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Abstract: Recursive least-squares temporal difference algorithm (RLS-TD) is 
deduced, which can use data more efficiently with fast convergence and less 
computational burden. Reinforcement learning based on recursive least-squares 
methods is applied to ship steering control, as provides an efficient way for the 
improvement of ship steering control performance. It removes the defect that the 
conventional intelligent algorithm learning must be provided with some sample data. 
The parameters of controller are on-line learned and adjusted. Simulation results 
show that the ship course can be properly controlled in case of the disturbances of 
wave, wind, current. It is demonstrated that the proposed algorithm is a promising 
alternative to conventional autopilots. Copyright © 2005 IFAC 
 
Keywords: Recursive squares methods;  Learning algorithm; Action network;  Ship 
control ;Simulation 

 
 
 
 

1. INTRODUCTION 
 
Ship steering, in general, is a complicated control 
problem. From the 1920’s, it has experienced many 
develop phases such as PID control, adaptive control 
and intelligent control etc. In recent years, hybrid 
intelligent system (HIS) which is composed of neural 
network (NN),fuzzy logic control (FLC), 
reinforcement learning (RL) and genetic algorithm 
(GA) has been successfully used in home appliances 
(Wakami, et al., 1996) and robotics (Zhou,1997), in ship 
steering field some primary works are also presented  
(Sutton,et al.,1997). 
Considering the nonlinear characteristics of ship 
motion and the complex correlation related to ship 
maneuvering, velocity and the changing 
environments, the controlled plant has obvious 
uncertainties. If controller parameters can be on-line 
adjusted according to environment conditions, it will 
effectively  solve   the   uncertainties  in  control. The  
ordinary way of neural fuzzy network that uses NN 
to modify control parameters is to utilize supervised 
learning algorithm. But such algorithm needs some 
sample data and the sample data should be complete 
and correct. Unfortunately, such detailed and precise 
sample data may be very expensive or even 

impossible to obtain in ship steering applications. 
Reinforcement learning needs only simple 
“evaluative” information, which can be easily 
obtained. It estimates the control effect by interacting 
with the environment, and trains controller network 
using “award” and “punish” algorithm, unlike the 
supervised learning given the right answer. In 
reinforcement learning , the most common algorithm 
is temporal difference (TD) learning, which wastes 
data and may require sampling many trajectories to 
reach convergence. In order to using data more 
efficiently and fasting convergence, least-squares (LS) 
methods is used in reinforcement learning. Recursive 
least-squares temporal difference (RLS-TD) 
algorithm is also deduced to solve the computational 
and memory problems. In this paper, the recursive 
least-squares(RLS) methods based reinforcement 
learning is applied to ship steering to learn and adjust 
the parameters in on-line period. Simulation results 
show that the ship course can be properly controlled 
under the disturbances of wave, wind, current and 
error in measure apparatus, and demonstrate the 
proposed algorithm is feasible. 



     

  
2.THE RLS-TD ALGORITHM 

 
The credit-assignment problem is important in 
reinforcement learning. When the reinforcement 
signal and the environmental input pattern 
intensively depend on the history of the controller 
output, the problem becomes more obvious, 
especially as the reinforcement signal can be attained 
only by a long output sequences. TD algorithm is the 
most famous to solve the problem which is presented 
by Sutton in 1988(Sutton,1988;1984). TD distributes 
credit through the differences between two 
successive predictions.   
Prediction is to predict a variable through the 
observed data. Consider the state …… ,,,, 21 tsss  

with the observed data …… ,,,, 21 txxx .,for each 

state transition from ts   to 1+ts  , a reinforcement 

signal tr  is defined. The value function of each state 
is defined as follows: 
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where 10 ≤< γ  is a discount factor. Temporal 
differences are defined as the differences between 
two successive estimations and have the following 
form. 
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where 1+ts  is the successive state of ts , )(~ sp  
denotes the estimate of the value function 

)(sp .Consider a general linear function 
approximator with a fixed basis function vector, the 
estimated value function can be denoted as 
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where T
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the state’s observed data vector ，
T

nt wwwW ),,,( 21 "=   is the weight vector. 
Based on gradient-descent methods., the 
corresponding incremental weight update rule is 
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where η  is the learning factor ， 

)(11 ttt xZZ φγλ += ++  is the eligibility trace 
vector. The above linear TD algorithm is proved to 
converge with probability 1(Brartke. and Barto,1996)  
which satisfies the following equation. 
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where ))()(()( 1
T

tttt xxZXA +−= γφφ ，

ttt rZXB =)( .The update equation (4) shows that 

the changes to W  depend only on the most recent 
trajectory, and after those changes are made, the 
trajectory and its rewords are simply forgotten. The 
approach, while requiring little computation per 
iteration, wastes data and may require sampling 
many trajectories to reach convergence. In order to 

using data more efficiently and fasting convergence, 
the least-squares(RL) methods is combined with TD.  
For the estimate of the value function )(~ sp  
discussed above, when linear function approximators 
are used, the least-squares estimation problem of (5) 
has the following objective function. 
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where )(),( tt XBXA  are defined as (5), ⋅  is a 
Euclid norm. Then the least-squares estimate of the 
weight vector W is computed according to the 
following equation. 
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As is well known in system identification, adaptive 
filtering and control, recursive least-squares methods 
are commonly used to solve the computational and 
memory problems of least-squares algorithms. In 
order to deduce the RLS-TD algorithm based on the 
above idea., the matrix inverse lemma is first given 
as follows: 
if nnnn RCRBRA ××× ∈∈∈ 11 ,, and A  is 
invertible, then 

