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Abstract: The adaptive input-output linearizing control has been successful in
achieving the asymptotic output tracking stability for a shunt DC motor, however,
persistent excitation (PE) of the regressor has not been investigated. The major
difficulty is the ultimate behaviors of the estimated parameters and the field
current are not predictable. Nevertheless, it is found that PE can be attained under
some mild assumptions on the system and the reference trajectories. Simulation
results confirming the assertion are given in the final.
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1. INTRODUCTION

Shunt DC motors are widely used in various appli-
cations due to their capability of wide-range speed
regulation and relatively high torque regarding
their weight. Their dynamics can be adequately
described by a three-state nonlinear model. The
adaptive input-output linearizing control has been
successful in accomplishing the tasks of trajectory
tracking in the presence of parameter uncertainty
(Chiasson & Bodson, 1991; Tafur-Sotelo & Vélez-
Reyes, 2002). However, checkable conditions for
the PE of the regressor are not available so far.

PE guarantees not only the exponential para-
metric stability but also improves robustness and
transient performances (Narendra & Annaswamy,
1989). However, prior check of its fulfillment is
not easy especially in a general nonlinear closed-
loop system. It is even more difficult in this case
because the estimated parameters and the unob-
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servable field current entering the regressor are
basically unpredictable. Nevertheless, under some
checkable mild assumptions, it is found that the
very desired property, i.e., persistent excitation,
can actually be obtained eventually.

The remainder of the paper is organized as fol-
lows. The mathematical model and the properties
achieved by the adaptive input-output linearizing
control scheme are reviewed in Section 2. Suffi-
cient conditions for the PE of the regressor are
established in Section 3. A numerical example is
given in Section 4 to illustrate the main idea of
the assertion of this paper. Concluding remarks
are finally made in Section 5.

2. PRELIMINARIES

A shunt DC motor, as depicted in Fig. 1, is a mo-
tor in which the field circuit is connected in par-
allel with the armature circuit. As a consequence,



Fig. 1. Schematic diagram of a shunt DC motor

their dynamics are strongly coupled together. Its
dynamical behavior can be described by

ẋ1 = x2

ẋ2 =−αTφ(x) + βx3u

ẋ3 =−γ1x3 + γ2u (1)

where x1 is the angular displacement of the motor
shaft, x2 is the corresponding angular velocity, x3

is the field current, u is the control input, φ(x) =
[x2, x2x

2
3, τL]T , α = [B/J,KmKbK

2
F /(JRa), 1/J ]T ,

β = KmKF /(JRa), γ = [(Radj+RF )/LF , 1/LF ]T .
Physical meanings of the system parameters
m,J,B, Km, Kb,KF , Ra, RF , Radj, LF , and τL
appeared above can be found in (Chiasson & Bod-
son, 1991), they are omitted here due to space lim-
itation. By viewing x1 as the output, the system
(1) can be regarded as a linearizable system with
relative degree two, where x3 is the unobservable
state (Chiasson & Bodson, 1991). Therefore, given
a reference trajectory xd

1(t), the adaptive input-
output linearizing control proposed by Sastry &
Isidori (1989) can be applied to guarantee the
asymptotic tracking stability. In this case, it can
be written explicitly as

u =
α̂Tφ(x) + v

β̂x3

(2)

where α̂ and β̂ are the estimates for α and β
respectively and the extra control input v is given
by

v(t) = ẋd
2 − kT e, (3)

with k = [k1, k2]T the control gain and e =
[e1, e2]T = [x1 − xd

1, x2 − ẋd
1]

T the tracking error
vector. Apparently, full-state measurement and
the knowledge of the load torque are required for
implementing the control (2). Substituting (2) and
(3) into (1), it yields

ė=Ae+B(θ̃Tψ(t))

ẋ3 =−γ1x3 + γ2u (4)

where θ̃ = [α̂− α, β̂ − β]T and

A=
[

0 1
−k1 −k2

]
, B =

[
0
1

]
ψ(t) = [x2, x2x

2
3, τL,−

α̂Tφ(x) + v(t)

β̂
]T (5)

The corresponding parameter update law is

˙̂
θ(t) = −c(eTPB)ψ(t) (6)

with c > 0 being the update gain and the symmet-
ric positive-definite matrix P being the solution to
the following Lyapunov equation

ATP + PA = −Q, Q > 0. (7)

To avoid the control (2) from singularity and
to ensure the boundedness of the state x3, the
following assumptions are needed.

A1) The parameter vector θ and its estimates θ̂
are confined by

0 < θim ≤ θi(, θ̂i) ≤ θiM , i = 1, · · · , 4 (8)

where the bounds θim and θiM are known a
priori.

