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Abstract: This paper is devoted to the problem of estimation of parameters for linear multi-
output models with uncertain regressors and additive noise. The uncertainty is assumed
to be described by intervals. Outer-bounding interval approximations of the non-convex
feasible parameter set for uncertain system are obtained. The proposed method is based on
the calculation of the interval solution for an interval system of linear algebraic equations
and provides the parameter estimators for models with large humber of measurements.
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1. INTRODUCTION make estimation intractable especially in the multidi-
mensional case. The goal of the paper is to construct

The set-membership estimation framework for uncer- an e_f'fective intery al parameter estimator for uncertain
tain systems has attracted much attention during themultl-output static system that can be used with large
past few decades. It is an alternative to the stochastic>®' of data.
approach where some prior information on the sta- Consider a linear regression model under interval un-
tistical distribution of errors is needed, because only certainty

bounds on uncertainty in system parameters and sig-

nals are required. This assumption is often much more y=Cx+w, @)
qcceptable in practice. yan(_)us types of compact Setswherex € RN is an unknown parameter vectgrz R™
(intervals, polytopes, ellipsoids, etc.) are usually used

mxn
to characterize these bounds. They are called the mem£jenOtes avector of results of measuremenisR

; . d ; is a matrix of regressors and € R™ is an unknown
bership set constraints on uncertain variables. .
vector of measurement errors. The classical param-

The parameter estimation problem for uncertain dy- eter bounding approach is based on the assumption
namic systems is one of the most natural in this con- that matrixC is known precisely while vectow is

text. The problem is to determine bounds or set con-bounded and lies in the bow € [w,W|, wherew
straints on system parameters based on output meaand W are known. The sequence of measurements
surements, the model structure and bounds on uncery, ...,ym then provides a convex polytope in the pa-
tain variables. In this paper we focus on the so-called rameter vector space. A number of methods has been
interval type of uncertainty. This means that each com- developed to characterize this polytope or to construct
ponent of an uncertain vector or matrix is assumed the techniques for outer-bounding approximation of it
to belong to a known finite interval. Although the (Kostousova, 1998; Kurzhanskii and Valyi, 1997; Mi-
description is natural and simple (Jaulat,al,, 2001), laneseset al, 1996; Norton, 1994, 1995; Walter and
combinatorial difficulties may become so severe as to Piet-Lahanier, 1989; Walter, 1990).



The present paper deals with more general problem [\
where the matrix of regressors is also uncertain, i.e. AR

C € C, andC € IR™" is an interval matrix (the stan- [ 3

dard notationTR™" or IR" indicates the space of spotok 3

all interval m x n-matrices om-dimensional interval Lo o

vectors respectively). This situation arises in many .- S

real-life problems when we do not have complete in- BEREE D

formation concerning the plant. Furthermore, weakly o ;

non-linear systems can be treated in the same manner S T ]
if non-linearity is replaced by uncertainty. Particular ‘ ‘ N
cases of this problem have been considered in the oo s
literature (Cerone, 1993; Norton, 1999; Walter, 1990).
The presence of matrix uncertainty in the model leads
to serious difficulties due to the non-convexity of
the resulting set constraints. Ellipsoidal techniques, We look for an interval vectoX € IR" (preferably of
see (Chernousko and Rokityanskii, 2000; Polyak, Mminimal size) containing the intersectio® M X.

al., 2004), were applied to state and parameter es-
timation for linear models with matrix uncertainty;
the non-convexity of reachable and feasible param-
eter sets was pointed out. The main purpose of this . . .
article is to apply an interval technique to parameter The single-measurement case< 1) ISa gpod partic-
estimation. The approach proposed in previous papeluIar example for the parameter estimation. Zeor
(Polyak and Nazin, 2004) for calculating the inter- the scalar model

val solution of linear interval systems of equations is y=(c+Ac) x+w (5)
taken as a basic tool.

Fig. 1. Single-output interval param. bounding.