111111 )()( −−−−−− +−=+ CABCAIBAABCA           
(8) 

let 1−= tt AP ， IP δ=0 ， ttt ZPK 11 ++ =  

where δ  is a positive number and I  is the identity 
matrix. According to equation (7) and (8), the weight 
update rules of RLS-TD are given by 
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With the initial conditions and the successive 
observed data, the weight vector W  can be 
estimated by equation (9), (10) and (11), as a result 
the estimated value function )(~

txp  is attained. 
 
 
3 REINFORCEMENT LEARNING CONTROL 

FOR  SHIP STEERING 
 
 Unlike the supervised learning problem in which the 
correct “target” output values are given for each 
input pattern to instruct the network’s learning, in 
reinforcement learning only simple “evaluative ” or  



     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
“critic” information are needed for learning. In the 
extreme case, these is only a single bit of information, 
to indicate whether the output is right or wrong. This 
is very significant in ship steering control. Under the 
disturbances of wave, wind, current and error in 
measure apparatus, only fuzzy information indicating 
current control effect such as good, normal or bad etc 
are provided. Depending on reinforcement learning, 
ship control effect can be improved in a certain 
extent by on-line adjusting the rudder angle and 
control parameters.  
The control structure is illustrated in Fig.1. It is 
composed of evaluation network(EN), action 
network (AN) and random action selection element 
(RASE). Evaluation network is used to evaluate 
current action according to external reinforcement 
signal )(tr  and environmental state data )(tx , and 
outputs evaluation signal )(tp . The internal 
reinforcement signal )(ˆ tr is provided by TD 
algorithm. Action network generates control action 

)(tδ according to environmental state data )(tx  and 
evaluation signal )(tp , and trains the network’s 
weights. Random action selection element selects a 
control action )(ˆ tδ  from the action set according to 

)(tδ , and acts on ship. 
 

3.1 Action Network 
 
Action network is a general fuzzy cerebellar model 
articulation controller (GFCMAC). Its output is the 
rudder angle δ  used to control ship motion. Fig.2 
illustrates the structure of the action network. For 
ship course control, course angle ψ and yaw rate 
γ should be firstly considered. So the inputs of this 

controller are ψψ −= de ( dψ is the set course, 

ψ is the actual course) and 
dt
dψγ = . The output is 

the computed rudder δ . 
 
Mapping MX ⇒ uses the rule of conventional 
CMAC. 
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where kim ,  is the address of mapping from input 

vector )( ji xq to middle variable m , gN  is the 

number of excited units, k  is the ordinal number of 
excited unit and )1(~0 −= gNk .  ⋅  is the floor 
function. The membership function of input variable 
is defined as Gaussian function. 
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When the mapping MX ⇒ is determinate， the 
position a  of input vector in A  is given by 
searching the table, and shown as  
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Fig.1 The structure of reinforcement learning 
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The output mapping is 
wxhaT )(=δ            (16) 

where x  is the sample input vector, Ta is the 

address vector of excited units. And )(xh  is the 
weight vector.. 
 
3.2 Evaluation Network 
 
Because of the dynamic effect of the ship, 
reinforcement signal )(tr  produced by current 
control value )(tδ can only be known at time step 

1+t . The action of evaluation network is to predict 
the possible operation state of the ship according to 
current input information, so the action network can 
learn and modify parameters in advance to improve 
the control performance. In this paper, the evaluation 
network is a radial basis functions neural network , 
and its inputs is the same as action network. As 
radial basis functions neural network is linear , it is 
convenient to use the RLS-TD algorithm to predict 
the value function.  

 
3.3 Reinforcement Signal 
 
Using the conventional learning rule(for example BP 
algorithm) to train the neural fuzzy network on-line, 
the correct “target” output value )(ˆ tδ  should be 
given for each input pattern )(tx  to instruct the 
network’s learning. But it is very difficult to satisfy 
such a requirement, so we turn to use reinforcement 
learning algorithm. Reinforcement learning makes 
the neural fuzzy network posses adaptive ability. The 
closed loop control effect is described by a 
reinforcement signal r . Unlike the supervised 
learning , r  is only the fuzzy evaluation to current 
control effect. In the extreme case, it is even a two-
value number { }1,1−∈r , 1−=r means “failure” 
and 1=r  means “success”. r  can also be a 
continuous number in the range ]1,1[− , 
corresponding to different degree of success or 
failure. the larger r , the better control effect. For 
ship course control in this paper, r  is defined as                                                                                                                                   

max
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e
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where ψψ −= de is the course error( dψ is the set 

course, ψ  is the actual course). If 2maxee >  then 

0<r . If 2maxee <  then 0>r . The meaning of 
equation(19) is that for ship course control the less 
the error ,the larger the reinforcement signal r  and 
the better the control effect.  And the degree of error 
can be shown in detail for r  is a continuous number 
in the range ]1,1[− . 
 
