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Abstract: This paper is devoted to the problem of estimation of parameters for linear multi-
output models with uncertain regressors and additive noise. The uncertainty is assumed
to be described by intervals. Outer-bounding interval approximations of the non-convex
feasible parameter set for uncertain system are obtained. The proposed method is based on
the calculation of the interval solution for an interval system of linear algebraic equations
and provides the parameter estimators for models with large number of measurements.
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1. INTRODUCTION

The set-membership estimation framework for uncer-
tain systems has attracted much attention during the
past few decades. It is an alternative to the stochastic
approach where some prior information on the sta-
tistical distribution of errors is needed, because only
bounds on uncertainty in system parameters and sig-
nals are required. This assumption is often much more
acceptable in practice. Various types of compact sets
(intervals, polytopes, ellipsoids, etc.) are usually used
to characterize these bounds. They are called the mem-
bership set constraints on uncertain variables.

The parameter estimation problem for uncertain dy-
namic systems is one of the most natural in this con-
text. The problem is to determine bounds or set con-
straints on system parameters based on output mea-
surements, the model structure and bounds on uncer-
tain variables. In this paper we focus on the so-called
interval type of uncertainty. This means that each com-
ponent of an uncertain vector or matrix is assumed
to belong to a known finite interval. Although the
description is natural and simple (Jaulin,et al., 2001),
combinatorial difficulties may become so severe as to

make estimation intractable especially in the multidi-
mensional case. The goal of the paper is to construct
an effective interval parameter estimator for uncertain
multi-output static system that can be used with large
sets of data.

Consider a linear regression model under interval un-
certainty

y = Cx+w, (1)

wherex∈Rn is an unknown parameter vector,y∈Rm

denotes a vector of results of measurements,C∈Rm×n

is a matrix of regressors andw ∈ Rm is an unknown
vector of measurement errors. The classical param-
eter bounding approach is based on the assumption
that matrixC is known precisely while vectorw is
bounded and lies in the boxw ∈ [w,w], where w
and w are known. The sequence of measurements
y1, ...,ym then provides a convex polytope in the pa-
rameter vector space. A number of methods has been
developed to characterize this polytope or to construct
the techniques for outer-bounding approximation of it
(Kostousova, 1998; Kurzhanskii and Valyi, 1997; Mi-
lanese,et al., 1996; Norton, 1994, 1995; Walter and
Piet-Lahanier, 1989; Walter, 1990).



The present paper deals with more general problem
where the matrix of regressors is also uncertain, i.e.
C∈ C, andC ∈ IRm×n is an interval matrix (the stan-
dard notationIRm×n or IRn indicates the space of
all interval m× n-matrices orn-dimensional interval
vectors respectively). This situation arises in many
real-life problems when we do not have complete in-
formation concerning the plant. Furthermore, weakly
non-linear systems can be treated in the same manner
if non-linearity is replaced by uncertainty. Particular
cases of this problem have been considered in the
literature (Cerone, 1993; Norton, 1999; Walter, 1990).
The presence of matrix uncertainty in the model leads
to serious difficulties due to the non-convexity of
the resulting set constraints. Ellipsoidal techniques,
see (Chernousko and Rokityanskii, 2000; Polyak,et
al., 2004), were applied to state and parameter es-
timation for linear models with matrix uncertainty;
the non-convexity of reachable and feasible param-
eter sets was pointed out. The main purpose of this
article is to apply an interval technique to parameter
estimation. The approach proposed in previous paper
(Polyak and Nazin, 2004) for calculating the inter-
val solution of linear interval systems of equations is
taken as a basic tool.

2. PROBLEM STATEMENT

Consider a multi-output model with measurement
noise and uncertainty in the matrix of regressors

y = (C+∆C)x+w, (2)

wherex ∈ Rn, y ∈ Rm, C ∈ Rm×n and w ∈ Rm. The
number of measurements is usually much larger than
the dimension of the parameter vector, somÀ n.
Assume

‖∆C‖∞ ≤ ε, ‖w‖∞ ≤ δ . (3)

The infinity norms of matrices and vectors are equal
to the maximal absolute value of their elements, i.e.