3. SCALAR OBSERVATION

with x e R", y € R, ||Ac||« < € and|w| < J can be
explicitly rewritten as

2. PROBLEM STATEMENT Xp={xeR": ly—c'x <¢|x|1+5}, (6)

where ||X]|l1 = Y., |x|. Figure 1 depicts a typical
shape ofX;, which is non-convex for ang > 0 (the
region between two solid polygonal lines). This set
y= (C+AC)x+w, %) reduces to a strip as — 0. However it is convex
; n k _
wherex € R", y € R™ C € R™" andw € R™. The in each orthant olR". Let E* be thek-th orthant of

; the vector spac&k = 1,...,2". If x € EX for any fixed
number of measurements is usually much larger than ; . . L
: . numberk, the right-hand side of the inequality in (6)
the dimension of the parameter vector, s> n.

becomes a linear function and therefotg\EX is a
Assume
convex set.

Consider a multi-output model with measurement
noise and uncertainty in the matrix of regressors

[AC|w <&, |W[e <. ®3) _ N
The infinity norms of matrices and vectors are equal 1 he sSmallest interval vectof containingXo (X, can

to the maximal absolute value of their elements, i.e. € found by solving a linear programming problem in
each orthant oR". Indeed, the vectas® = signx for

1AC][e =  max [(AC)ij|,  [IW]leo = l'g'é)rﬂwi - (4 anyxe EXis uniquely defined with elemens such
1<j<n that|sf| = 1. Thus
Inequalities in (3) describe a particular case of interval n
uncertainty when all components of uncertain matrix XlﬂEk = {x: ly—c'x <e leaé<+ 5} @)
AC or uncertain vectow have the same bounds. Ma- i=
trix C, vectory and scalars, 4 are assumed to be is a convex set given by linear constraints. Denote by
known. All vectorsx € R" satisfying (2) under the el the j-th ort of R", j = 1,...,n. Then thej-th lower
constraints (3) form théeasible parameter set and upper bounds on the intersectig§ X, N EX are
calculated by linear programming as

X={xeR": y=(C+AC)X+W,

k _ i T a
Xi = ar min _ xe
|ACllo < &, Wi < 8} A7 emanes -
Assume thak € Xg, whereXg € IR". The initial ap- le( = afgxex er}Xﬂ EkXT917
proximationXo should be taken large enough to guar- or
antee inclusion of all parameter vectors of interest. yance Xk — ([XILX*E]W’[XE’@)T gives an interval

The problem is to construct a more accurate outer- St - K
bounding interval approximation for the vectorin vectorthatis the minimal box containitg (1 X1 1E".

accordance with the large number of measurementsNotice however that the intersection of the Xgt) Xy
Y1,.--,Ym @nd model structure (2)—(3). In other words, with some orthants may be empty. The calculations in



these orthants can obviously be omitted as far as thethe smallest interval vectoX* containing all possi-
linear programming problem (8) turns out to become ble solutions (11). In other words, we want to em-
infeasible. bed the solution seX into the minimal box inR".

e K K. This problem is known to be NP-hard (Kreinovich,
Further, letk = {k: XoﬂxlﬂE # 0}. Then{E . et al, 1993) and complicated from a computational
k € K} represents a family of orthants containing viewpoint for large-scale systems. The paper by Oettli
XoNX1. Checking all orthant&X such thak € K we P 9 y ) paper by

: . ; c K Ej and Pr_ager (1964) shows how mult_iple_ linear pro-
obtain the inclusiorXo(1X1 € Ukek X™. Finally, take i "can be used to obtak: this line of re-

