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Abstract: Modeling and control of a viscoelastic beam are considered. Piezoelectrical
elements are bonded to the beam and used as actuators. The beam is also equipped
with a strain gauge that serves as a sensing device. The beam system is described by
the Euler-Bernoulli beam equation, which is Fourier transformed and numerically solved
in the frequency domain. Then, two different approaches areevaluated to approximate
the infinite-dimensional system with a low order parametricapproximation. Finally, LQG
control theory is applied to control both strain and transversal vibrations. Especially, the
control of the strain shows promising results.Copyright c2005 IFAC
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1. INTRODUCTION

The presence of vibrations is a common problem in
mechanical structures, particularly in flexible parts,
for instance aircraft wings or robot arms. This can
be reduced by making such parts strong or heavy
enough. For many applications,e.g. in aircrafts and
spacecrafts, it is desirable to keep the weight as low
as possible, which makes such solutions less suitable.
Instead, one would like to have a device which can
perform active damping of the vibrations without any
substantial increase of the mass. In the case when
such a device is embedded in the structure it is often
referred to as a smart material or a smart structure
(Preumont, 2002).

One way to design smart structures is to use piezo-
electric elements that are attached to the material.
Piezoelectric elements exhibit a significant deforma-
tion when an electric field is applied, and they produce
an electric field when deformed. Therefore they can be

used as both actuators and sensors in a smart structure.
Using piezoelectric patches is a simple and cheap way
of integrating actuating and sensing devices in me-
chanical structures. Modeling and control of simple
flexible structures have received a lot of attention in
recent years; see for example (Pota and Alberts, 1995),
(Moheimaniet al., 2003) and the references therein.

A popular setup is to use a steel beam that is simply
supported at both ends. Often the beam is equipped
with collocated piezoelectric actuator-sensor pairs
which conveys that the tractable passivity property
can be used for controller design. This is utilized in
(Halim and Moheimani, 2001), which employs the
popular modal analysis technique, or assumed modes
approach, for describing the dynamics of the system.
In this method the orthogonality between vibration
modes is used to obtain transfer functions which have
the form of infinite sums; each term describing one
vibrational mode. The sum is then truncated to obtain



a low order approximation of the infinite-dimensional
system.

There are, however, a number of disadvantages related
to the modal analysis technique. First of all the method
assumes pure elasticity which means that no damping
is present. This is most often compensated for by
adding a small damping term to each vibrational mode
in an ad-hoc manner. In addition, the piezoelectric
sensor/actuator is assumed not to affect the structural
properties of the beam. To take the piezoelectrical
patches into account the system gets a more complex
structure and the modal analysis technique can no
longer be applied.

In this paper we present a procedure for how to model
a viscoelastic beam structure where the piezoelements
are taken into account. Furthermore, damping is in-
cluded in the modeling phase by using a complex
valued Young’s modulus which was experimentally
determined in (Hillströmet al., 2003). Piezoelectrical
patches are bonded to each side of the beam and used
as actuators. As a sensing device a strain gauge is
attached to the beam. It consists of a thin wire whose
effect on the structural properties of the beam is neg-
ligible.

2. PROBLEM FORMULATION

Consider an experimental setup as in Figure 1. A
viscoelastic beam is fixed at one end and free at the
other. The beam is divided into three sections and
piezoelectric patches are attached to the beam at its
middle section. A disturbance forcef(t) enters at the
tip of the beam, possibly as an impulse. The beam is
also equipped with one sensor that measures the strain,y(t) = "(t; �), at a spatial position�, that arises due to
the impact off(t). The measured signal is corrupted
with additive noise,e(t).
Our goal is to dampen the vibrations in the beam by
applying a controller that uses the strain measure-
ments in a feedback loop. The control signalu(t)
is fed to the piezoelectric patches which are used as
actuators. The system can be schematically described
as in the lower part of Figure 1. By using the properties
of linear systems, the output signal can be viewed as
a superposition of the strains caused byu(t) andf(t).
The control signal affects the output through the trans-
fer functionG(s), and the force contributes through
the transfer functionH(s).
The vibrations in the beam are mathematically de-
scribed by a partial differential equation (PDE), which
means that the system is of infinite order. The piezo-
electric patches are considerably stiffer than the rest
of the beam. This is a fact that is accounted for in the
modeling. The strain sensor is, however, very small
and of negligible weight. It should thus not contribute
to the dynamics of the system. We aim at describ-
ing the infinite dimensional system with a parametric
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Fig. 1. An experimental setup of a viscoelastic beam
with piezoelectric patches (actuator) and a strain
sensor.