‖∆C‖∞ = max
1≤ i ≤m,
1≤ j ≤ n

|(∆C)i j |, ‖w‖∞ = max
1≤i≤m

|wi |. (4)

Inequalities in (3) describe a particular case of interval
uncertainty when all components of uncertain matrix
∆C or uncertain vectorw have the same bounds. Ma-
trix C, vector y and scalarsε, δ are assumed to be
known. All vectorsx ∈ Rn satisfying (2) under the
constraints (3) form thefeasible parameter set

X = {x∈ Rn : y = (C+∆C)x+w,

‖∆C‖∞ ≤ ε, ‖w‖∞ ≤ δ} .

Assume thatx∈ X0, whereX0 ∈ IRn. The initial ap-
proximationX0 should be taken large enough to guar-
antee inclusion of all parameter vectors of interest.
The problem is to construct a more accurate outer-
bounding interval approximation for the vectorx in
accordance with the large number of measurements
y1, ...,ym and model structure (2)–(3). In other words,
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Fig. 1. Single-output interval param. bounding.

we look for an interval vectorX ∈ IRn (preferably of
minimal size) containing the intersectionX0

⋂
X.

3. SCALAR OBSERVATION

The single-measurement case (m= 1) is a good partic-
ular example for the parameter estimation. SetX for
the scalar model

y = (c+∆c)Tx+w (5)

with x ∈ Rn, y ∈ R, ‖∆c‖∞ ≤ ε and |w| ≤ δ can be
explicitly rewritten as

X1 = {x∈ Rn : |y−cTx| ≤ ε‖x‖1 +δ}, (6)

where ‖x‖1 = ∑n
i=1 |xi |. Figure 1 depicts a typical

shape ofX1, which is non-convex for anyε > 0 (the
region between two solid polygonal lines). This set
reduces to a strip asε → 0. However it is convex
in each orthant ofRn. Let Ek be thek-th orthant of
the vector space,k = 1, ...,2n. If x∈ Ek for any fixed
numberk, the right-hand side of the inequality in (6)
becomes a linear function and thereforeX1

⋂
Ek is a

convex set.

The smallest interval vectorX containingX0
⋂

X1 can
be found by solving a linear programming problem in
each orthant ofRn. Indeed, the vectorsk = signx for
anyx∈ Ek is uniquely defined with elementssk

i such
that|sk

i |= 1. Thus

X1
⋂

Ek =

{
x : |y−cTx| ≤ ε

n

∑
i=1

xis
k
i +δ

}
(7)

is a convex set given by linear constraints. Denote by
ej the j-th ort ofRn, j = 1, ...,n. Then thej-th lower
and upper bounds on the intersectionX0

⋂
X1

⋂
Ek are

calculated by linear programming as

xk
j = arg min

x∈X0
⋂

X1
⋂

Ek
xTej ,

xk
j = arg max

x∈X0
⋂

X1
⋂

Ek
xTej ,

(8)

Hence Xk = ([xk
1,x

k
1], ..., [x

k
n,xk

n])
T gives an interval

vector that is the minimal box containingX0
⋂

X1
⋂

Ek.

Notice however that the intersection of the setX0
⋂

X1

with some orthants may be empty. The calculations in



these orthants can obviously be omitted as far as the
linear programming problem (8) turns out to become
infeasible.

Further, letK = {k : X0
⋂

X1
⋂

Ek 6= /0}. Then{Ek :
k ∈ K} represents a family of orthants containing
X0

⋂
X1. Checking all orthantsEk such thatk∈ K we

obtain the inclusionX0
⋂

X1 ⊆
⋃

k∈K Xk . Finally, take

xi = min
k∈K

{
xk

i

}
, xi = max

k∈K

{
xk

i

}
, i = 1, ...,n. (9)

X = ([x1,x1], ..., [xn,xn])T gives the optimal interval
approximation ofX0

⋂
X1.

