



3. STABILIZATION OF UNDERACTUATED
MECHANICAL SYSTEMS

In the present section, the Zeno mode control syn-
thesis is developed for stabilization of underactuated
systems of the form

q̈ = M−1(q)[Bτ − C(q, q̇)q̇ −G(q)] (6)

z = Ω(q, q̇). (7)

In the above equation,q ∈ IRn is the joint position
vector,τ ∈ IRm, m < n is the input torque,z ∈ IRm

is the output vector,q̇ and q̈ are the velocity and
acceleration vectors, respectively,M(q) ∈ IRn×n is
the inertia matrix,C(q, q̇)q̇ represents centrifugal and
Coriolis terms,G(q) is the gravity vector, andB of
rankm is the input matrix that maps the torque input
τ of dimensionm to the joint coordinates space of
dimensionn.

Under certain conditions system (6), (7) hasm-vector
relative degree(2, . . . , 2)T at x = 0 and the distribu-
tion, spanned by the columns of the control matrix, is
involutive. Just in case, it can be represented, by means
of a nonlinear change of state coordinates and a feed-
back transformation (see (Byrnes and Isidori, 1991)
for details), in the form

ẋ = g(x, ξ, ξ̇)

ξ̈ = f(x, ξ, ξ̇) + u. (8)

If in addition, this system is locally minimum phase
and sufficiently smooth, it can locally be stabilized by
a Zeno mode controller similar to (4). Throughout, the
following assumptions are imposed on system (8).

(1) The functionsg(x, ξ, ξ̇) andf(x, ξ, ξ̇) are piece-
wise continuous in all the arguments, and in
addition, the functiong(x, ξ, ξ̇, t) is continuous
in (ξ, ξ̇) locally around(ξ, ξ̇) = 0 for almost all
x.

(2) Given piece-wise differentiable functionsξ(t), ξ̇(t)
of sufficiently small magnitudes, an arbitrary so-
lution of the system

ẋ = g(x, ξ(t), ξ̇(t)) (9)

is bounded on any finite time interval.
(3) The system

ẋ = g(x, 0, 0) (10)

has0 as a locally asymptotically stable equilib-
rium.

Solutions of the state and zero dynamics differen-
tial equations (8)-(10) with piece-wise continuous
right-hand sides, are defined in the sense of Filippov
(Filippov, 1988) as that of a certain differential inclu-
sion with a multi-valued right-hand side. Under As-
sumption 1 the existence of a solution (possibly non-
unique) of either equation with an arbitrary initial con-

dition is guaranteed by Theorem 8 of (Filippov, 1988,
p. 85).

Other assumptions are made for technical reasons.
Assumption 2 is introduced to avoid the destabilizing
effect of the peaking phenomenon and particularly
it holds whenever the functiong(x, ξ, ξ̇) satisfies a
corresponding linear growth condition inx (cf. that
of (Sussman and Kokotovic, 1991)). Assumption 3
means that (8), specified with the outputz = ξ, is
a locally minimum phase system. The role of this
notion is well-known from the theory of smooth fields
(Byrnes and Isidori, 1991) and it is now under study
for switched nonautonomous systems.

As in the manipulator case (1), system (8) is operating
under uncertainty conditions. The nonlinear gaing can
not destabilize the closed-loop system because of the
minimum phase hypothesis, which is why no more
information is required for this gain. The destabilizing
term

f(x, ξ, ξ̇) = fnom(x, ξ, ξ̇) + f b(x, ξ, ξ̇) (11)

is partitioned into a nominal partfnom, knownapri-
ori, and an uncertain bounded gainf b whose compo-
nentsf b

j , j = 1, . . . , m are locally upper estimated

|f b
j (x, ξ, ξ̇)| ≤ Nj (12)

by apriori known constantsNj > 0. Apart from this,
both functionsfnom andf b are assumed to be piece-
wise continuous.

Being inspired from the Zeno mode controller (4), (5),
the following switched control law

u(x, ξ, ξ̇) =−fnom(x, ξ, ξ̇)− αsign ξ

−βsign ξ̇ −Hξ − P ξ̇ (13)

with the parameter gains

H = diag{hj}, P = diag{pj},
α = diag{αj}, β = diag{βj} (14)

subject to

Nj < βj < αj −Nj ,

hj , pj ≥ 0, j = 1, . . . , m, (15)

is proposed to locally stabilize the uncertain system
(8), (11), (12) whose state(x, ξ, ξ̇) is available for
measurements. Hereafter, the notationdiag is used to
denote a diagonal matrix of an appropriate dimension;
sign ξ with a vectorξ = (ξ1, . . . , ξm)T stands for the
column vector(sign ξ1, . . . , sign ξm)T .

