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Abstract: In this paper, the design of a fault detection filter for nonlinear systems
is presented. The nonlinear system is represented as a sequence of linear time-
varying approximations and at each linear approximation the design of an optimal
stochastic fault detection filter for linear time-varying systems is applied. The final
residual is primarily affected by a target fault and minimally by nuisance faults.
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1. INTRODUCTION

The study of fault detection and isolation (FDI)
methods for nonlinear systems has become of in-
creasing importance in the last few years. Early
FDI methods were focused on linear systems,
however the fact that all physical systems are
inherently nonlinear and that in many cases the
system cannot be accurately described by a linear
model made necessary the development of specific
fault detection methods for nonlinear systems.
Several approaches have been developed, some
of the methods include nonlinear state transfor-
mations of the nonlinear system into a required
form (Seliger et al., 1991) or the decomposition
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of the nonlinear system into one part affected
by the faults and another decoupled from them
(Yang and Saif, 1996). Alcorta and Frank (1997)
and Frank (1994) give a survey on observer-based
approaches to FDI for nonlinear systems. How-
ever, the approaches usually consider a specific
form of the nonlinear system, which limits the use
of general models. On the other hand, there are
well-known approaches in the study of FDI for
linear time invariant systems, such as the residual
generation approach and the unknown-input ob-
server approach, which separates the faults into
a target fault and several nuisance faults which
are unobservable to the residual. There are also
some attempts at studying fault detection meth-
ods for linear time-varying systems (LTV), such as
(Edelmayer et al., 1997) based on a time-invariant
representation of a LTI system corrupted by linear



time-varying parametric perturbations and (Xu
and Zhang, 2002) based on the design of an adap-
tive observer. Recently, a design which extends
the unknown input observer to the time-varying
case by designing a fault detection filter has been
proposed (Chen et al., 2003). Using this idea,
this paper deals with the design of a fault de-
tection filter for nonlinear systems by combining
the method of fault detection for LTV systems
and an iteration technique in which the nonlinear
dynamical system is represented as the limit of
a sequence of linear time-varying approximations
which converge to the solution of the nonlinear
system under a local Lipschitz condition (Tomas-
Rodriguez and Banks, 2003). This technique al-
lows the use of linear techniques without having to
locally linearize the nonlinear system and has been
previously applied in nonlinear control theory in
optimal control (Cimen and Banks, 2004), and
in the design of observers for nonlinear systems
(Navarro Hernandez et al., 2003) among others.

The paper is organized as follows: Section 2
presents the principles of the linear approxima-
tion scheme, Section 3 outlines the design method
of the fault detection filter for LTV systems. In
Section 4 the techniques are combined to design a
fault detection filter for nonlinear systems, Section
5 presents the convergence proof and Section 6
gives an example for a nonlinear system.

2. APPROXIMATION SCHEME

Consider a nonlinear control system written in the
following form,

ẋ = A(x)x + B(x)u, x(0) = x0 ∈ Rn (1)

and introduce the sequence of linear time varying
equations:

ẋ[0](t) = A(x0)x[0](t) + B(x0)u[0](t)

ẋ[i](t) = A(x[i−1](t))x[i](t) + B(x[i−1](t))u[i](t)

x[0](0) = x0 x[i](0) = x0 (2)

where i = 1, 2, ... is the approximation number. If
A(x) and B(x) are of appropriate dimension and
locally Lipschitz, the solution of the sequence (2)
converges to the solution of the original nonlinear
system (1)in a compact time interval. Details can
be found in Tomas-Rodriguez and Banks (2003).
The convergence rate of the sequence of LTV
systems to the nonlinear system depends on the
system, initial conditions and the specific control
problem. This subject is however still under study,
as the current results on the rate of convergence
are still quite restrictive.

Using this idea, a feedback control can be defined
as u[i](t) = −K(x[i−1](t))x[i](t) and

ẋ[i](t) = (3)

(A(x[i−1](t))−B(x[i−1](t))K(x[i−1](t)))x[i](t)

Then, by using the results in (Tomas-Rodriguez
and Banks, 2003), the system (3) converges if
A(x),B(x),K(x) are locally Lipschitz and u(t) =
−K(x)x(t) is a feedback control for the nonlinear
system (1).

Remark 1. If the nonlinear system is stable,
then the sequence of solutions (2) will converge
to the nonlinear solution on any compact time
interval [0, T ]. By taking T arbitrarily large and
the iteration number large enough (depending on
T ), then that solution will be arbitrarily close to
the equilibrium point.