Example 1.Let X0 = ([−1,4], [−0.5,5])T andy = 0,
c = (1,1)T , ε = δ = 0.5. The setX1 = {x ∈ R2 :
2|x1 + x2| ≤ |x1|+ |x2|+ 1} is shown on Figure 1
(shaded region). The auxiliary interval vectorsXk

are found via linear programming according to (8)
in each orthantEk, k = 1, ...,4 (bold boxes). Then
X = ([−1,2.5], [−0.5,4])T .

In the multi-output case, one can consider the scalar
observations recursively and apply the above linear
programming procedure. However this technique be-
comes unsuitable for models with a large number of
measurements (mÀ n). The main idea of the present
paper is to consider blocks ofn measurement equa-
tions in (2) and to treat each of them as a system of
linear algebraic equations under interval uncertainties.
A simple algorithm to obtain an interval solution for
this system is described in the next section.

4. INTERVAL SYSTEM OF LINEAR
ALGEBRAIC EQUATIONS

Let C ∈ Rn×n, i.e. the number of parameters is equal
to the number of observations. Then rewrite (2) in the
form

(A+∆A)x = b+∆b (10)
with A = C, b = y, ∆A = ∆C and ∆b = −w such
that ‖∆A‖∞ ≤ ε, ‖∆b‖∞ ≤ δ . The calculation of the
interval solution for the square interval system of
equations (10) is a challenging problem in numerical
analysis and robust linear algebra. This problem was
first considered at 1960-th by Oettli and Prager (1964).
Since then, the problem has attracted much attention
and was developed in the context of the modelling of
uncertain systems.

Assume that the matrix familyA = {A+∆A : ‖∆A‖∞≤
ε} ∈ IRn×n is nonsingular (it contains no singular
matrix) and that the interval vectorb = {b + ∆b :
‖∆b‖∞ ≤ δ} ∈ IRn. Then for anyA∈ A and anyb∈ b
the ordinary linear systemAx= b has a unique solu-
tion. We are interested in a setX̂ of all these solutions
of the interval system:

X̂ = {x∈ Rn : Ax= b, A∈ A, b∈ b} . (11)

Our main objective is to find an interval solution of
the linear interval system (10), that is, to determine

the smallest interval vectorX∗ containing all possi-
ble solutions (11). In other words, we want to em-
bed the solution set̂X into the minimal box inRn.
This problem is known to be NP-hard (Kreinovich,
et al., 1993) and complicated from a computational
viewpoint for large-scale systems. The paper by Oettli
and Prager (1964) shows how multiple linear pro-
gramming can be used to obtainX∗; this line of re-
search was continued in (Cope and Rust, 1979; Rust
and Burrus, 1972). Iterative approaches have been es-
tablished at this context as well as direct numerical
methods that provide an over-bounding ofX∗, see
monographs (Higham, 1996; Neumaier, 1990) and pa-
pers (Rohn, 1989; Shary, 1995).

In this section we briefly describe a simple approach
proposed in (Polyak and Nazin, 2004) for interval ap-
proximation of the solution set. Instead of employing
linear programming in each orthant it is suggested to
deal with a scalar equation. This method is based on
Rohn’s result (Rohn, 1989) and simplifies his algo-
rithm. In order to find the optimal interval estimateX∗
of the solution setX̂, all vertices of its convex hull
ConvX̂ should be obtained. The search of each vertex
is via the solution of a scalar equation. In the case of
large-scale systems we also provide a simple and fast
procedure for over-bounding of the optimal interval
solution.

4.1 The solution set

A detailed description of the solution set for the linear
interval systems was given in the pioneering work by
Oettli and Prager (1964) for a general situation of
interval uncertainty. In our case their result is reduced
as follows.