3.4 Parameter Learning 
Because the output )(tp  of evaluation network is 
the predicted reinforcement signal used to predict 

)(tr ,its learning should be prior to the action 
network. The previous proposed RLS-TD algorithm 
is used to learn the weights of the evaluation network 
by equation (9),(10)and (11) . 
The goal of the action network is to maximize the 
evaluation signal )(tp  of every state. The 
corresponding incremental weight update rule is 
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where η  is the learning factor. Here stochastic real 
valued algorithm is used to estimate the gradient 
information. The output δ  of action network dose 
not directly act on ship. In stead, it is treated as a 
expected rudder angle. The actual rudder angle is 
chosen by exploring a range )(tσ  around δ . )(tσ  
is a variable of Gaussian probabilistic distribution. 
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where K is a scaling coefficient. Once )(tσ  is 

confirmed, the actual rudder angle )(ˆ tδ can be 
calculated. 
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where )(⋅N  is a normal distribution function. And 
the gradient information is estimated by 
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where σ
δδ )ˆ( − indicates the standard error 

between actual rudder angle )(ˆ tδ  and expected 
rudder angle )(tδ . Equation (21) shows that if 

0)(ˆ >tr , actual rudder angle )(ˆ tδ  is better than 
expected rudder angle )(tδ ,and )(tδ  should be 

close to )(ˆ tδ ; vice versa. Once )(
)(

t
tp

δ∂
∂  is 

attained, the weights of the action network can be 
learned by equation (18). 
 
 

4 SIMULATION RESULTS 
 
The above algorithm is used in ship steering control. 
When training data are available no-line, the on-line 
supervised learning algorithm can perform very well 
(Yang,2002). But considering the real status of ship 
navigation, considerable error in the measurement 
signal may exist, the precise information is not easily 
obtained. Reinforcement learning that only needs 
simple fuzzy feedback information has practical 
meaning in this case 
Ship motion can be described either in state space 
mode or by input-output model. The former can deal 
with multivariable problem of ship steering control 
and the disturbances caused by waves, wind and 
currents directly and more accurately, but the 
computation burden is more heavy. The latter is also 
called response model, it omits the sway velocity but 



     

grasps the main characteristics of ship dynamics: 
ψψδ →→ � ,and the obtained differential 

equation can still preserve the nonlinear. The 
disturbances of wind, waves can even be converted 
to a kind of equivalent disturbance rudder angle as an 
input signal. In fact, response model is an extension 
of the linear Nomoto model. The second-order 
Nomoto model is 

δψψ
T
K

T
=+ ��� 1

                     (22) 

To some unstable ship, T
ψ�  must be replaced with a 

non-linear term )()( ψ�HT
K  and 

3)( ψβψψ ��� += aH  So the second-order non-
linear ship response model is expressed 
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parameters β,a and TK , is related to ship’s elocity. 
In the paper, simulation studies are made refer to 
cargo ship .Set the initial ship speed 

smV /2.70 =  ,then the dimension parameters 

are, sT 100= , sK 116.0= . 

Fig.3 shows the control curve result when set course 
is 40˚, wind force is Beaufort 3 and wind direction is 
30˚ .While Fig.4 and Fig 5 show the control curve 
result when set course is  10˚~ -10˚ ~ 30˚ ~ 0˚.The 
curves indicate that the course tracking is fast, 
control action reasonable and meet the performance 
of ship steering. The control result is partial satisfied. 
For further test of performance of the proposed 
algorithm, simulate the case that the instrument has 
measurement error by adding a constant disturbance 
(3˚). Fig.6 is the control curve where the constant 
disturbance is added at time step 200s and set course 
is 30˚. It is easily to see that the reinforcement 
learning can evidently reduce the static control error, 
but for the temporary control error it has little help. 
 
 
 

5 CONCLUSIONS 
 
In this paper, recursive least-squares temporal 
difference algorithm(RLS-TD) is deduced, which 
uses data more efficiently with fast convergence and  
less computational burden compared to conventional 
temporal difference algorithm.. Reinforcement 
learning based on recursive least-squares algorithm is 
applied to ship steering control, as provides an 
efficient way for the improvement of ship steering 
control performance. It removes the defect that the 
conventional intelligent algorithm learning must be 
provided with some sample data. The parameters of 
controller are on-line learned and adjusted. It can 
deal with the uncertainty of ship control in a way. 
Simulation results show that the ship course can be 
properly controlled in case of the disturbances of 
wave, wind, current and error in measure apparatus 
exist. It is demonstrated that the proposed algorithm 
is a promising alternative to conventional autopilots.  
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Fig.4  control curve ,course 10˚~ -10˚ ~ 30˚ ~ 0˚
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Fig.6  control curve , constant disturbance 
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Fig.5  control curve ,course  10˚~ -10˚ ~ 30˚ ~ 0˚
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Fig.3  control curve ,course 40˚ 