Table 1. Properties of the beam and the
piezoelement.

Description Value
Beam length [m] 0.59
Beam width [m] 0.01
Beam thickness [m] 0.002
Beam density [kg/m3 ] 1183
Piezo. length [m] 0.0318
Piezo. thickness [m] 0.00066
Piezo. density [kg/m3] 7878
Piezo. Young’s modulus [N/m2] 5.78�1010
Length of first section [m] 0.202

model of finite order. This model should then be a
basis for model-based control. The properties of the
beam are listed in Table 1.

3. MODELING

Although the strain is measured, we first consider
modeling of the transversal deflection,w, at each
section,k, of anelasticbeam. At a spatial coordinate� at time instancet the deviation can be described by
the PDE�2��2 hEkIk �2wk(t; �)��2 i+ �kAk �2wk(t; �)�t2 = 0 (1)

which is called the Euler-Bernoulli beam equation
(Timoshenko, 1955). The quantitiesIk, Ak and �k
represent the moment of inertia of a cross-section area,
cross-section area and density, respectively. These pa-
rameters are assumed to be time invariant and spa-
tially constant for each section,k, of the beam. The
Young’s modulus of elasticity is denoted byEk . In
the pure elastic case, this quantity is constant and
real-valued for each section of the beam. By Fourier
transformation of (1) w.r.t. the temporal variable, the
PDE is transformed to a frequency dependent ordinary
differential equation in the spatial domain,�EkIk d4WFk (!; �)d�4 � �kAk!2WFk (!; �) = 0 (2)

whereWFk (!; �) is the Fourier transform ofwk(t; �)
and! is the angular frequency [rad/s]. In the sequel
we will deal with both the Fourier transform and the
Laplace transform. To separate the two transforms



the superscriptsF (Fourier) andL (Laplace) will be
employed.

A viscoelasticbeam exhibit the property that if the
deformation is specified, the current stress depends
on the entire deformation history. This is described
by a Young’s modulus that is frequency dependent
and complex valued (Christensen, 1971). Based on
this, viscoelasticity can be introduced in a frequency
domain context by replacingEk in (2) with Ek(!).
The frequency dependent Young’s modulus was ex-
perimentally determined in (Hillströmet al., 2003). To
solve (2) a number of boundary values and compatibil-
ity conditions are needed. The (Fourier transformed)
boundary values of the cantilever beam areWF1 (!; 0) = DWF1 (!; 0) = D2WF3 (!;L) = 0E3(!)I3D3WF3 (!;L) = FF(!)
whereD = dd� is the differentiation operator. Fur-
thermore the sections of the beam are tied together by
four compatibility conditions at each point where two
sections meet. For example, if sectionsk andk + 1
meet at the spatial coordinate�k the following must
hold WFk (!; �k) =WFk+1(!; �k)

DWFk (!; �k) = DWFk+1(!; �k)MFk (!; �k) =MFk+1(!; �k)TFk (!; �k) = TFk+1(!; �k)
whereM andT are the bending moment and transver-
sal force, respectively.

The disturbance force,FF(!) = F [f(t)℄(!), and the
actuating voltage,UF(!) = F [u(t)℄(!), are treated
as input signals to the system.FF (!) enters through
one of the boundary conditions andUF(!) enters
through two of the compatibility conditions.