Lemma 1.The set of all admissible solutions of the
system (10) is the non-convex polytope:

X̂ = {x∈ Rn : ‖Ax−b‖∞ ≤ ε‖x‖1 +δ } . (12)

This result also follows from (6). The setX̂ remains
bounded as long as the interval matrixA is regular.
This regularity is characterized by a nonsingularity
radius. For the interval familyA this radius is equal
to

ρ(A) =
1

‖A−1‖∞,1
, (13)

see (Polyak, 2003) for details. Recall that for any
matrix G its (∞,1)-norm is defined as‖G‖∞,1 =
max
‖x‖∞≤1

‖Gx‖1. Note also that the calculation of this

norm is NP-hard.

While ε < ρ(A), A remains regular and̂X is bounded.
If the solution setX̂ lies in a given orthant ofRn, then
it becomes convex, and the search for its interval ap-
proximation reduces to convex optimization. However
this is no longer the case in most situations, and the
problem then meets combinatorial difficulties.



4.2 Optimal interval estimates of the solution set

The problem is to determine exact lowerxi and upper
xi bounds on each componentxi of the vectorx∈ Rn

under the assumption thatx ∈ X̂. The approach is
focused on searching for vertices of the convex hull
ConvX̂ of the solution setX̂ instead of employing
linear programming in each orthant. The main base
for this technique is the paper by Rohn (1989), where
a key result definingConvX̂ was proved.

Let S be the set of vertices of the unit cubeS =
{s∈ Rn : |si | = 1, i = 1, ...,n}. Consider a system of
equations

(aT
i x−bi)si = ε‖x‖1 +δ , i = 1, ...,n, (14)

for somes∈ S, whereai is the i-th row of the matrix
A.

Lemma 2.For a given nominal matrixA, let the in-
terval familyA = {A+∆A : ‖∆A‖∞ ≤ ε} be regular,
i.e. all matrices inA are nonsingular. Then the nonlin-
ear system of equations (14) has exactly one solution
xs ∈ X̂ for every fixed vectors ∈ S, and ConvX̂ =
Conv{xs : s∈ S}.
Proof: see (Rohn, 1989).

To simplify the search for verticesxs, introduceŷ =
Ax− b. After change of the variables equalities (14)
are converted to

ŷi si = (ε‖A−1(ŷ+b)‖1 +δ ), i = 1, ...,n. (15)

Recall thatsi = ±1 ∀i. The transformed solution set
Ŷ = { ŷ : ‖ŷ‖∞ ≤ ε‖A−1(ŷ+ b)‖1 + δ} is the affine
image ofX̂ that isŶ = AX̂− b. Note thatConvŶ =
A ConvX̂−b. For any positive valueε the intersection
of Ŷ with each orthant ofRn is non-empty. Following
Lemma 2 each orthant contains only one vertex of
ConvŶ that gives the solution of the system of equa-
tions (15) while the vectors = (s1, ...,sn)T = signŷ
specifies the choice of the orthant under considera-
tion. Taking all vectorss from S we find all vertices
for ConvŶ. Moreover, (15) is equivalent to one scalar
equation

τ = ϕ(τ), (16)

whereτ = ŷi si , ŷi = τ/si = τsi andϕ(τ)= ε‖A−1(τs+
b)‖1 + δ . The functionϕ(τ) is defined for allτ ≥ 0
and it is a convex piecewise linear function ofτ.

Lemma 3.For any regular interval familyA ∈ IRn×n

and any fixed vectors∈ S the scalar equation (16) has
a unique solution over[0,∞).

Proof: see (Polyak and Nazin, 2004).

The solutionτ∗ of (16) can be obtained using a simple
iterative scheme, for example, Newton iterations

τk+1 =
[

τk +
ϕ(τk)− τk

1−ϕ ′(τk)

]

+
, (17)
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Fig. 3. The transformed solution setŶ.

where we use the notation[α]+ = max{0,α}. Proce-
dure (17) converges toτ∗ for any initial τ0 ≥ 0 in a
finite (no more thann) number of iterations.

Theorem 1.The setConvX̂ has2n vertices. Each ver-
tex xs can be found by solving the scalar equation
(16) for a given vectors∈ Sby algorithm (17). Then
xs = A−1(ŷ(τ∗) + b), whereŷ(τ) = τs and τ∗ is the
solution of (16).