A2) The two criteria, namely, | θ̂4x3 |> δ0 > 0
and γ1 − (γ2θ̂2/θ̂4)x2 > δ1 > 0, hold for all
time.

Remark 1. For fulfilling A1), certain parameter
projection algorithms may be incorporated in real
applications. Moreover, verification of A2) may
not be easy if prior knowledge of γ1 and γ2 is
not available. However, they are all assumed to
sustain for simplicity.

Under A1)-A2), the control (2) ensures the follow-
ing two properties (Chiasson & Bodson, 1991)

P1) All the signals in the closed-loop system are
bounded.

P2) e(t), dθ̂/dt→ 0 as t→∞.

The properties P1)-P2) can be easily seen by se-
lecting the Lyapunov function V (e, θ̃) = 1/2(eTPe
+θ̃T Γ−1θ̃) and calculating its time derivatives,
which results in

V̇ (e, θ̃) = eTP ė+ θ̃T Γ−1 ˙̃
θ

≤−λmin(Q)‖e‖2 (9)

where λmin(Q) is the minimum eigenvalue of the
matrix Q. The fact of e ∈ L2 in (9), together with
ė ∈ L∞ from (4), ensures the sustenance of P2)



from Barbalat’s lemma. Next, by multiplying both
sides of (4) by x3, it yields

q̇ =−2(γ1 − γ2
θ̂2

θ̂4
x2)q + 2

γ2

θ̂4
(v + θ̂1x2

+θ̂3τL) (10)

where q = x2
3. From A2) and the boundedness of

the signals e(t) and θ̃(t) guaranteed by (9), the
system (10) can be regarded as an exponentially
stable system with bounded input, and therefore
P1) is ensured.

3. PERSISTENT EXCITATION

The obstacle for establishing the PE, as stated,
lies in that θ̂(t) and x3 entering the regressor
can not be predicted in advance. Nevertheless,
by virtue of P1)-P2) and making some mild as-
sumptions, the difficulty will be conquered in this
section.

First, for ease of reference, the definition of PE is
quoted here (Narendra & Annaswamy, 1989).

Definition 1 A bounded piecewise continuous sig-
nal vector Ψ : R+ 7→ Rn is PE in Rn with a level
of excitation εe if there exist constants te, Te > 0
such that

1
Te

ξ+Te∫
ξ

| ζT Ψ(t) | dt ≥ εe, ∀ξ ≥ te (11)

where ζ is any a unit vector in Rn.

In addition to the prior assumptions A1)-A2),
the following assumptions are also included for
attaining the goals.

A3) The load torque τL is a known constant.
A4) The reference trajectory xd

1(t) is smooth and
T -periodic.

A5) The set of functions given below is linearly
independent within [0, T ].

ẍd
2x

d
2, (ẋ

d
2)

2, ẋd
2(x

d
2)

2, (xd
2)ẋ

d
2, ẋ

d
2,

(xd
2)

3, (xd
2)

2, 1 (12)

Based on P1)-P2) and the above assumptions, it
will be shown that the field current x3 will stay
in the vicinity of some T -periodic orbit after the
time becomes sufficiently large. Let’s proceed from
defining two constants here

c2 = max
t≥0

xd
2(t),

εa =
δ1θ4m

2θ6M
[
c2(θ4m + θ2M )T

θ4m
+ θ2M ]−1 (13)

Since e(t), ˙̂θ(t) → 0 as t→∞, by definition, there
exists a ta > 0 such that

‖e(t)‖, ‖ ˙̂
θ(t)‖ ≤ εa, ∀t ≥ ta. (14)

Moreover, it is easy to see that the following
subset in the parameter space is well defined.

Ωθ = {θ̂ | θ̂(t) ∈ R4, t ≥ ta} (15)

Given a tb ≥ ta, the vector θ̄ = θ̂(tb) is apparently
in Ωθ. It follows that

‖δθ̂(t)‖ ∆= ‖θ̂(t)− θ̄‖ ≤ εa · (t− tb),

∀t ≥ tb (16)

Along that line, the lower bound for (γ1−γ2
θ̄2
θ̄4
xd

2)
can also be estimated as

γ1 − γ2
θ̄2
θ̄4
xd

2(t) = (γ1 − γ2
θ̂2(t)

θ̂4(t)
x2(t))

+γ2
θ̂2(t)

θ̂4(t)
x2(t)− γ2

θ̂2(t)

θ̂4(t)
x2(t)

= (γ1 − γ2
θ̂2(t)