In what follows, the switched control law (13), (15)
is shown to drive the uncertain system (8) to the zero
dynamics manifoldξ = ξ̇ = 0 in finite time thereby
yielding desired stability properties of the closed-loop
system.



Theorem 2.Let Assumptions 1-3 be satisfied and let
the uncertain system (8), (11), (12) be driven by the
state feedback (13) such that condition (15) holds.
Then the closed-loop system (8), (13)-(15) is locally
asymptotically stable, uniformly in the admissible un-
certainties (11), (12).

Proof of Theorem 2 is similar to that of Theorem 5.1
of (Orlov, 2005) and it is omitted because of space
limitations.

Summarizing, the following Zeno mode stabiliza-
tion procedure is proposed for underactuated systems.
First, an output of the system is specified in such a
way that the corresponding zero dynamics is locally
asymptotically stable. Once such an output has been
chosen, the underactuated system is transformed into
the normal form (8), whose stabilization is achieved
by applying the Zeno mode controller (13), (15).

In the sequel, the effectiveness of the proposed pro-
cedure is illustrated in a simulation study of the Pen-
dubot stabilization.

4. CASE OF STUDY: PENDUBOT

A pendubot is a simple underactuated mechanical
manipulator, whose first link (shoulder) is actuated
whereas the second one (elbow) is not actuated (see
Fig. 1). The Pendubot stateq = (q1, q2)T is governed
by equation (6) subjectn = 2, m = 1 and specified
with (Utkin et al., 1999, p.55):

B =
[
1 0

]T
, M(q) =

[
m11 m12

m12 m22

]
=

[
Jm + J1 + m1l

2
1 + m2L1L1 m2L1l2 cos(q1 − q2)

m2L1l2 cos(q1 − q2) m2l
2
2 + J2

]
,

C(q, q̇) =
[

C11 C12

C21 C22

]
=

[
0 m2L1l2 sin(q1 − q2)q̇2

−m2L1l2 sin(q1 − q2)q̇1 0

]
,

G(q) =
[

G1

G2

]
=

[−g(m1l1 + m2L1) sin q1

−m2gl2 sin q2

]
.

(16)

By inverting the matrixM , the Pendubot equations
(6), (16) are simplified to

q̈1 = f1(q, q̇) +
m22

∆
τ

q̈2 = f2(q, q̇)− m12

∆
τ (17)

where

f1 =
m12(C21q̇1 + G2)−m22(C12q̇2 + G1)

∆
(18)

L1

L2

l1

l2

m1

m2

q1

q2

τ

Fig. 1. Schematic diagram of Pendubot.

f2 =
m12(C12q̇2 + G1)−m11(C21q̇1 + G2)

∆
(19)

and

∆ = m11m22 −m2
12 > 0 (20)

because the inertia matrixM is positive definite. The
physical sense of the parametersg, Jm, mi, li, Li, Ji

i = 1, 2 is given in Table I.

Table 1. Pendubot parameters.

Description Notation Value Units
lenght of link 1 L1 0.2032 m
lenght of link 2 L2 0.2540 m
center of mass 1 l1 0.1574 m
center of mass 2 l2 0.1109 m
mass of link 1 m1 0.132 Kg
mass of link 2 m2 0.088 Kg
inertia 1 J1 3.62× 10−3 Kg m2

inertia 2 J2 1.14× 10−3 Kg m2

motor inertia Jm 6× 10−5 Kg m2

gravity acceleration g 9.8 m/seg2

The Pendubot has four equilibria, one of them(q1, q2)
= (π, π) is stable and the others(q1, q2) = (0, π),
(q1, q2) = (π, 0), (q1, q2) = (0, 0) are unstable.
We are interested in the Zeno mode-based local sta-
bilization of the Pendubot around the upright position
(q1, q2) = (0, 0), the most difficult case for feedback
stabilization among all the equilibria.

Our study is confined to the case

γ =
m2l

2
2 + J2

m2L1l2
> 1. (21)

As reported in (Utkinet al., 1999, p. 58), under this
assumption the Pendubot motion, being driven along
the manifold

sin q2 + k1w + k2ẇ = 0 (22)

wherek1 > 0, k2 > 0,

w(q1, q2) = q2 − ϕ(q1 − q2), (23)

ϕ(ν) =



−ν − 2γ√
γ2 − 1

tan−1

(√
γ − 1
γ + 1

tan
(ν

2

))
,(24)

is locally asymptotically stable at the upright posi-
tion. Thus, system (6)-(16) becomes locally minimum
phase if the system output (7) is specified as follows