With these vertices we find the optimal lower and
upper bounds for each component ofx in the solution
setX̂

xi = min
s∈S
{xsi}, xi = max

s∈S
{xsi}, i = 1, ...,n, (18)

and finallyX∗ = ([x1,x1], ..., [xn,xn])T .

Example 2.For A =
(

1 1
0 1

)
, b =

(
1

0.5

)
, andε =

δ = 0.25 the solution setX̂ is a bounded and non-
convex polytope depicted on Figure 2. Its image after
the affine transformation̂y = Ax−b is shown on Fig-
ure 3. All vertices of the convex hullConvŶ of the so-
lution set with the variableŝyare represented by vector
sk with elementssk

i = ±1 and the value ofτ from
(16):y1 = (2/3, 2/3)T , y2 = (−1, 1)T , y3 = (1, −1)T

and y4 = (−0.4, −0.4)T . By inverse transformation
x = A−1(ŷ+ b) the vertices ofConvX̂ are obtained.
And then it is trivial to find the interval bounds on̂X
using (18). FinallyX∗ = ([−1.5,2.5], [−0.5,1.5])T .



4.3 Interval over-bounding technique

As already mentioned, the calculation of the op-
timal interval solutionX∗ may be hard for large-
dimensional problems. Hence, its simple interval over-
bounding is of interest. This over-bounding is often
said to be an interval solution of the interval system
of equations as well. We provide below two such esti-
mates.

According to the inequality‖ŷ‖∞ ≤ ε‖A−1(ŷ+b)‖1+
δ for the setŶ we write‖A−1(ŷ+ b)‖1 ≤ ‖A−1ŷ‖1 +
‖x∗‖1 ≤ ‖A−1‖∞,1‖ŷ‖∞ + ‖x∗‖1, where x∗ = A−1b.
Therefore

‖ŷ‖∞ ≤ γ =
ε‖x∗‖1 +δ

1− ε‖A−1‖∞,1
. (19)

All vectors ŷ that belong toŶ thus also lie also inside
the ball in ∞-norm of radiusγ. This ball is the first
over-bounding interval estimate. In most cases (19)
is the minimal cube centered at the origin containing
Ŷ. The main difficulty here is to calculate the(∞,1)-
norm of A−1; this is again NP-hard problem. There
exist tractable upper bounds for this norm; we use
the simplest one: for any given matrixG the value
of ‖G‖∞,1 can always be approximated by a1-norm:
‖G‖∞,1≤ ‖G‖1. Hence, the inequality (19) is replaced
by

‖ŷ‖∞ ≤ ε‖x∗‖1 +δ
1− ε‖A−1‖1

, (20)

whereε should be less than1/‖A−1‖1. An interval
estimate forŶ implies an interval estimate for̂X.
Indeed,x is an affine function of̂y: x = x∗+A−1ŷ and
component-wise optimization forxi on a cube can be
performed explicitly. Then we arrive to the following
result.

Theorem 2.The boxX = ([x1,x1], ..., [xn,xn])T with

xi = x∗i − γ‖gi‖1, xi = x∗i + γ‖gi‖1, i = 1, ...,n (21)

contains the solution set̂X, wheregi is thei-th row of
G = A−1 while γ is the right-hand side of (19) or (20).

Thus the calculation ofX ⊇ X∗ given by (20), (21)
is not involved, it does not lead to any combinatorial
difficulties and does not require the solution of linear
programming problems. Numerous examples confirm
that this over-bounding solution is close to optimal.
One such example is considered in (Polyak and Nazin,
2004) for the linear systemHx = b with H being
a Hilbert matrix. Hilbert matrices are ill conditioned
even for small dimensions and for this reason it is
a good test example in the framework of interval
uncertainty. It was demonstrated in (Polyak and Nazin,
2004) that the over-bounding estimates (20), (21) and
(19), (21) coincide in this case and give a very precise
approximation of the smallest interval solution.