θ̂4(t)
x2(t)) + γ2(

xd
2

θ̂4(t)
)δθ̂2(t)

−γ2(
θ̄2x

d
2

θ̄4θ̂4(t)
)δθ̂4(t) + γ2

θ̂2(t)

θ̂4(t)
e2(t)

≥ (γ1 − γ2
θ̂2(t)

θ̂4(t)
x2(t))− θ6M

c2(θ4m + θ2M )
θ24m

·

| δθ̂(t) | −θ6M
θ2M

θ4m
| e2(t) |

≥ δ1 −
θ6M

θ4m
[
c2(θ4m + θ2M )

θ4m
(t− tb) + θ2M ]εa

> δ1/2 > 0, ∀t ∈ [tb, tb + T ] (17)

By periodicity, the inequality (17) implies that

γ1 − γ2
θ̄2
θ̄4
xd

2(t) > δ2 > 0,∀t ≥ 0, θ̄ ∈ Ωθ (18)

where δ2 > δ1/2.

Consequently, the reference model

q̇m = −2(γ1 − γ2
θ̄2
θ̄4
xd

2)qm + up(t) (19)

is an exponentially stable and periodically varying
system with periodic input up(t) = 2(γ2/θ̄4)(ẋd

2(t)
+θ̄1xd

2(t) + θ̄3τL). The state qm(t) then tends to
the T -periodic trajectory qθ̄ given by (Callier &
Desoer, 1991)

qθ̄(t) =
h(t, 0)

1− h(T, 0)

T∫
0

h(T, η)up(η)dη



+

t∫
0

h(t, η)up(η)dη, t ∈ [0, T ) (20)

where h(t, t0) = exp(−2
∫ t

t0
[γ1 − γ2

θ̄2
θ̄4
xd

2(τ)]dτ) is
the state transition matrix. Actually, given any a
constant vector θ̄ ∈ Ωθ in (19), there corresponds
to a T -periodic trajectory qθ̄, toward which the
state qm(t) will converge. Denote Ωq as the set of
all the T -periodic trajectories qθ̄ with respect to
each θ̄ ∈ Ωθ. By subtracting (10) from (19), the
error dynamics for q(t)− qm(t), denoted as em(t),
will be

ėm(t) = −2[γ1 − γ2
θ̄2
θ̄4
xd

2(t)]em(t) + ∆(t),(21)

where

∆(t) = 2γ2{(
x2

θ̄4
)δθ̂1 − (

xd
2q

θ̄4
)δθ̂2 +

1τL
θ̄4

δθ̂3

− 1

θ̂4θ̄4
(−θ̄2xd

2q + v + θ̂1x2 + θ̂3τL)δθ̂4

−k1

θ̄4
e1 +

1
θ̄4

(θ̄1 − k2 −
θ̂2θ̄4

θ̂4
q)e2} (22)

On the other hand, the regressor ψ(t) in (5) can
be expressed as

ψ(t) ∆= ψd(t) + δψ(t)

= [xd
2, x

d
2qθ̄, τL,

δ̄2
T
φ(xd) + ẋd

2

β̄
]T

+[e2, e2q + xd
2eq, 0, fT δθ̂ + gT et]T (23)

where eq = q − qθ̄, δφ(x) = φ(x) − φ(xd), et =
[e1, e2, eq]T and

f = [f1, f2, f3, f4]T

= [
xd

2

θ̄4
,
x2q

θ̄4
,
τL
θ̄4
,− θ̂1x2 + θ̂2x2q + θ̂3τL + v

θ̄4θ̂4
]T

g = [g1, g2, g3]T

= [−k1

θ̄4
,
θ̂1 + θ̄2q − k2

θ̄4
,
θ̄2x

d
2

θ̄4
]T (24)

Consequently, the upper bound for | ∆(t) | in (22)
can be written in a form of

| ∆(t) |≤M1‖δθ̂(t)‖+M2‖e(t)‖ (25)

with

M1 = 2γ2 max
t

(| x2

θ̄4
|, | x

d
2q

θ̄4
|, | τL

θ̄4
|, | 1

θ̂4θ̄4

·{−θ̄2xd
2q + v + θ̂1x2 + θ̂3τL} |)

M2 = 2γ2 max
t≥0

(| k1

θ̄4
| + | 1

θ̄4
(θ̄1 − k2

− θ̂2θ̄4
θ̂4

q) |) (26)

Similarly, the upper bound for | ζT δψ | can also
be written as

| ζT δψ(t) |= | ζ1e2 + ζ2(e2q + xd
2eq) + ζ4(fT δθ̂

+gT et) |
≤M3‖δθ̂(t)‖+M4‖e(t)‖

+M5 | eq(t) | (27)

with ζ ∈ R4 an arbitrary unit vector and

M3 = max
t≥0

‖f(t)‖,

M4 = max
t≥0

(| g1(t) |, | g2(t) | + | q(t) | +1)

M5 = max
t≥0

(| xd
2(t) |, | g3(t) |) (28)

Apparently, the above constants Mi, i = 1, · · · , 5
are all finite.

