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Sergej Čelikovský ∗∗∗,2 Javier Ruiz-León ∗∗

∗ Czech Technical University, Faculty of Electrical

Engineering, Department of Control Engineering,
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Abstract: The aim of this paper is twofold. It provides another option how to obtain
a universal easily implementable method for the solution of the regulator equations
using the FEMLAB package. The regulator equation originates from the output
regulation problem. The main idea is making a slight change of the regulator
equation. It is then solved using the finite-element method. Some theoretical
aspects concerning solvability of the equations and convergence to the original
problem are introduced. Secondly, to demonstrate viability of our approach, the
results were applied to the real-time control of a gyroscope. Both simulations and
real-time laboratory experiments are included. Copyright c©2005 IFAC
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1. INTRODUCTION

The problem of asymptotic reference tracking of a
nonlinear system in the presence of disturbances is
one of most exciting problems of the recent control
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theory. If the reference input and disturbances are
generated by an autonomous system the problem
is called nonlinear output regulation problem (al-
ternatively, nonlinear servomechanism problem)
(Isidori and Byrnes, 1990). The additional au-
tonomous system that generates the reference is
called as the exogenous system (exosystem). The
problem described above will be referred to as the

output regulation problem.

The classical output regulation was extensively
studied in (Francis and Wonham, 1976; Fran-



cis, 1977) for linear systems. For nonlinear sys-
tems, the problem was first studied in (Hepburn
and Wonham, 1981), and solutions to the output
regulation of nonlinear systems have been pre-
sented in (Huang and Rugh, 1990; Isidori and
Byrnes, 1990) using “full information” which in-
cludes the measurements of exogenous signals as
well as of the system state. The necessary and
sufficient conditions for the existence of a local full
information solution of the classical output regu-
lation problem are given in (Isidori and Byrnes,
1990; Huang and Rugh, 1990); they basically
mean that the linearized system is stabilizable
and there exists a certain invariant manifold. The
classical output regulation via error feedback has
been solved in (Byrnes et al., 1997; Isidori, 1995)
by application of system immersion technique.
The plant uncertainty parametrized by unknown
constant parameters is treated as a special case
of exogenous signals and the solution, extended
from the error feedback regulation, is referred to
as the structurally stable regulation in (Byrnes et

al., 1997).

The basic approach, introduced by (Isidori and
Byrnes, 1990), uses the solution of the so called
regulator equation. Its solution is obtained off-
line since it is based on the model of the plant
and on the exosystem only. However this equation
is in fact a system of partial differential equa-
tions (PDE) combined with algebraic restrictions.
Solvability of such systems of equations is still a
complex issue with a number of open problems.
Moreover the regulator equation does not fit into
the usual framework of partial differential equa-
tions - it is a first-order problem on the whole
space Rn (n being the number of independent
variables which is equal to the dimension of the
exosystem) with singularity in its coefficients.

The results concerning solvability of the regulator
equation that exist so far are based on a geo-
metrical approach and require a special structure
of the controlled system. The most simple situ-
ation is when both the controlled plant and the
exosystem are hyperbolically minimum phase, see
(Isidori and Byrnes, 1990). (Huang, 2003) shows
that the regulator equation can be reduced to
the partial differential equation part for a quite
general class of systems together with algorithms
for the solution of this PDE. Nonetheless these al-
gorithms require laborious symbolic computation
and are not easy to implement as an universal al-
gorithm. This is because they are based on an un-
determined power series technique (Huang, 2000;
Huang, 1995). Universal algorithms for the solu-
tion of the regulator equation based on the finite-
element method were introduced in (Čelikovský,
Rehák, 2004a; Čelikovský and Rehák, 2004b). The
difficulties met while solving the regulator equa-
tion were overcome by adding an additional term

in (Čelikovský, Rehák, 2004a) while the satisfac-
tion of the algebraic equation is approximated by
numerical minimization of a certain functional in
(Čelikovský and Rehák, 2004b).

The aim of this paper is twofold: first, a further
variant of an universal algorithm for solving regu-
lator equation is provided. This algorithm does
not refer to a particular structure of the con-
trolled system. Instead it uses a ”regularization”
of the algebraic equation by adding a small term
containing first derivative with respect to time
of the control. The regulator equation is then a
system of first-order PDE’s which can be solved
by the finite-element method. The package FEM-
LAB was used for solving this equation. Some
results concerning solvability of such systems are
presented. Secondly, the control algorithm is ver-
ified on the task of control of a real system - a
model of gyroscope. Simulations of the controlled
gyroscope and real-time results are presented to
demonstrate suitability of this approach.