X = min{x}(}, X = max{ xT‘}, i=1..,n (9 search was continued in (Cope and Rust, 1979; Rust
T kKA ke and Burrus, 1972). Iterative approaches have been es-
X = ([¥1, %], ..., %2, %])T gives the optimal interval  tablished at this context as well as direct numerical
approximation oo X1. methods that provide an over-bounding %f, see
monographs (Higham, 1996; Neumaier, 1990) and pa-
Example 1.Let Xo = ([-1,4,[-05,5))T andy=0,  pers (Rohn, 1989; Shary, 1995).
c= (1,17, e = 6 =05. The setX; = {x € R?: _ _ _ . _
2x1 + Xo| < |xa| + [%2| + 1} is shown on Figure 1 In this section we briefly deS(_:nbe aS|mpI_e approach
(shaded region). The auxiliary interval vectox&  Proposedin (Polyak and Nazin, 2004) for interval ap-
are found via linear programming according to (8) Proximation of the solution set. Instead of employing

in each orthanEX, k = 1,....4 (bold boxes). Then linear programming in each orthant it is suggested to
X = ([-1,2.5] [—O.’5 4})T.7 ’ deal with a scalar equation. This method is based on

Rohn’s result (Rohn, 1989) and simplifies his algo-
rithm. In order to find the optimal interval estimaXé
In the multi-output case, one can consider the scalaryf the solution selX, all vertices of its convex hull
observations recursively and apply the above linear cony should be obtained. The search of each vertex
programming procedure. However this technique be-js yia the solution of a scalar equation. In the case of
comes unsuitable for models with a large number of large-scale systems we also provide a simple and fast

measurementst(> n). The main idea of the present procedure for over-bounding of the optimal interval
paper is to consider blocks of measurement equa- gg|ytion.

tions in (2) and to treat each of them as a system of

linear algebraic equations under interval uncertainties.

A simple algorithm to obtain an interval solution for 4.1 The solution set

this system is described in the next section.

A detailed description of the solution set for the linear
interval systems was given in the pioneering work by
Oettli and Prager (1964) for a general situation of
interval uncertainty. In our case their result is reduced
as follows.

4. INTERVAL SYSTEM OF LINEAR
ALGEBRAIC EQUATIONS

Let C € R™", i.e. the number of parameters is equal
to the number of observations. Then rewrite (2) in the

form Lemma 1.The set of all admissible solutions of the

(A+DA)x= b+ Ab (10) system (10) is the non-convex polytope:

with A=C, b=y, AA=AC and Ab = —w such X={xeR": ||Ax=blo <g[X1+3}. (12)
that ||AA||» < €, ||Ablle < &. The calculation of the

interval solution for the square interval system of This result also follows from (6). The s&t remains
equations (10) is a challenging problem in numerical ounded as long as the interval matAxis regular.
analysis and robust linear algebra. This problem wasThjs regularity is characterized by a nonsingularity

first considered at 1960-th by Oettli and Prager (1964). yadius. For the interval familyA this radius is equal
Since then, the problem has attracted much attention,

and was developed in the context of the modelling of (A) = 1
uncertain systems. PV = ATy

Assume that the matrix familx = {A+AA: || AA]jw < see .(Polygk, 2003) for dgtails._RecaII that for any
g} € IR™™ is nonsingular (it contains no singular Matrix G its (w,1)-norm is defined ag|Gllw1 =
matrix) and that the interval vectds = {b+ Ab : HmazlquHl. Note also that the calculation of this
|Abll < 8} € IR". Then for anyA € A and anyb € b norm is NP-hard.

the ordinary linear systerAx = b has a unique solu-

tion. We are interested in a 9étof all these solutions

of the interval system: k -
- N it becomes convex, and the search for its interval ap-
X={xeR" Ax=b,AcA,beb}. (1)  ,osimation reduces to convex optimization. However
Our main objective is to find an interval solution of this is no longer the case in most situations, and the
the linear interval system (10), that is, to determine problem then meets combinatorial difficulties.

(13)

While € < p(A), A remains regular and is bounded.
If the solution seK lies in a given orthant oR", then



4.2 Optimal interval estimates of the solution set

The problem is to determine exact lowerand upper

X bounds on each componenqtof the vectorx € R"
under the assumption thate X. The approach is
focused on searching for vertices of the convex hull
ConX of the solution setX instead of employing
linear programming in each orthant. The main base
for this technique is the paper by Rohn (1989), where
a key result definin@onwX was proved.