Now, by virtue of periodicity, PE of ψd(t) is equiv-
alent to the linear independence among its compo-
nent functions within [0, T ] (Huang, 2004). How-
ever, since prior knowledge of qθ̄ entering ψd(t) is
not available, verifiable conditions must be stated
in terms of known functions. The remedy is stated
here.

Lemma 2. Sustained A1)-A5), the function ψd in
(23) is PE.

Proof. First, it will be shown that A5) implies
that the component functions of ψd(t) are linearly
independent within [0, T ]. Suppose they are not.
Then, by definition, there exist constants bi, i =
1, · · · , 4, with at least one of them being nonzero,
such that

b1ẋ
d
2 + b2x

d
2qθ̄ + b3x

d
2 + b4τL = 0 (29)

When b2 is zero, A5) will then be violated due to
(29). Therefore, we only need to consider the case
with b2 6= 0. Differentiating (29) with respect to
time and re-arranging, it yields

q̇θ̄ = − 1
b2xd

2

(b1ẍd
2 + b2ẋ

d
2qθ̄ + b3ẋ

d
2) (30)

Since qθ̄ also satisfies (19), therefore, by equating
it with (30) results in

− 1
b2xd

2

(b1ẍd
2 + b2ẋ

d
2qθ̄ + b3ẋ

d
2)

= −2(γ1 −
γ2θ̄2
θ̄4

xd
2)qθ̄ + 2

γ2

θ̄4
(ẋd

2 + θ̄1x
d
2

+γ2τL) (31)

and therefore

qθ̄ = (2xd
2(γ1 −

γ2θ̄2
θ̄4

xd
2)− ẋd

2)
−1 · {2γ2

θ̄4
xd

2



(ẋd
2 + θ̄1x

d
2 + γ2τL) + (b1/b2)ẍd

2

+(b3/b2)ẋd
2} (32)

Finally, by substituting (32) into (29) and some
straightforward manipulations, the following equa-
tion can be obtained

m1ẍ
d
2x

d
2 +m2(ẋd

2)
2 +m3ẋ

d
2(x

d
2)

2 +m4(xd
2)

·ẋd
2 +m5ẋ

d
2 +m6(xd

2)
3 +m7(xd

2)
2 = 0 (33)

where mi, i = 1, · · · , 7 are certain constants, with
at least one of them being nonzero. Hence, con-
tradiction of A5) occurs.

The above linear independent property implies
that (Huang, 2004)

1
T

T∫
0

| ζTψd(t) | dt ≥ ε(θ̄), ∀θ̄ ∈ Ωθ, (34)

where ζ ∈ R4 is a unit vector, ε(θ̄) is some
positive number depending on θ̄. Since the set Ωθ

is bounded, the minimum of all those ε(θ̄),∀θ̄ ∈
Ωθ, denoted by εm, is well-defined, i.e.,

1
T

T∫
0

| ζTψd(t) | dt ≥ εm > 0, ∀θ̄ ∈ Ωθ (35)

By the periodicity of the integrand in (35), it
follows

1
T

ξ+T∫
ξ

| ζTψd(t) | dt ≥ εm > 0,

∀ξ ≥ 0, θ̄ ∈ Ωθ (36)

In other words, Lemma 1 implies the PE of all the
possible functions ψd resulting from every possible
θ̄ ∈ Ωθ. 2

Since additive vanishing disturbances do not alter
the PE of a signal, an immediate consequence
of lemma 1 is that the regressor ψ(t) will be
persistently excited provided δψ(t) → 0 as t→∞.
This will happen when θ̂ asymptotically converges
to some constant vector θ̄ ∈ Ωθ. Unfortunately,
the property of ˙̂

θ → 0 as t → ∞ in P2) does
not totally ensure its occurrence. Therefore, both
∆(t) and δψ(t) can not be viewed as vanishing
disturbances in general. Nevertheless, if δψ in (23)
can be shown to be less than εm for any a time
period [ξ, ξ + T ] in (11), PE of the regressor can
still be inferred. This will happen if we allow δψ be
calculated with respect to each qθ̄ ∈ Ωq closest to
q(t) within each time period [ξ, ξ+T ]. It is actually
the main idea behind the upcoming derivations.