3. FAULT DETECTION FILTER FOR LTV
SYSTEMS

This section briefly presents the design of the fault
detection filter for LTV systems proposed by Chen
et al. (2003). This design extends the results of
unknown input observers to the time varying case
by solving an optimization problem. The objective
of the filter is to detect a target fault while block-
ing nuisance faults in the presence of process and
sensor noises. The filter places the nuisance faults
into a minimal (C,A)-unobservability subspace
for time-invariant systems and a similar invariant
subspace for time-varying systems. The design is
mainly based on maximizing the transmission of
the target fault to the projected output error while
minimizing the transmission from the nuisance
faults by using a weighting factor and a projector;
obtaining a residual which is primarily affected by
the target faults. The filter can be robust with
respect to disturbances.

Consider a linear time-varying, uniformly observ-
able system,

ẋ(t) = Ax + Buu + Bww + F1µ1 + F2µ2

y(t) = Cx + v

where u is the control input, y is the measurement,
w is the process noise, v is the sensor noise, µ1

is the target fault and µ2 is the nuisance fault
containing all other faults to be blocked. F1 is the
target fault direction and F2 is the nuisance fault
direction. (Note that the dependance on time is
not written explicitly).

The objective is to find a filter gain L for the
observer



˙̂x = Ax̂ + Buu + L(y − Cx̂)

and a projector Ĥ for the residual

r = Ĥ(y − Cx̂) (4)

such that the residual is primarily affected by the
target fault and minimally by the nuisance fault,
process noise, sensor noise and initial condition
error. The initial state (x0) is a random vector
with variance P0 and µ1, µ2 and w are assumed
to be zero mean, white noises with power spectral
densities Q1, Q2, Qw and V , respectively, and are
uncorrelated with each other and with x(t0).

The error is

e(t) = Φ(t, t0)e(t0)

+
∫ t

t0

Φ(t, τ)(F1µ1 + F2µ2 + Bww − Lv)dτ

subject to

d

dt
Φ(t, t0) = (A− LC)Φ(t, t0)

where Φ(t0, t0) = I and the residual (4) is r =
Ĥ(Ce + v). Then, Chen et al. (2003) define a
cost criterion based on the projected output error
r = ĤCe by first defining

h1(t) , ĤC

∫ t

t0

Φ(t, τ)F1µ1dτ,

h2(t) , ĤC

∫ t

t0

Φ(t, τ)F2µ2dτ,

h3(t) , ĤC[Φ(t, t0)e(t0)

+
∫ t

t0

Φ(t, τ)(Bww − Lv)dτ ]

The cost criterion then is

J = tr { 1
γ

E[h2(t)h2(t)T ] + E[h3(t)h3(t)T ]

− E[h1(t)h1(t)T ]} (5)

where E[h1(t)h1(t)T ] is the transmission from µ1

to ĤCe, E[h2(t)h2(t)T ] the transmission from
µ2 to ĤCe, E[h3(t)h3(t)T ] the transmission from
w, v and e(t0) to ĤCe, and E[•] is the expectation
operator. e(t0) is a zero mean random vector with
variance P0 if x̂(t0) = E[x(t0)]. The objective
is to find a filter gain L and projector Ĥ which
minimize (5). The positive scalar γ is used as a
weight on the nuisance fault. The transmission of
the faults is also affected by the power spectral
densities Q1 and Q2 which are design parameters

and by Qw, V and P0 which can have physical
values. The filter is robust with respect to the
process and sensor noises and recovers the geo-
metric structure of the unknown input observer in
the limit as γ → 0. When it is not at the limit, the
filter is an approximate unknown input observer
and the nuisance fault is partially blocked, see
(Chen et al., 2003) for details and proofs.

The minimization problem can be rewritten as

min
L,Ĥ

tr[ĤC

∫ t

t0

Φ(t, τ)(L− PCT V −1)V (6)

(L− PCT V −1)T Φ(t, τ)T dτCT Ĥ + ĤCP (t)CT Ĥ]

subject to (3) and that Ĥ is a projector, where

Ṗ = AP + PAT − PCT V −1CP +
1
γ

F2Q2F
T
2

− F1Q1F
T
1 + BwQwBT

w , P (t0) = Po (7)

From (7), the optimal filter gain is

L = PCT V −1 (8)

By applying (6) to (8) and substituting Ĥ = ρρT ,
the minimization problem (6) reduces to

minρ tr
[
ρT CP (t)CT ρ

]

subject to ρT ρ = I. By adjoining the constraint
to the cost criterion, the first order necessary
condition is

CP (t)CT ρ = ρλ

and the solution of the optimal ρ depends on the
rank of Ĥ. If the projector is of rank one, then the
optimal projector is

Ĥ∗ = ρmρT
m

where λ1 ≥ λ2 ≥ . . . ≥ λm are the eigenval-
ues of CP (t)CT and ρ1, ρ2, . . . , ρm the associated
eigenvectors. The rank of Ĥ can also be chosen as
m−p2 where p2 = dimF2 are the number of large
eigenvalues near the limit when γ is small. Then
the optimal projector is:

Ĥ∗ = [ρmρm−1...ρp2+1][ρmρm−1...ρp2+1]T

4. FAULT DETECTION FILTER FOR
NONLINEAR SYSTEMS

In this section, the algorithm for the nonlinear
fault detection filter is presented, by combining



the design proposed by Chen et al. (2003) and
the approximation scheme for nonlinear systems
presented in (Tomas-Rodriguez and Banks, 2003).
Consider the following observable nonlinear sys-
tem subject to a target fault µ1 and a nuisance
fault µ2 which are unknown and arbitrary func-
tions of time.

