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Abstract: This paper is concerned with the stability of uncertain linear systems
with mixed neutral and discrete delays. The uncertainty under consideration is of
polytopic type. A new analysis approach which combines the descriptor system
transformation and relaxation matrix is proposed to derive some less conservative
stability criteria. The criteria are dependent on both neutral delay and discrete
delay. Numerical examples are given to indicate improvements over some existing
results. Copyright c©2005 IFAC
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1. INTRODUCTION

Due to the increase in high performance of VLSI
systems, delay circuits become very important.
The two types of delay circuits which are widely
used in the literature are the partial element
equivalent circuits (PEEC’s) (Bellen et al., 1999;
Cullum et al., 2000) and the distributed networks
containing lossless transmission lines (Brayton,
1966). One can use the so-called neutral systems
to model these kinds of delay circuits. During
the past few years, the delay-dependent stability
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problem, which means that the stability condi-
tions include the delay information, of linear neu-
tral systems has attracted considerable attention.
The goal is to obtain the maximum allowed upper
bound on the delay that guarantees the stability of
a linear neutral system. Therefore, the admissible
allowed upper bound on the delay is the main
“performance index” for measuring the conser-
vatism of the conditions obtained. In the time-
domain, the direct Lyapunov method is a powerful
tool for studying the stability of linear neutral
systems. The Lyapunov-Krasovskii approach is
widely employed to consider the stability prob-
lem for the systems. In the following some more
recent results regarding discrete-delay dependent
stability conditions are briefly mentioned.

There are two kinds of linear neutral systems.
One kind of system is that the neutral delay is
the same as the discrete delay while the other
kind of system is one with different neutral de-
lay and discrete delay. For linear neutral systems



with the same neutral delay and discrete delay,
some delay-dependent stability criteria are pro-
posed in the literature (Han, 2001; Han, 2002;
Lien et al., 2000; Yue and Han, 2004a). For lin-
ear neutral systems with different neutral de-
lay and discrete delay, depending on whether
the stability conditions include the information
of neutral delay or not, the existing criteria
can be classified into two types; that is neutral-
delay-independent and discrete-delay-dependent
stability criteria and neutral-delay-dependent and
discrete-delay-dependent stability criteria (Han,
2001). Most of the existing results mainly focus on
the neutral-delay-independent and discrete-delay-
dependent stability criteria (Chen et al., 2000;
Han, 2004b; Han, 2004a; Niculescu, 2001b; Yue
and Won, 2003). To date, only very few result (He
et al., 2004) regarding neutral-delay-dependent
and discrete-delay-dependent stability criteria are
available. Therefore, there is still much work to
be done along this direction since the neutral
delay also has a sigificant effect on the stability of
the considered systems, which can be seen from
a simple scalar example, ÿ(t) + ẏ(t) + y(t) =
a [ÿ(t − r) + ẏ(t − r) + y(t − r)] , where a > 1;
when r = 0, the system is asymptotically stable
while it is unstable for any r > 0 (Kolmanovskii
and Myshkis, 1992).

In this paper, the effect of neutral delay on the
stability of uncertain linear neutral systems will
be investigated. Combining the descriptor system
transformation (Niculescu, 2001a) and relaxation
matrix method (He et al., 2004; Yue and Han,
2004a), we will derive some new neutral-delay-
dependent and discrete-delay dependent stability
criteria through which one can get less conserva-
tive results. Examples will be given to show the
effectiveness of the criteria.

Notation: Rn denotes the n-dimensional Eu-
clidean space, I is the identity matrix of appropri-
ate dimensions, ‖·‖ stands for the Euclidean vec-
tor norm or the induced matrix 2-norm as appro-
priate. The notation X > 0 (respectively, X ≥ 0),
for X ∈ Rn×n means that the matrix X is a real
symmetric positive definite (respectively, positive
semi-definite). ηi(A) denotes the ith eigenvalue of
matrix A. For an arbitrarily matrix B and two

symmetric matrices A and C,

[
A ∗
B C

]
denotes

a symmetric matrix, where ∗ denotes the entries
implied by symmetry.