Using the above observations we replaceEk byEk(!)
and solve (2). Its characteristic equation now readsr4k � !2 �kAkEk(!)Ik = 0
with the solutionrk;l = il�!2 �kAkEk(!)Ik� 14 ; l = 1; : : : ; 4
where i= p�1. The solution to (2) is readily writtenWFk (!; �) = [e�rk;1 : : : e�rk;4 ℄[k;1(!) : : : k;4(!)℄T, RTk (!; �)Ck(!) (3)

wherek;l(!) are unknown parameters that are to be
determined by using the boundary values and compat-
ibility conditions. Now, denoteC(!) , [CT1 (!) CT2 (!) CT3 (!)℄T 2 R12�1 . (4)

Then, the following system of equations can be
formedA(!)C(!) = B1FF (!) + B2UF(!) (5)

whereA(!) 2 C 12�12 , B1 and B2 2 R12�1 are
completely determined by the boundary values and

compatibility conditions (i.e. fully known). The input
signals enters through the right hand side of the equa-
tion. Using (4) and (5) we haveCk(!) = PkA�1(!) �B1FF(!) + B2UF(!)� (6)

wherePk 2 R4�12 is constructed such thatPkC(!) =Ck(!). Finally, combining (6) and (3) the frequency
responses from the inputs to the transversal deflection
at the coordinate� is extractedWFk (!;�) = RTk (!; �)PkA�1(!)B1FF(!)+RTk (!; �)PkA�1(!)B2UF(!), HFw (!; �)FF(!) +GFw (!; �)UF (!) (7)

The subscriptw in the last line of (7) denotes that it
is the frequency response to thetransversal deflection
and not thestrain as in Figure 1. To obtain an expres-
sion for the strain,"k, as a function of frequency and
space, compatibility conditions are utilized (Gere and
Timoshenko, 1991)Y F(!) = "Fk (!; �) = �hk2 D2WFk (!; �) (8)

wherehk is the height of the beam at sectionk. To
find the frequency responsesHF (!; �) andGF (!; �),
(8) is simply applied to (7), noting thatRTk is the only
term depending on�.
Due to the complexity ofA(!) it is not possible to
obtain a simple closed form expression directly from
the above equations. InsteadHF(!; �) andGF (!; �)
can be numerically computed for any frequency or
spatial coordinate. Typically, the spatial coordinate is
held fixed and the frequency is varied to obtain the
frequency responses. Utilizing this, we drop the spa-
tial dependence and introduce the shortened notationsHF(!) andGF (!). Solving (7) directly is, however,
not numerically sound. Instead, (5) is first solved by
means of an LU factorization and the result is put into
(3) in a second step. Finally, (8) is applied to get an
expression for the strain.

It is most often desirable to have aparametricmodel
of finite order that describes the dynamics of a system;
not the least if the model should be a basis for model
based control. In the following, two different strate-
gies for fitting parametric models to the frequency
responses are evaluated.

3.1 An Ad-hoc Approach

The first approach is to realize the transfer functions as
proper rational functions in the Laplace domain,i.e.ĤL(s; �H) = BH(s)A(s) ; ĜL(s; �G) = BG(s)A(s)
whereA(s), BH(s) andBG(s) are polynomials of
order na, nbH and nbG, respectively. The param-
eter vector�H contains the coefficients of the un-
known polynomialsA(s) and BH(s), i.e. �H =[a1 : : : ana b0 : : : bnbH ℄T ; whereas�G only contains



the coefficients ofBG(s). The reason for this conven-
tion should soon be clear. To find�H we attempt to
minimize a quadratic criterionV (�H ) = NXk=1 ���HF(!k)� ĤL(i!k; �H)���2W (!k)

(9)
where N is the number of frequency points at
which HF(!) is computed andW (!) is a user
chosen weighting function. To minimizeV (�H) the
MATLAB function invfreqs is used. It applies
a damped Gauss-Newton iterative search algorithm
(Ljung, 1988). Once acceptable estimates ofA(s) andBH(s) are obtained,A(s) is used when determiningĜL(s; �G) = BG(s)=A(s) in a second step. This is
performed by using the same type of loss function as
in (9). SinceA(s) is now known this will be a linear
problem which is solved by using a standard weighted
least squares procedure. It is then straightforward to
carry on and compute zero-polynomials for any sensor
location along the beam, using the pole polynomial
from the first identification step.