ẋ(t) = A(x)x(t) + B(x)u(t) + F1(x)µ1(t)

+ F2(x)µ2(t);x(0) = x0

y(t) = C(x)x(t) (9)

and introduce the approximation scheme of Sec-
tion 2. For the first approximation,

ẋ[0](t) = A(x0)x[0](t) + B(x0)u[0](t) + F1(x0)µ1(t)

+ F2(x0)µ2(t)

y[0](t) = C(x0)x[0](t); x[0](0) = x0 (10)

and for i ≥ 1,

ẋ[i](t) = A(x[i−1](t))x[i](t) + B(x[i−1](t))u[i](t)

+ F1(x[i−1](t))µ1(t) + F2(x[i−1](t))µ2(t)

y[i](t) = C(x[i−1](t))x[i](t); x[i](0) = x0 (11)

Hence, the following sequence of linear observers
can be defined,

˙̂x
[0]

(t) = A(x0)x̂[0](t) + B(x0)u[0](t)

+ L[0](t)(y[0](t)− C(x0)x̂[0](t));

x̂[0](0) = x̂0

and for i ≥ 1,

˙̂x
[i]

(t) = A(x[i−1](t))x̂[i](t) + B(x[i−1](t))u[i](t)

+ L[i](t)(y[i](t)− C(x[i−1](t))x̂[i](t));

x̂[i](0) = x̂0

with residual

r[0](t) = Ĥ [0](t)(y[0](t)− C(x0)x̂[0](t))

and for i ≥ 1,

r[i](t) = Ĥ [i](t)(y[i](t)− C(x[i−1](t))x̂[i](t))

At each approximation, a filter is found, obtaining
then a sequence of fault detection filters which will
finally give a filter for the original nonlinear sys-
tem (9). To obtain the values of L and H at each
approximation, the design proposed by Chen et al.
(2003) is used, therefore, it is necessary to solve a

Ricatti equation at each LTV approximation. This
means that the solution will be suboptimal for the
original nonlinear system, in order to obtain an
optimal solution it is necessary to use Hamilton-
Jacobi methods as explained in Cimen and Banks
(2004). Despite this, the final filter will still be a
fault detector for the nonlinear system.

Using the ideas from Section 3, for the first
approximation it is necessary so solve

Ṗ [0](t) = A(x0)P [0](t) + P [0](t)A(x0)T

− P [0](t)C(x0)T V −1P [0](t)

+
1
γ

F2(x0)Q2F2(x0)T − F1(x0)Q1F1(x0)T

and for i ≥ 1

Ṗ [i](t) = A((x[i−1](t))P [i](t) + P [i](t)A((x[i−1](t))T

− P [i](t)C(x[i−1](t))T V −1P [i](t)

+
1
γ

F2(x[i−1](t))Q2F2(x[i−1](t))T

− F1(x[i−1](t))Q1F1(x[i−1](t))T , P [i](0) = P0

obtaining then, the following sequence of filter
gains. For the first approximation

L[0](t) = P [0](t)C(x0)T V −1;

L[0](0) = P0C(x0)T V −1

and for i ≥ 1

L[i](t) = P [i](t)C(x[i−1](t))T V −1;

L[i](0) = P0C(x0)T V −1

Now, to obtain the projector, consider the follow-
ing sequence

C(x0)P [0](t)C(x0)T ρ = ρλ

where λ
[0]
1 (t) ≥ λ

[0]
2 (t) ≥ . . . ≥ λ

[0]
m (t) are the

eigenvalues of C(x0)P [0](t)C(x0)T and the associ-
ated eigenvectors are ρ

[0]
1 (t), ρ[0]

2 (t), . . . , ρ[0]
m (t). An

optimal projector of rank 1 for the first approxi-
mation is

H [0]∗(t) = ρ[0]
m (t)(ρ[0]

m (t))T

and for i ≥ 1

λ
[i]
1 (t) ≥ λ

[i]
2 (t) ≥ . . . ≥ λ

[i]
m(t) are the eigenvalues

of C(x[i−1](t))P [i](t)C(x[i−1](t))T and the associ-
ated eigenvectors are ρ

[i]
1 (t), ρ[i]