2. SYSTEM DESCRIPTION AND MAIN
RESULT

Consider the following linear neutral system

ẏ(t) − F ẏ(t − r) = Hy(t) + Ky(t − τ), t ≥ t0

y(t) = φ(t), t ∈ [t0 − max{τ, r}, t0] , (1)

where y(t) ∈ Rn. H, K and F are constant
matrices of appropriate dimensions. If parameter
uncertainties exist in the system matrices H and
K and are of polytopic type, H and K can be
expressed as

[
H K

]
=

m∑
i=1

λi

[
Hi Ki

]
, (2)

where
∑m

i=1 λi = 1, 0 ≤ λi ≤ 1. r > 0 and τ > 0
are two constants which denote the neutral delay
and discrete delay, respectively. In what follows,
without loss of generality, we set t0 = 0. For
system (1), we need the following assumption.

Assumption 1. All the eigenvalues of matrix F
are inside the open unit circle, i.e. |ηi(F )| < 1
(i = 1, 2, ..., n).

Define (Niculescu, 2001a)

x1(t) = y(t), x2(t) = ẏ(t) − Hy(t). (3)

Then, (1) can be transformed into an equivalent
system

ẋ1(t) = Hx1(t) + x2(t) (4)

0 =−x2(t) + Kx1(t − τ)

+FHx1(t − r) + Fx2(t − r), (5)

x1(t) = φ(t), x2(t) = φ̇(t) − Hφ(t),

t ∈ [−max{τ, r}, 0] . (6)

Letting E =
[

I 0
0 0

]
, A =

[
H I
0 −I

]
, A1 =[

0 0
K 0

]
and A2 =

[
0 0

FH F

]
, (4)-(6) can be

rewritten as the following time-delay descriptor
system

Eẋ(t) = Ax(t) + A1x(t − τ) + A2x(t − r),

x1(t) = φ(t), x2(t) = φ̇(t) − Hφ(t),

t ∈ [−max{τ, r}, 0] , (7)

where x(t) =
[
xT

1 (t) xT
2 (t)

]T
. From (2), A, A1

and A2 can be expressed as

A =
m∑

i=1

λiA
i, A1 =

m∑
i=1

λiA
i
1, A2 =

m∑
i=1

λiA
i
2 (8)

where Ai =
[

Hi I
0 −I

]
, Ai

1 =
[

0 0
Ki 0

]
and Ai

2 =[
0 0

FHi F

]
.



To study the stability of (1), we first introduce
two definitions.

Definition 1. The neutral system (1) is said to
be exponentially stable, if there exist constants
α > 0 and β > 0 such that ‖y(t)‖ ≤
α sup−max{τ,r}≤s≤0

{
‖φ(s)‖ ,

∥∥∥φ̇(s)
∥∥∥}

e−βt.

Definition 2. The descriptor system (7) is said
to be E− exponentially stable, if there exist
constants α > 0 and β > 0 such that ‖Ex(t)‖ ≤
α sup−max{τ,r}≤s≤0

{
‖φ(s)‖ ,

∥∥∥φ̇(s)
∥∥∥}

e−βt.

Remark 1. It is clear to see that the exponential
stability of (1) is equivalent to the E− exponential
stability of (7). Therefore, in the following we
will employ system (7) to study the exponential
stability of (1).

Now we state and establish the following result for
the E− exponential stability of (7).

Proposition 1. Under Assumption 1, for given
scalars τ > 0 and r > 0, system (7) is E− expo-
nentially stable if there exist matrices P1 > 0, P2,
P3, Wi > 0 (i = 1, 2), Qj > 0 (j = 1, 2, 3), and
matrices Nk, Sk, Gk and Mk (k = 1, 2, 3, 4) of
appropriate dimensions such that


Ω ∗ ∗ ∗

rNT −rQ1 ∗ ∗
τST 0 −τQ2 ∗

δ(τ, r)GT 0 0 −δ(τ, r)Q3


 < 0, (9)