Example 1. Now, this method is applied to the beam-
system in Section 2. A collocated actuator-sensor con-
figuration is used,i.e. the sensor is attached on top of
one of the actuators. Figure 2 shows the magnitude of
the numerically computedHF(!) and its low order
approximationĤL(s; �H) evaluated on the imaginary
axis; i.e. s = i!. HF(!) is used as frequency domain
data for the first identification step. In addition, the
magnitude of the error between the two frequency re-
sponses is depicted. The thick dash-dotted line denotes
an ideal low-pass filter which is used to delimit the
part of the frequency response that is utilized for the
identification. The rational transfer function̂HL(s; �)
has four zeros and six poles, that are fitted to the data
set.
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Fig. 2. Magnitude plot of the numerically computed
transfer functionHF(!) (solid), the low order
parametric approximationĤL(i!; �) (dashed)
and the error (dash-dotted).

The figure shows that a very good fit between the
frequency response data and the parametric model is
obtained. �
The advantage of this simple method include that fre-
quency weighting is easily performed and that con-

tinuous time parametric models are directly obtained.
In addition, the method allows arbitrary spacing of
the frequency points. It is thus possible to usee.g.
logarithmically spaced frequency response data to get
a natural weighting of the data. Nevertheless, there are
some disadvantages. The most obvious one is that only
one data set is used to identify the pole polynomial.
This could be a real problem if pole-zero cancellation
is hidden in the data set chosen for the first iden-
tification step. It is also not obvious how to choose
model orders and how to realize the system in a state
space representation; not the least if a large number of
outputs are used. Further, the numerical search proce-
dure in the first identification step is quite expensive
computationally.

3.2 Subspace-based Identification

The subspace based algorithm is the algorithm de-
noted Algorithm 1 in the paper (McKelveyet al.,
1996). It utilizes frequency response data from infinite-
dimensional systems to identify MIMO state space
models. The frequency response data are restricted to
be generated from equidistant frequency samples.

The method is based on estimating the impulse
response coefficients by using the inverse discrete
Fourier transform on the frequency response data.
Then, the coefficients are used to construct a block
Hankel matrix on which a singular value decomposi-
tion (SVD) is performed. The sub-matrices from the
SVD that correspond to the most significant singular
values are used to construct the state space representa-
tion. In contrast to the ad-hoc approach outlined in the
previous section, this method estimates discrete-time
models. To convert the models to continuous-time the
zero-order hold approach is utilized.

Example 2. Now, the subspace-based approach is ap-
plied to find a low order approximation ofHF (!)
as in Example 1. Once again, the dashed-dotted line
denotes an ideal low pass filter which defines the part
of the frequency response that is used for the identifi-
cation. In Figure 3 a state space representation of order
six is chosen.

The solid and dashed lines depict that a quite good
fit between the parametric model and the frequency
response data is obtained. However, the dash-dotted
line indicates that the high performance of the ad-hoc
approach is not attained. �
The advantage of this method is that frequency re-
sponse data from all transfer functions are used to
estimate the low order parametric approximation in
a single step. The retrieved model is a MIMO state
space representation, which is useful for controller
design purposes. In addition, the singular values of the
Hankel matrix provide a tool for determining the order
of the representation. The disadvantage is primarily
the lack of a frequency weighting possibility.
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Fig. 3. Magnitude plot of the numerically computed
transfer functionHF(!) (solid), the low order
parametric approximationĤL(i!; �) (dashed)
and the error (dash-dotted). The parametric
model is generated from the subspace-based ap-
proach.

4. CONTROLLER DESIGN

In order to apply controller design the system is real-
ized in state space form_x(t) = Ax(t) +Bu(t) +Nf(t)z(t) =Mx(t) +D1u(t)y(t) = Cx(t) +D2u(t)~y(t) = y(t) + e(t) (10)

wherey(t), z(t) and e(t) are the strain, transversal
deflection and measurement noise, respectively. The
unit of the strain is[1℄ and the unit of the transversal
deflection is[m℄. Although the strain is measured,z(t) = w(t; �) is also modeled. The reason for this
is that it may be desirable to control the transversal
deflection.