The paper is organized as follows: some prelim-
inary facts are presented in the second section.
In the third section, the algorithm is introduced
in detail. Section 4 contains a brief description of
the model of the gyroscope while the simulations
as well as the real-time results are contained in the
fifth section. Concluding remarks are collected in
the final section.

2. THE OUTPUT REGULATION PROBLEM

At this stage some facts on nonlinear output reg-
ulation problem are recalled (Isidori and Byrnes,
1990; Huang, 2000; Huang, 1995). Consider the
plant

ẋ = f(x(t)) + g(x(t))u(t) + p(x(t))v(t))
y(t) = h(x(t)),

(1)

where sufficient smoothness of the vector fields
f, g, p and row functions of h is assumed. Further,
x(t) ∈ Rn is the state, u(t) ∈ Rm is its input,
y(t) ∈ Rp its output and w(t) ∈ Rν is the so-
called exogenous signal. This signal is generated
by the so-called exosystem which is supposed to be
known and linear, i.e. for a known (µ×µ)-matrix
S and a known (ν × µ) matrix Q the exosystem
is given by v̇ = Sv, w = Qv.sometimes called
neutral stability. Thereby, exogeneous signal is
used to describe both reference to be tracked and
undesired disturbance to be rejected. This leads
to the output regulation problem, which may be
tackled by various kind of feedback compensators.

The full information output regulation prob-

lem (full information: all the states are measured,
hence no observer necessary) consists in finding
the feedback compensator u = α(x, v) such that



(1) if no exogenous signal is present the equi-
librium x = 0 of the controlled system is
exponentially stable

(2) there exists a neighborhood U ⊂ Rn+µ of
(0, 0) such that for each initial condition
(x(0), v(0)) holds

lim
t→+∞

(h(x(t)) − w(t)) = 0.

This problem requires a solution of the regulator
equations

vS
∂x(v)

∂v
= f(x(v)) + g(x(v))u(v) (2)

together with the conditions

h(x(v)) = w, and x(v) = 0 for v = 0. (3)

for the unknown functions x(v), u(v).

Then the control scheme might be expressed in the
form: u(t) = −K(x(t) − x(v(t))) + u(v(t)). Here,
the meaning of the variables is as follows

• u(t) is the control at the time t,
• v(t) is the state of the exosystem at the time
t,

• x = (x1, x2)
T is the state of the system (1),

• v(t) is the state of the exosystem,
• x(v), u(v) is the solution of the system of

equations (2),
• K is a matrix so that u = −Kx is a stabi-

lizing feedback for the approximate lineariza-
tion of the system (1).

3. THE CONTROL

The system of the regulator equations possesses
two features that make it difficult to handle.
First one sees the system is a set of algebraic-
differential equations. On the other hand there is
no differential equation for the control u. The idea
how to solve the system is to replace the algebraic
condition (3) by a differential equation

εu̇ = ϕ(x, u, v) (4)

with a small constant ε. The most natural choice
of the function ϕ could be

ϕ(x, u, v) = h(x(v)) −Qv.

However this choice causes several difficulties as
will become apparent below.

The complete system of equations is then

ẋ= f(x) + g(x)u (5)

εu̇= ϕ(x(v), v, u) (6)

This system is singularly perturbed (Tichonov, et

al., 1980; Vasil’eva, Butuzov, 1973). This means

if the parameter ε is replaced by zero the equa-
tion changes the type, namely from a differential
equation into an algebraic one.

Obviously if ε → 0 then the equation (4) turns
into (3). Nevertheless it is far from being clear
that this condition guarantees also convergence of
the obtained solutions to a limit. In the following
text we attempt to give some conditions of con-
vergence.

Several results concerning solvability of the set of
singularly perturbed equations are contained in
(Tichonov, et al., 1980; Vasil’eva, Butuzov, 1973;
Artstein, 2002). The major result (fitted to the
above control problem) is cited here.

Theorem 1. Let the following assumptions on
the system (5) hold:

(1) The function u : C → R such that 0 =
ϕ(x, v, u) is continuous on an open neighbor-
hood C of x(0).

(2) For each x ∈ C the point y(x) is a lo-
cally asymptotically stable equilibrium of the
equation

du

ds
= ϕ(x, v, u). (7)

(3) The solution of the equation (7) is uniquely
determined by the initial conditions.

(4) The initial condition y(0) is in the basin
of attraction of y(x) where y(x) solves the
equation (7) with the initial condition x(0).