where

Ω =




Γ11 ∗ ∗ ∗
Γ21 Γ22 ∗ ∗
Γ31 Γ32 Γ33 ∗
Γ41 Γ42 Γ43 Γ44


 ,

N =
[
NT

1 NT
2 NT

3 NT
4

]T
,

S =
[
ST

1 ST
2 ST

3 ST
4

]T
,

G =
[
GT

1 GT
2 GT

3 GT
4

]T
,

M =
[
MT

1 MT
2 MT

3 MT
4

]T
,

δ(τ, r) =
{

τ − r, ifτ > r
r − τ, ifr > τ

,

Γ11 = W1 + W2 + N1E + ENT
1 + S1E

+EST
1 − M1A − AT MT

1 ,

Γ21 = N2E + S2E − EST
1 − EGT

1

−M2A − AT
1 MT

1 ,

Γ22 =−W1 − S2E − EST
2 − G2E − EGT

2

−M2A1 − AT
1 MT

2 ,

Γ31 = S3E + N3E − ENT
1 + EGT

1

−M3A − AT
2 MT

1 ,

Γ32 =−ENT
2 − S3E − G3E − EGT

2

−M3A1 − AT
2 MT

2 ,

Γ33 =−W2 − N3E − ENT
3 + G3E + EGT

3

−M3A2 − AT
2 MT

3 ,

Γ41 = PT + N4E + S4E − M4A + MT
1 ,

Γ42 =−S4E − G4E − M4A1 + MT
2 ,

Γ43 =−N4E + G4E + MT
3 − M4A2,

Γ44 = rQ1 + τQ2 + δ(τ, r)Q3 + M4 + MT
4 ,

P =
[

P1 P2

0 P3

]
.

Proof. See the full version (Yue and Han, 2004b)
of the paper.

Considering the parameter uncertainties of type
(8), we can obtain the following result.

Proposition 2. Under Assumption 1, for given
scalars τ > 0 and r > 0, the system (7) with pa-
rameter uncertainty described by (8) is E− expo-
nentially stable. if there exist matrices P l

1 > 0, P l
2,

P l
3, W l

i > 0 (i = 1, 2), Ql
j > 0 (j = 1, 2, 3), and

matrices N l
k, Sl

k, Gl
k (k = 1, 2, 3, 4; l = 1, 2, ...,m)

and Mk (k = 1, 2, 3, 4) of appropriate dimensions
such that


Ωl ∗ ∗ ∗
r
(
N l

)T −rQl
1 ∗ ∗

τ
(
Sl

)T
0 −τQl

2 ∗
δ(τ, r)

(
Gl

)T
0 0 −δ(τ, r)Ql

3


 < 0,(10)

where

Ωl =




Γl
11 ∗ ∗ ∗

Γl
21 Γl

22 ∗ ∗
Γl

31 Γl
32 Γl

33 ∗
Γl

41 Γl
42 Γl

43 Γl
44


 ,

N l =
[ (

N l
1

)T (
N l

2

)T (
N l

3

)T (
N l

4

)T
]T

,

Sl =
[ (

Sl
1

)T (
Sl

2

)T (
Sl

3

)T (
Sl

4

)T
]T

,

Gl =
[ (

Gl
1

)T (
Gl

2

)T (
Gl

3

)T (
Gl

4

)T
]T

,

M =
[
MT

1 MT
2 MT

3 MT
4

]T
,

δ(τ, r) =
{

τ − r, ifτ > r
r − τ, ifr > τ

,

Γl
ij (i, j = 1, 2, 3, 4) are the same as Γij in

Proposition 1 by replacing A, A1, A2, P, P1 >
0, P2, P3, Wi > 0 (i = 1, 2), Qj > 0 (j = 1, 2, 3),
and matrices Nk, Sk, Gk (k = 1, 2, 3, 4) with Al,
Al

1, Al
2, P l, P l

1 > 0, P l
2, P l

3, W l
i > 0 (i = 1, 2),

Ql
j > 0 (j = 1, 2, 3), and matrices N l

k, Sl
k, Gl

k

(k = 1, 2, 3, 4; l = 1, 2, ...,m),respectively, where

P l =
[

P l
1 P l

2

0 P l
3

]
.