This section is divided into two parts. First, LQG-
control theory is applied to control the strain. There-
after, an attempt is made to control the transversal de-
flection. For simplicity, the subspace-based approach
is utilized to model the beam system. This method
directly yields a model of the form (10).

4.1 Control of the Strain

For controller design purposes the machinery of LQG
control theory is utilized, seee.g. (Glad and Ljung,
2000). A controller of the formu(t) = �Lx̂(t)_̂x(t) = Ax̂(t) +Bu(t) +K(~y(t)� Cx̂(t)�D2u(t))

(11)

is then retrieved.

To find the controller, the following quadratic criterion
is employedJ = Z 10 [qyy2(t) + qzz2(t) + u2(t)℄dt (12)

with qy = 104 and qz = 0. When determining the
Kalman gain,K, the variance of the disturbance,R1,

and the variance of the measurement noise,R2, are
treated as design variables. The valuesR1 = 5 � 107
andR2 = 1 are chosen.

The system is simulated in MATLAB, with a small
noise term added to the measured signal. Figure 4
shows the time response,y(t), to an impulse distur-
bance,f(t). The disturbance is of low-pass character-
istics and has its main power within the modeled part
of the spectrum. The figure shows that the disturbance
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Fig. 4. The time response of the strain. Closed loop
(solid) and open loop (dashed).

is well damped if control action is applied. To analyze
stability due to unmodeled dynamics the Bode dia-
gram of the loop gain is drawn. Here, thenumerically
computedfrequency responseGF (!) is employed.
It is performed by evaluating the controller (11) for
different frequencies and the result is multiplied withGF (!). The Bode plot of the loop gain is depicted
in Figure 5. In addition, the sensitivity function,S,
and the complementary sensitivity function,T , are
visualized in the upper part of the figure.
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Fig. 5. The Bode plots of the loop gain (solid),S
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In view of the figure it should be clear that the closed
loop system is robust against the ignored dynamics,
since the high frequency content ofGF(!) is well
damped by the controller. The sensitivity function
shows howsensitivethe closed loop system is to
modeling errors. Thus, in frequency regions whereS is small the closed loop system is insensitive to



modeling errors. The figure shows thatS is quite small
in regions whereHF(!) is large. Often, one would
like to obtainS(0) � 0 (integral action in the control
loop), in order to get rid of stationary errors. However,
due to the nature of the disturbance force (impulse),
there is no need for integral action in the control loop.
The complementary sensitivity also has a reasonable
behavior.

4.2 Control of the Transversal Deflection

Now, the transversal deflection,z(t), is controlled.
Still, the model (10) is employed,i.e. the strain is
measured. The parametersqy = 0, qz = 1 andR1 =106 are adjusted. The time response of the transversal
deflection is depicted in Figure 6. Once again it is seen
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that the vibrations are nicely damped when control
action is applied. In the same fashion as previously the
loop gain,S andT are plotted for the new controller,
see Figure 7. The Bode plot of the loop gain shows that
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Fig. 7. The Bode plots of the loop gain (solid),S
(dashed) andT (dash-dotted). The transversal
deflection is controlled.

a very small phase margin is obtained. The sensitivity
function and the complementary sensitivity function
also have a very unpleasant appearance. The result
indicates that it is quite hard to control the transversal
deflection from strain measurements.

5. CONCLUSIONS

In this paper, modeling and control of the vibrations in
a viscoelastic beam have been considered. For control
purposes the beam is equipped with a piezoelectrical
actuator and a strain sensor. The aim has been to ac-
curately model the beam system by taking the struc-
tural properties of the piezoelectrical actuator into ac-
count. In addition, viscoelasticity is introduced in a
frequency domain context by employing a frequency
dependent Young’s modulus of elasticity. The system
is described by equations of infinite order and two ap-
proaches for model reduction have been treated. Both
methods showed nice results.

Finally, LQG control theory was applied to the system.
First the strain was controlled with promising result.
Then, the transversal deflection was controlled by
using the strain measurements in a feedback loop.
Even though the vibrations were well damped the
Bode plot of the loop gain indicated severe robustness
problems.
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