(5) The equation

dx

dt
= f(x, y(x)), x(0) = x0

has a unique solution x0.

Then the solutions of the perturbed system (5)
converge to the solution of the equation (1) if
ε→ 0.

A condition that guarantees the solution y(x) to
be an asymptotically stable equilibrium can be
found in (Tichonov, et al., 1980). It requires valid-
ity of the inequality ∂ϕ

∂u
< 0 (consult (Tichonov, et

al., 1980) for details). Nonetheless this condition
excludes the most natural choice of the function

ϕ : ϕ(x(v), v1, u(v)) = h(x(v)) −Qv. (8)

Unfortunately the natural choice (8) does not
admit to apply another results. The problem is
that the system (5) together with the condi-
tion (8) build up an index 2-algebro-differential
equation. For example the method described in
(Khalil, 1987) seems not to be applicable.

This yields the set of center-manifold equations

vS
∂x1(v)

∂v
= f(x(v)) + g(x(v))u(v))

εvS
∂u(v)

∂v
= ϕ(x(v), u, v)

(9)



Fig. 1. The gyroscope

The system of equations is defined on the whole
space Rn. Since the solution cannot be found
exactly in general one has to apply a numeri-
cal method. Due to this one must restrict the
domain where the system is solved such that
all the trajectories of the exosystem which will
be computed in future lie in the restricted do-
main. However another problem appears. Having
restricted the domain an ”artificial” boundary
appears. Some numerical software packages allow
leaving the boundary conditions undefined. The
condition xi(0) = 0, u(0) = 0 is satisfied if for
example the following condition holds:

0 = f(x) + g(x)u, 0 = ϕ(x, 0, u) ⇒ x = 0, u = 0.

The remaining point is to find a stabilizing state
feedback matrix K. Its choice does not influence
the design of the feedforward above.

4. THE GYROSCOPE

Gyroscopes are used to measure the angular move-
ment with respect to a fixed structure, and are a
key component of plane automatic pilots, rocket
guidance systems, spatial vehicle altitude systems,
navigation gyrocompasses, etc. (Cannon, 1967).
Regarding previous works on the control of gy-
roscopes, in (Ruiz-León et al., 2002) H2 and H∞

techniques are applied to the real-time of a gyro-
scope using a polynomial approach.

The system considered in this work is a gyroscope
of two axes, shown schematically in Fig. 1, which
is a lab experiment developed by Quanser Inc.
(see www.quanser.com). The gyroscope consists
basically of the following components: a support
plate holding the gyro module with a rotor which
rotates at a constant speed, its movement being
produced by a DC motor, sensors for the angles
α and ψ, and a data acquisition card connecting
the gyroscope to a computer.

The equations describing this system, obtained
from the dynamics of the system and the physical
parameters, are as follows

a1α̈+ a2ψ̇ cosα+ a3ψ̇
2 sinα cosα = a4 tanα

b1ψ̈ + b2 cos2αψ̈ + b3 sin2αψ̈ + b4 α̇ cosα

+b5 ψ̇α̇ sinα cosα = b6u+ b7ψ̇.

(10)

Thee angle α defines the angular position of the
structure with the rotor with respect to the gyro
module, angle ψ is located between the gyro
module and the support plate, and the control
input u is the voltage applied to the DC motor.

The constants ai, bi were found by identification.
Their values are as follows:

a1 = 0.005443, a2 = 0.47174, a3 = −0.0004879,
a4 = 2.461092, b1 = 0.002, b2 = 0.000847,
b3 = 0.001335, b4 = −0.4717

Converting the equations (10) into a system of
first order and introducing the notation

ψ = x1, ψ̇ = x2, α = x3, α̇ = x4

one obtains

ẋ1 = x2

ẋ2 =
a4

a1

tanx1 −
a2

a1

x4 cosx1 −
a3

2a1

x2
4 sin 2x1

ẋ3 = x4

ẋ4 =
b6u+ b7x4 − b4x2 cosx1 −

b5
2
x4x2 sin 2x1

b1 + b2 cos2 x1 + b3 sin2 x1

(11)

The position of the plate is considered as the
output. Thus the first two equations express the
zero dynamics. The system is not minimum phase.
Our task is to design a control so that the output
tracks the trajectory x3 = k sin t, k ∈ R. This
corresponds to the case if the exosystem were

v̇1 = ωv2, v̇2 = −ωv1. (12)

The algebraic condition then reads 0 = v1 − x1.