Let S be the set of vertices of the unit cul=

{seR": |s|=1,i=1,...,n}. Consider a system of
equations
(@'x—b)s =¢lxf1+8, i=1..n  (14)

for somes € S, whereg; is thei-th row of the matrix
A

Lemma 2.For a given nominal matri, let the in-
terval familyA = {A+AA: ||AA]l. < €} be regular,

i.e. all matrices imA are nonsingular. Then the nonlin-
ear system of equations (14) has exactly one solution
Xs € X for every fixed vectors € S and ConX =
Conxs: s€ S}.

Proof: see (Rohn, 1989).

To simplify the search for vertices, introducey =
Ax— b. After change of the variables equalities (14)
are converted to

yis = (e|A I+ +9), (15)

Becall thats = +1Vi. The transformed solution set
={y: [Vl < gA” (y+ b)||1 + &} is the affine
|mage ofX that isY = AX —b. Note thatConw =
A ConX — b. For any positive value the intersection
of Y with each orthant oR" is non-empty. Following
Lemma 2 each orthant contains only one vertex of
Conw that gives the solution of the system of equa-
tions (15) while the vectos = (sy,...,s,)" = signy
specifies the choice of the orthant under considera-
tion. Taking all vectorss from Swe find all vertices
for Conw. Moreover, (15) is equivalent to one scalar
equation

i=1,..,n

T= ¢(T)’ (16)
wheret =V s, ¥ =1/s =15 and$ (1) = || A~ (1s+
b)||1 4+ . The function¢(7) is defined for allt > 0
and it is a convex piecewise linear functiontof

Lemma 3.For any regular interval famil € TR™"
and any fixed vectas € Sthe scalar equation (16) has
a unigue solution ovep, «).

Proof: see (Polyak and Nazin, 2004).

The solutiont* of (16) can be obtained using a simple
iterative scheme, for example, Newton iterations

T = [rk L9 - T"] : 17)
+

1-¢'(w)

Fig.
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Fig. 3. The transformed solution $ét

where we use the notatido]. = max{0,a}. Proce-
dure (17) converges to* for any initial 7o > 0 in a
finite (no more tham) number of iterations.

Theorem 1.The setConX has2" vertices. Each ver-
tex Xs can be found by solving the scalar equation
(16) for a given vectos € S by algorithm (17). Then
Xs = A~1(9(1*) 4 b), wherey(t) = s and t* is the
solution of (16).

With these vertices we find the optimal lower and
upper bounds for each componenixah the solution
setX

X = min{xs }, i =

X = r&aSX{XS}a 17 - N, (18)

and finallyX* = ([x;,X4], .., [Xn: %a]) T .
11 1

0 1)’ b= (0.5)’ ande =

0 = 0.25 the solution seX is a bounded and non-
convex polytope depicted on Figure 2. Its image after
the affine transformatiofi= Ax— b is shown on Fig-
ure 3. All vertices of the convex hulon of the so-
lution set with the variablegare represented by vector
s¢ with elementss® = +1 and the value off from

Example 2.For A = (

(16)y1 = (2/3a Z/S)Tr YZ = (71, 1)T, y3 = (17 *1)1—
andy* = (—0.4, —0.4)". By inverse transformation
x = A"}y +b) the vertices ofConX are obtained.

And then it is trivial to find the interval bounds of
using (18). FinallyX* = ([-1.5,2.5], [-0.5,1.5))T.



4.3 Interval over-bounding technique

As already mentioned, the calculation of the op-
timal interval solutionX* may be hard for large-
dimensional problems. Hence, its simple interval over-
bounding is of interest. This over-bounding is often
said to be an interval solution of the interval system
of equations as well. We provide below two such esti-
mates.

According to the inequalityy||. < &[|A~(y+b)[|1+
J for the setY we write [|[A~1(§+b)||1 < [|A~1Y||1 +
X1 < A leo,2 [I9l]es + [[x* (|2, wherex* = A~ b,
Therefore

ellxfla+6

== - 19
1—8HA_1||00,1 ( )

Yl <y

All vectorsy that belong toY thus also lie also inside
the ball ino-norm of radiusy. This ball is the first

5. LARGE-SCALE INTERVAL PARAMETER
BOUNDING

Assume now thak € R", y € R™ andm>> n. The
interval vectorXg is taken to be a prior approximation
containing the parameter vecter Let ¢; be thei-th
row of C. Below we describe two recursive algorithms
for an outer-bounding interval approximation of the
intersectionXg X.