Before the start, the following positive constants
are defined.

ct =
1
δ2
ln(

kcqMM5

εm
),

ε1 = min(εa,
2εm
kc

[M3(2ct + T ) +M4]−1,

δ2εm
kcM5

[M1(ct + T ) +M2]−1) (37)

where kc is a positive number at disposal and
qM = max | q(t) |, t ≥ 0.

It can be stated that

Theorem 1. The regressor ψ in the closed-loop
system (4) will be persistently excited provided
A1)-A5) above hold for all time.

Proof. From P2), there exists a positive t1 > 0
with respect to ε1, such that

‖e(τ)‖, ‖ ˙̂
θ(τ)‖ ≤ ε1, ∀τ ≥ t1. (38)

Define tp
∆= t1 + ct. The time instant ts = ξ − ct,

for an arbitrarily given ξ ≥ tp, is well defined.
Apparently, θ̂(ts) ∈ Ωθ. Let the constant vector
θ̄ in (21) be equal to θ̂(ts). The δθ̂ there will be
bounded by

‖δθ̂(τ)‖= ‖θ̂(τ)− θ̄‖ ≤ ε1(τ − ts),

∀τ ≥ ts (39)

and consequently the inequality (25) can be writ-
ten as

| ∆(τ) |≤ [M1(τ − ts) +M2]ε1, ∀τ ≥ ts(40)

Based on (40), the deviation of q(t) from qθ̄(t),
denoted by eq(t), will be bounded by

| eq(t) |≤| em(t) | + | qm(t)− qθ̄(t) |
≤ | h(t, ts) | ·(| em(ts) | + | qm(ts)

−qθ̄(ts) |) +

t∫
ts

| h(t, τ) || ∆(τ) | dτ

≤ e−δ2(t−ts)[| em(ts) | + | qm(ts)− qθ̄

(ts) |] + ε1

t∫
ts

| [M1(τ − ts) +M2] ·

e−δ2(t−τ) | dτ

≤ 4qMe−δ2(t−ts) +
ε1
δ2

[M1(t− ts) +M2]

≤ 4qMe−δ2ct +
ε1
δ2

[M1(ct + T ) +M2]

≤ 4εm
kcM5

+
εm
kcM5



≤ 5εm
kcM5

, ∀t ∈ [ξ, ξ + T ], ξ ≥ tp (41)

Accordingly, the lower bound for | ζTψ(t) |, by
taking (27), (39) and (41) into account, can be
estimated as

| ζTψ(t) | ≥ | ζTψd(t) | −M3ε1(t− ts)−M4ε1

≥−M5 | eq || ζTψd(t) | −[M3(t− ts)

+M4]ε1 −
5εm
kc

(42)

Let Te = T and te = tp in (11). The integral there
can now be calculated as

1
T

ξ+T∫
ξ

| ζTψ(t) | dt

≥ 1
T

ξ+T∫
ξ

| ζTψd(t) | dt− [
1

2T
M3(t− ts)2 |ξ+T

ξ

+M4] · ε1 −
5εm
kc

≥ 1
T

ξ+T∫
ξ

| ζTψd(t) | dt−
εm
kc

− 5εm
kc

≥ (1− 6
kc

)εm, ∀ξ ≥ tp (43)

Therefore, by selecting any a kc > 6, the PE of
the regressor ψ can be concluded. 2

4. SIMULATION

To demonstrate the validity of our assertion, a
numerical example of the closed-loop system (4)
is given in this section. To fulfill A4)-A5), the
following reference trajectory is assigned

xd
1(t) = sin 0.8t+ sin t+ cos t (44)

The adopted numerical values for the parameters
in (1) are: k1 = 10.0, k2 = 10.0, c = 2.0,τL =
6.5, θ = [0.1, 0.8, 1.0, 2.0]T , γ = [0.8, 1.0]T . With
respect to xd

1(t) in (44), it is not hard to conclude
that A5) is fulfilled after some straightforward
calculations. As can be expected, the estimation
errors will converge to zero asymptotically as
depicted in Fig. 2.

5. CONCLUSION

Sufficient conditions, listed in A1)-A5), for the PE
of the regressor in an adaptive input-output lin-
earizing tracking control of a shunt DC motor, are
established. Once PE is ensured, as well known, it
ensures not only the exponential stability of the

Fig. 2. Estimation errors vs. time

parametric equilibrium, but also better transient
performances. Therefore, the achievements here
are appealing to corresponding control and iden-
tification designs.

Extension of the results here to more general
systems is interesting and under our investigation.
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