µ = sin q2 + k1w + k2ẇ. (25)

For later use, let us denote

A =
m2gl2
m2L1l2

, ν = q1 − q2, η =
1

γ + cos ν
, (26)

δ = η sin ν
[
(ẇ + γην̇)2 − γην̇2

]
+ Aη sin(q2), (27)

where

ν̇ = q̇1 − q̇2, η̇ = η2 sin(ν)(q̇1 − q̇2) (28)

and by virtue of (23), (24)

ẇ = q̇2 − η cos(ν)(q̇1 − q̇2). (29)

Then differentiating (22) along the solutions of (17)
yields

µ̇ = cos(q2)q̇2 + k1ẇ + k2δ, (30)

µ̈ = F (q1, q2, q̇1, q̇2) + u (31)

where

u = Φ(q1, q2, q̇1, q̇2)τ, (32)

F = cos q2f2 − sin(q2)q̇2
2 + k1δ

+k2 [η̇ sin(ν) + η cos(ν)ν̇] (ẇ + γην̇)2

+2k2η sin(ν)(ẇ + γην̇)(δ + γη̇ν̇)

−2γk2η sin(ν)η̇ν̇2 − γk2η
2 cos(ν)ν̇3

+Ak2η̇ sin(q2) + Ak2η cos(q2)q̇2

2γk2η
2 sin ν [ẇ + ν̇(γη − 1)] (f1 − f2),(33)

Φ = 2γk2η
2 sin ν [ẇ + ν̇(γη − 1)]

− 1
∆

m12 cos q2. (34)

Due to (28), (29),

Φ(q1, q2, q̇1, q̇2)|(0,0,0,0) 6= 0 (35)

which is why the locally minimum phase system (17),
(25) has relative degree 2 at the origin. Thus, the
Zeno mode control law (13) becomes applicable to
the stabilization of the Pendubot around its upright
position.

Remark 1.The applicability of Assumption 2 to sys-
tem (17), (25) is not studied here in details, but only

simulation evidences, demonstrating that this is indeed
the case, are presented.

While being specified for system (17), (25), the Zeno
mode control law (13), (15), corresponding to

m = 1, fnom = F, f b = 0, N1 = 0, H = 0, P = 0,

takes the form

u(q, q̇) =−F (q, q̇)− α1sign µ− β1sign µ̇ (36)

where the amplitudesα1 and β1 of switching are
positive constants subject to

α1 > β1, (37)

F (q, q̇) is governed by (33), andµ, µ̇ are viewed as
functions of (q, q̇), which are defined by relations
(25)-(30).

4.1 Simulation Results

In the simulation study, performed with SIMNON, the
Zeno mode-based controller

τ(q, q̇) =
u(q, q̇)
Φ(q, q̇)

, (38)

coupled to (36), (37), was applied to the Pendubot to
move it from a perturbed stateq1(0), q2(0) to the
inverted equilibrium pointq1 = 0, q2 = 0. Due
to (35), the resulting controller (36)-(38) is locally
bounded. In order to illustrate the size of the attrac-
tion domain of the controller the initial conditions
q1(0) = 0.5rad, q2(0) = 0.3rad for the simulation
were chosen reasonably far from the upright position
whereas the initial velocitẏq(0) were set to zero.

To make a physical sense the numerical simulation
addressed a real model, presented in (Utkinet al.,
1999). The values of the model parameters are listed in
Table I. For this set of the parameters restriction (21)
is satisfied withγ = 1.15.

Figs. 2 and 3 show simulation results with the con-
troller gainsα1 = 10, β1 = 1 and parametersk1 =
k2 = 0.174. The link positionsq1(t) and q2(t) are
shown in Fig. 2. The control torqueτ(t) is presented
in Fig. 3. From these figures, good performance of the
Zeno mode controller is concluded for local stabiliza-
tion of the Pendulum around the upright position.

5. CONCLUSIONS

Zeno mode-based control synthesis is developed to lo-
cally asymptotically stabilize underactuated mechani-
cal systems. The stabilizing strategy is to drive the sys-
tem to the zero dynamics manifold in finite time and
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maintain it there in spite of parameter uncertainties
and external disturbances. Desired robustness proper-
ties and asymptotic stability of the closed-loop system
are thus provided.

The proposed control synthesis presents an interesting
alternative to the standard sliding mode control tech-
niques. Although the resulting controllers do exhibit
Zeno modes with an infinite number of switches on a
finite time interval, however, they do not rely on the
generation of sliding motions on the switching mani-
folds but on their intersections. Performance issues of
the proposed synthesis procedure are illustrated in a
simulation study made for an underactuated two-link
inverted pendulum.
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