In Algorithm 1, for simplicity, we assumen = Kn,
whereK is an integer.

Algorithm 1: Letk = 1. AssumeX = Xg as an initial
interval approximation.

e Step 1: Consider the interval system of linear
equations from (2) that corresponds to the regressors
C(kn-n+1): - Ckn- COMpute the nonsingularity radius
px for the nominal matrixA of this system. Ife < py,

over-bounding interval estimate. In most cases (19) then find its interval solutioiXy, else (in particular, if

is the minimal cube centered at the origin containing
Y. The main difficulty here is to calculate thie, 1)-
norm of A~1; this is again NP-hard problem. There
exist tractable upper bounds for this norm; we use
the simplest one: for any given matr@ the value

of ||G|l»,1 can always be approximated bylanorm:
IG]|w,1 < ||GJ|1. Hence, the inequality (19) is replaced
by

elx*[l1+9

SR To 20
STogla T, (20)

[19]les

where € should be less thafi/||A~1||1. An interval
estimate forY implies an interval estimate foX.
Indeed x is an affine function of: x = x* + A~1y and
component-wise optimization fo§ on a cube can be
performed explicitly. Then we arrive to the following
result.

Theorem 2.The boxX =

(X1, %], - [Xn, %n]) T With

% =% —Vyllgills, % =x +vyllgills, i=1,...n (21)
contains the solution s&t, whereg; is thei-th row of

G = A 1 while yis the right-hand side of (19) or (20).

Thus the calculation oK O X* given by (20), (21)
is not involved, it does not lead to any combinatorial
difficulties and does not require the solution of linear

A'is singular)X is assumed to be infinitely large and
go to step 3.

e Step 2: Find the smallest interval vectorcontain-
ing X Xk. PutX = X.

e Step 3: Ifk = K, then terminate, else skt=k+1
and go to step 1.

The interval solutionXy in step 1 can be calculated
as described in Section 4.2. For large-scale systems
(e.g.,n > 15) it can be obtained as a simple interval
over-bounding, see Section 4.3. The interval vetor
computed by Algorithm 1 contairfgl_o X. The main
benefit of Algorithm 1 is its relatively low complexity.

It requires the solution df = m/ninterval systems of
equations.

Algorithm 2: Letk = 1. AssumeX = Xj as an initial
interval approximation.

e Step 1: Consider the interval system of linear
equations from (2) corresponding to the regressors
Ck,---sCkan_1. Compute the nonsingularity radiys

for the nominal matrixA of this system. Ife < p,
then find its interval solutioXy, else go to step 3.

e Step 2: Find the smallest interval vectércontain-
ing X N Xk. PutX = X.

e Step 3: Ifk = m—n+ 1, then terminate, else set

programming problems. Numerous examples confirm k = k+ 1 and go to step 1.

that this over-bounding solution is close to optimal.

One such example is considered in (Polyak and Nazin,

2004) for the linear systerhix = b with H being

a Hilbert matrix. Hilbert matrices are ill conditioned
even for small dimensions and for this reason it is
a good test example in the framework of interval
uncertainty. It was demonstrated in (Polyak and Nazin,

Algorithm 2 requires the solution ofi—n+ 1 interval
systems of equations insteadrofn for Algorithm 1,
but it provides a more accurate interval estimate.

Example 3.Letn=2, m=40andx= (1,1)" be the
parameter vector to be estimated, i.e. there are two

2004) that the over-bounding estimates (20), (21) andparameters and forty measurements in the model. The
(19), (21) coincide in this case and give a very precise data are generated as follows. Té&kbe amx n- ma-

approximation of the smallest interval solution.

trix with rows ¢;, which are samples of uniformly dis-
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