Remark 2. Proposition 1 provides a neutral-
delay-dependent and discrete-delay-dependent
criterion for system (7). Similar to the proof
of Proposition 1, see (Yue and Han, 2004b),
we can obtain a neutral-delay-independent
and discrete-delay-dependent condition for sys-
tem (7). More specifically, we can conclude that
under Assumption 1, for a given scalar τ > 0,
the E− exponential stability of system (7) is
neutral-delay-independent and discrete-delay-
dependent if there exist matrices P1 > 0, P2, P3,
Wi > 0 (i = 1, 2), Q2 > 0, and matrices Sk, Mk

(k = 1, 2, 3, 4) of appropriate dimensions such that[
Ω̌ ∗

τST −τQ2

]
< 0, (11)

where

Ω̌ =




Γ̆11 ∗ ∗ ∗
Γ̆21 Γ̆22 ∗ ∗
Γ̆31 Γ̆32 Γ̆33 ∗
Γ̆41 Γ̆42 Γ̆43 Γ̆44


 ,

S =
[
ST

1 ST
2 ST

3 ST
4

]T
,

M =
[
MT

1 MT
2 MT

3 MT
4

]T
,

and Γ̆ij (i, j = 1, 2, 3, 4) are the same as Γij by
setting Ni = 0, Gi = 0 (i = 1, 2, 3, 4) and Q1 =
Q3 = 0. As for the system (7) with parameter un-
certainty of type (8), we can also obtain a similar
neutral-delay-independent and discrete-delay-
dependent condition.

In above two propositions, we consider the E-
exponential stability of system (7) for the case
where τ > r or r > τ. When τ = r, (7) reduces to
the following system

Eẋ(t) = Ax(t) + Ã1x(t − τ),

x1(t) = φ(t), x2(t) = φ̇(t) − Lφ(t),

t ∈ [−τ, 0] , (12)

where A =
[

H I
0 −I

]
, Ã1 =

[
0 0

K + FH F

]
.

Similarly, when parameter uncertainties exist in
the matrices M and L and are of polytopic type,

A =
m∑

i=1

λiA
i, Ã1 =

m∑
i=1

λiÃ
i
1 (13)

where Ai =
[

Hi I
0 −I

]
and Ãi

1 =
[

0 0
Ki + FHi F

]
.

Then, similar to Propositions 1 and 2, we can
obtain the following results for the case of τ = r.

Proposition 3. Under Assumption 1, for a given
scalar τ > 0, system (12) is E− exponentially
stable if there exist matrices P1 > 0, P2, P3,

W > 0, Q > 0, Ni and Mi (i = 1, 2, 3) of
appropriate dimensions such that




Γ̃11 ∗ ∗ ∗
Γ̃21 Γ̃22 ∗ ∗
Γ̃31 Γ̃32 Γ̃33 ∗
τNT

1 τNT
2 τNT

3 −τQ


 < 0, (14)

where

Γ̃11 = W + N1E + ENT
1 − M1A − AT MT

1 ,

Γ̃21 =−ENT
1 + N2E − ÃT

1 MT
1 − M2A,

Γ̃22 =−W − N2E − ENT
2 − M2Ã1 − ÃT

1 MT
2 ,

Γ̃31 = PT + MT
1 + N3E − M3A,

Γ̃32 = MT
2 − N3E − M3Ã1,

Γ̃33 = τQ + M3 + MT
3 ,

P =
[

P1 P2

0 P3

]
.

Proposition 4. Under Assumption 1, for given
scalars τ > 0, the system (12) with parameter
uncertainty described by (13) is E− exponentially
stable if there exist matrices P l

1 > 0, P l
2, P l

3,
W l > 0, Ql > 0, N l

i (l = 1, 2, ...,m) and Mi

(i = 1, 2, 3) of appropriate dimensions such that


Γ̃l
11 ∗ ∗ ∗

Γ̃l
21 Γ̃l

22 ∗ ∗
Γ̃l

31 Γ̃l
32 Γ̃l

33 ∗
τ

(
N l

1

)T
τ

(
N l

2

)T
τ

(
N l

3

)T −τQl


 < 0, (15)

where Γ̃l
ik (i, k = 1, 2, 3) are the same as Γ̃ik in

Corollary 1 by replacing A, Ã1, P, P1 > 0, P2, P3,
W > 0, Q > 0, and Ni with Al, Ãl

1, P
l, P l

1 > 0,
P l

2, P l
3, W l > 0, Ql > 0, and N l

i , respectively,

where P l =
[

P l
1 P l

2

0 P l
3

]
.

3. NUMERICAL EXAMPLES

Example 1. Consider the linear neutral system
(1) with

H =
[−0.9 0.2

0.1 −0.9

]
,K =

[−1.1 −0.2
−0.1 −1.1

]
,

F =
[−0.2 0

0.2 −0.1

]
.