2 (t), . . . , ρ[i]
m(t). The

projector of rank 1 for the approximations i ≥ 1
is defined as



H [i]∗(t) = ρ[i]
m(t)ρ[i]

m(t)T

5. CONVERGENCE PROOF

Consider the following nonlinear system subject
to a fault µ1(t) with direction F :

ẋ(t) = A(x)x(t) + B(x)u(t) + F (x)µ1(t); x(0) = x0

y(t) = C(x)x(t)

this can be rewritten as

ẋ(t) = A(x)x(t) + G(x)g(t); x(0) = x0

y(t) = C(x)x(t) (12)

where

G(x) =
[
B(x) F (x)

]
g(t) =

[
u(t)
µ1(t)

]

then, from the results in (Tomas-Rodriguez and
Banks, 2003), the sequence of approximations
{x[i](t)} is a Cauchy sequence that will con-
verge uniformly on [0, τ ] for τ ≥ 0 in the space
C([0, τ ],Rn) to the real solution of the nonlinear
system (12) if A(x), G(x), C(x) are locally Lip-
schitz.

In the same way, the sequence of approximations
{x̂[i](t)} is also a Cauchy sequence; since the ma-
trices L[i](t) of the linear observer approximations
depend on the matrices A(x[i−1]),G(x[i−1]) and
C(x[i−1]), which are locally Lipschitz in x[i−1].
The proof that the proposed filter design for LTV
systems behaves in the limit as an unknown in-
put observer is found in (Chen et al., 2003) and
(Chung and Speyer, 1999). Then, at each ap-
proximation there exists a residual which is more
sensitive to the target fault, defined as

r[i](t) = Ĥ [i](t)C(x[i−1](t))(x[i](t)− x̂[i](t))

where {x[i](t)} and {x̂[i](t)} are Cauchy se-
quences, and ‖x(t) − x[i](t)‖ and ‖x̂(t) − x̂[i](t)‖
are bounded. Then, at the final approximation as
{x[i](t)} converges to the real states, and {x̂[i](t)}
to the estimates of the nonlinear system, a filter
for the nonlinear system is achieved with a resid-
ual r[i](t) which maximizes the effect of the target
fault and minimizes the effect of the nuisance
fault.

6. EXAMPLE

Consider the nonlinear system
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Fig. 1. Estimation error

A =



−8 x2 0
x3 −5 x1

−x2 x3 −x2


 , C =

(
0 1 0
0 0 1

)

F1 =




1
0
1


 , F2 =




5− 2cos(x1)
1

1 + sin(x2)


 (13)

where F1 is the target fault direction and F2

the nuisance fault direction. The filter is solved
with Q1 = 1, Q2 = 1, V = I and P0 = I for
t ∈ [0, 20]. There are no process and sensor noises.
The faults are pulses of magnitude 3 that occur
from t=5 sec to t=5.5 sec. The initial conditions
of the state and estimates are x0 = [.2, .2, .4]
and x̂0 = [.5, 0, .2] respectively and the weighting
factor is γ = 10−4 .

The nonlinear system was represented as a se-
quence of LTV equations of the form (10,11) and
a fault detection filter was designed for each LTV
system. The number of iterations in this example
was 25. Figures 1 and 2 show the estimation error
and residual respectively subject to different fault
cases at the final approximation. As expected, the
residual is primarily affected by the target fault.
Figure 3, shows the norm of the residual due to
the nuisance fault at different approximations. As
the number of approximations is increased, it is
ensured that the residual is a result of the faults
in the nonlinear system, as the solution of the
approximations converges to the solution of the
nonlinear problem. Although the above example
does not come from a practical situation, this
technique can be applied to nonlinear systems
such as the bioreactor studied before by Gauthier
et al. (1992) and Xu and Zhang (2004) and other
systems with practical interpretations.
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Fig. 2. Time response of the residual
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7. CONCLUSIONS

This paper introduces a new technique to design
a fault detection filter for nonlinear systems based
on the replacement of the nonlinear system by
a sequence of linear time-varying approximations
and the design of an optimal stochastic fault de-
tection filter for LTV systems which approximates
the unknown input observer in the limit. The
condition required here is very mild, i.e. a local
Lipschitz condition, which is necessary even for
uniqueness of solutions of differential equations
and therefore is satisfied in many engineering
problems. The authors are also exploring methods
to be able to apply this technique even if the
system does not satisfy the Lipschitz condition.
Once the sequence of LTV systems is obtained, the
filters at each approximation are designed solving
a minimization problem and the filter at the final
approximation represents a filter for the nonlinear
system. The example shows that the norm of the
residual obtained from the design was primarily
affected by the target fault and minimally by the
nuisance one.
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