5. LARGE-SCALE INTERVAL PARAMETER
BOUNDING

Assume now thatx ∈ Rn, y ∈ Rm and mÀ n. The
interval vectorX0 is taken to be a prior approximation
containing the parameter vectorx. Let ci be thei-th
row ofC. Below we describe two recursive algorithms
for an outer-bounding interval approximation of the
intersectionX0

⋂
X.

In Algorithm 1, for simplicity, we assumem = Kn,
whereK is an integer.

Algorithm 1: Let k = 1. AssumeX = X0 as an initial
interval approximation.

• Step 1: Consider the interval system of linear
equations from (2) that corresponds to the regressors
c(kn−n+1), ...,ckn. Compute the nonsingularity radius
ρk for the nominal matrixA of this system. Ifε < ρk,
then find its interval solutionXk , else (in particular, if
A is singular)Xk is assumed to be infinitely large and
go to step 3.

• Step 2: Find the smallest interval vectorX̃ contain-
ing X

⋂
Xk . PutX = X̃.

• Step 3: Ifk = K, then terminate, else setk = k+ 1
and go to step 1.

The interval solutionXk in step 1 can be calculated
as described in Section 4.2. For large-scale systems
(e.g.,n > 15) it can be obtained as a simple interval
over-bounding, see Section 4.3. The interval vectorX
computed by Algorithm 1 contains

⋂K
k=0Xk . The main

benefit of Algorithm 1 is its relatively low complexity.
It requires the solution ofK = m/n interval systems of
equations.

Algorithm 2: Let k = 1. AssumeX = X0 as an initial
interval approximation.

• Step 1: Consider the interval system of linear
equations from (2) corresponding to the regressors
ck, ...,ck+n−1. Compute the nonsingularity radiusρk

for the nominal matrixA of this system. Ifε < ρk,
then find its interval solutionXk , else go to step 3.

• Step 2: Find the smallest interval vectorX̃ contain-
ing X

⋂
Xk . PutX = X̃.

• Step 3: If k = m− n+ 1, then terminate, else set
k = k+1 and go to step 1.

Algorithm 2 requires the solution ofm−n+1 interval
systems of equations instead ofm/n for Algorithm 1,
but it provides a more accurate interval estimate.

Example 3.Let n = 2, m= 40 andx = (1,1)T be the
parameter vector to be estimated, i.e. there are two
parameters and forty measurements in the model. The
data are generated as follows. TakeC be am×n - ma-
trix with rows ci , which are samples of uniformly dis-
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Fig. 4. Interval approximations ofX.

tributed vectors on the unit sphere. Interval uncertainty
is defined byε = 0.2 and δ = 0.5, and then∆C =
2ε(rand(m,n) − 0.5) andw = 2δ (rand(m,1) −
0.5). The measurement vectory∈Rn is takeny= (C+
∆C)x+ w. These measurements are compatible with
model (2) and given parameter vectorx. Our purpose
is to estimatex under givenC,y. Algorithm 1 consid-
ersK = m/n = 20 linear interval systems. Let the ini-
tial interval approximation beX0 = ([−5,5], [−5,5])T .
The interval estimator is constructed as an intersection
of the optimal interval solutions for the linear interval
systems. Algorithm 1 providesX1 (dashed line box on
Fig. 4) while Algorithm 2 computes a more precise
interval approximationX2 of the non-convex feasible
parameter setX as the intersection ofm−n+1 = 39
optimal interval solutions for linear interval systems
(solid line box on Fig. 4).

6. CONCLUSIONS

In this paper we considered the parameter estimation
problem for linear multi-output models under interval
uncertainty. The model uncertainty involves additive
measurement noise vector and a bounded uncertain
regressor matrix. Outer-bounding interval approxima-
tions of the non-convex feasible parameter set for
this uncertain model are obtained. The algorithms de-
scribed are based on the computation of interval solu-
tions for square interval systems of linear equations.
This approach allows computational difficulties to be
avoided and provides a parameter estimator for mod-
els with a large number of measurements.
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