Two cases are considered for this example.

Case I: τ = r

Using criteria in (Han, 2004a; He et al., 2004; Lien
and Chen, 2003) and this paper, the results on
the maximum allowed time-delay for stability are
compared in Table 1. It can be seen that the
result using the method in this paper indeed



improves the ones derived using the mentioned
existing methods. Other results surveyed in (He
et al., 2004) are even more conservative.

Table 1. Comparison of τmax using dif-
ferent methods.

Methods τmax

(Lien and Chen, 2003) 0.8844

(Han, 2004a) 1.6014

(He et al., 2004) 1.6527

This paper 1.7884

Case II: τ �= r

Applying the neutral-delay-independent and
discrete-delay-dependent stability condition men-
tioned in Remark 2, the maximum discrete de-
lay τmax for asymptotic stability is computed as
1.7124 while the result in (He et al., 2004) was
reported as 1.6527.

The effect of the neutral delay r on the maximum
discrete delay τmax is shown in Table 2 employing
the methods in (He et al., 2004) and this paper.
It is clear to see that the method is this paper can
give better results than that in (He et al., 2004).

Table 2. Bound τmax calculated for var-
ious r.

r 0.01 0.05 0.1 0.2

(He et al., 2004) — — 1.7100 1.6987

This paper 1.7594 1.7511 1.7447 1.7351

r 0.7 0.8 0.9 1.0

(He et al., 2004) 1.6624 1.6591 1.6564 1.6543

This paper 1.7166 1.7173 1.7194 1.7213

r 1.5 1.6 1.6527 1.7884

(He et al., 2004) 1.6527 1.6527 1.6527 1.6527

This paper 1.7464 1.7545 1.7619 1.7884

r 0.3 0.4 0.5 0.6

(He et al., 2004) 1.6883 1.6792 1.6718 1.6664

This paper 1.7246 1.7211 1.7200 1.7161

r 1.1 1.2 1.3 1.4

(He et al., 2004) 1.6531 1.6527 1.6527 1.6527

This paper 1.7263 1.7297 1.7352 1.7402

r 1.8 1.9 2.0 1000

(He et al., 2004) — — — 1.6527

This paper 1.7720 1.7509 1.7377 1.7125

Table 3 shows that when |τ − r| → 0+, the maxi-
mum discrete delay τmax approaches the result for
the case of τ = r.

Table 3. Bound τmax calculated for dif-
ferent r around τ .

r 1.7584 1.7684 1.7784 1.7884

τmax 1.7780 1.7783 1.7814 1.7884

r 1.7984 1.8084 1.8184

τmax 1.7760 1.7711 1.7701

Example 2. Consider the uncertain linear neutral
system (1) with

H =
[−2 + δ1 0

0 −1 + δ2

]
,

K =
[−1 + γ1 0

−1 −1 + γ2

]
,

F =
[

0.1 0
0 0.1

]
,

where δi and γi (i = 1, 2) denote the parameter
uncertainties satisfying |δ1| ≤ 1.6, |δ2| ≤ 0.05,
|γ1| ≤ 0.1, |γ2| ≤ 0.3.

When τ = r, it is reported in (Yue and Han,
2004a) that the maximum allowed value of τmax

is 1.54. Now we consider the case of τ �= r. Table
4 lists the numerical results for different r. From
this table one can see again that |τ − r| → 0+,
the maximum discrete delay τmax approaches the
result for the case of τ = r.

Table 4. Comparison of τmax using dif-
ferent methods.

r 0.1 0.5 1.0 1.1 1.2 1.3

τmax 1.42 1.40 1.43 1.44 1.45 1.47

r 1.4 1.54 1.6 1.7 1.8 1.9

τmax 1.49 1.54 1.49 1.45 1.43 1.41

4. CONCLUSION

Some new neutral-delay-dependent and discrete-
delay dependent stability criteria have been ob-
tained for a class of linear neutral systems. It has
been shown through numerical examples that the
criteria in this paper can provide less conservative
results than some existing method. We have also
concluded that when neutral delay is the same as
discrete delay, the maximum allowed delay bound
for stability can be achieved.
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