ω(v2
∂x1

∂v1
− v1

∂x1

∂v2
) = x2

ω(v2
∂x2

∂v1
− v1

∂x2

∂v2
) = F1

ω(v2
∂x3

∂v1
− v1

∂x3

∂v2
) = x4

ω(v2
∂x4

∂v1
− v1

∂x4

∂v2
) = F2

(13)

where

F1 =
a4

a1

tanx1 −
a2

a1

x4 cosx1 −
a3

2a1

x2
4 sin 2x1

F2 =
b6u+ b7x4 − b4x2 cosx1 −

b5
2
x4x2 sin 2x1

b1 + b2 cos2 x1 + b3 sin2 x1

together with the algebraic condition. This condi-
tion is replaced by a perturbed equation

εu̇ = v1 − x1. (14)
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Fig. 2. The Simulink simulation - the output

This equation does not satisfy the stability con-
dition from the Theorem 1. The additional equa-
tion to the system of the regulator equation is
εω(v2

∂u
∂v1

− v1
∂u
∂v2

) = v1 − x1The system of equa-
tions was numerically solved using the finite-
element method with ε = 10−6.

The software package FEMLAB was used for the
solution. This is a Matlab-compatible PDE solver.
Besides the ability to cooperate with Matlab it
contains fairly powerful algorithms for the solu-
tion of quite general PDE’s which was of a great
advantage for our purpose. The equations were
solved on a circle centered at the origin and with
radius 2. This was sufficient for the evaluation of
the trajectory since the maximal amplitude was 1.
FEMLAB enables to leave some boundaries with
undefined boundary condition which was used
here.

At the end the matrix K providing the stabilizing
feedback control was designed as follows: K =
(−26.8688,−0.1360,−3.1623, 2.5637).

5. SIMULATIONS AND REAL-TIME
RESULTS

Numerous simulations were carried out on the
described system as well as on its Simulink model.
The task was to track the trajectory w(t) =
0.3 sin t by the plate, this means, by the state x3.
First, the designed control scheme is applied to
the model of the gyroscope using the Simulink
diagram. The output (the state x3) together with
the reference is shown in Fig. 2. The solid line is
the output while the dashed line is the reference
signal r(t) = 0.3 sin t. The initial conditions for
this simulation as well as for the real-time results
(see below) were equal to 0.

The next step is to apply the designed control
scheme to the physical system in real time. The
diagram is shown in 3. The derivatives of the
angles (state variables x2 and x4) are obtained
from the corresponding angles using a derivative

Fig. 3. The Real-time Workshop scheme of the
gyroscope
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Fig. 4. The trajectory x3(t) and the reference

function from Matlab, since the values of these
variables are not available from the physical sys-
tem. Additionally, to avoid highly changing values
of the outputs of the derivative blocks due to
introduced noise, a low-pass filter is also used to
smooth the signals. Applying the designed control
scheme in real time to the physical system, the
support plate of the gyroscope rotates relative
to the gyro module describing a sinusoidal signal
with approximate amplitude of 0.3 rad (16.8 de-
grees) as expected. The output of the gyroscope
in real-time is shown in 4, as well as the reference
signal generated by the exosystem. It can be seen
that the output of the system is very similar to
the reference signal, showing a satisfactory per-
formance of the control scheme in real-time. The
error (the difference of these two signals) can be
seen in figure 5. All the states of the gyroscope are
depicted in figure 6. The upper subplot shows the
states x1 and x2, also the position and the velocity
of the gyro module. The lower subplot shows the
position and the velocity of the plate (denoted by
x3, resp. x4).

6. CONCLUSION

A method for solving the regulator equations
was presented. This system contains an algebraic
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Fig. 6. The state of the gyroscope

equation. The method presented here is based on
adding a term that converts an algebraic equation
into a differential one. Nonetheless the system
obtained is singularly perturbed. Conditions of
solvability are presented. The method was applied
to the control of a model of a gyroscope. Extensive
simulations were carried out. Although the real-
time results are not as perfect as in the simula-
tions, which is quite normal, we consider them
to be satisfactory. The discrepancy between the
output of the system and the reference signal can
be due to a number of factors. For instance, the
fact that the derivatives of the angles are approx-
imated by a Matlab function instead of using the
real values, which are not available, introduces a
considerable source of error. Some other aspects to
be considered are non-modelled dynamics, errors
in the measurement of the signals, etc. A detailed
study of these phenomena as well as the design of
techniques to eliminate them remains a challenge
for the future work.
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