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Abstract: Nonlinear filtering is certainly very important in estimation since most
real-world problems are nonlinear. In this paper, we devote the effort to use the
unscented transform (UT) to improve Air Traffic Control (ATC) tracking. The
simulation results show that the UT improved the tracking performance compared
to the traditional methods for the track-while-scan (TWS) ATC application.
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1. INTRODUCTION

Recently, many efforts have been devoted in ex-
tending the unscented transform (UT) to the
Bayesian filtering problems. The UT is a method
for calculating the statistics of a random vari-
able which undergoes a nonlinear transformation
and builds on the principle that it is easy to
approximate a Gaussian distribution than it is
to approximate an arbitrary nonlinear function or
transformation (Julier et al., 1997).

The straightforward extension of the UT to the re-
cursive estimation is the unscented Kalman filter
(UKF) (Julier et al., 1997). The UKF is a power-
ful nonlinear estimation technique and has been
shown to give well performance in a variety of
applications over extended Kalman filter (EKF).

Another extension of the UT to the recursive
estimation is the unscented particle filter (UPF).
Merwe et al. uses a UKF for proposal distribution
within the particle filter framework (Merwe et
al., 2000). The UPF takes advantage of the good
features of both UKF and particle filters, and
avoids their limitations and has been shown to

perform better than other sequential estimation
algorithms.

Although the UKF and UPF have been applied
to a wide range of Bayesian estimation problems,
to the best of our knowledge there has been
no attempt to use it to improve ATC tracking.
Therefor, in this paper, we explore their potential
benefits in this area. In a simulation study we
compare these filters to the classical filter such
as Extended Kalman filter and particle filter for
an Air Traffic Control (ATC) track-while-scan
(TWS) application, respectively. The problem un-
der consideration incorporates nonlinear effects
both in the dynamic and measurement model and
some constraints on the system states.

The remaining part of this paper is organized as
follows. In Section 2, we will begin with Bayesian
description for maneuvering target tracking. The
unscented transform and its application in non-
linear/non-Gaussian Bayesian tracking will be
proposed in section 3. The mathematical model
and system dynamics for ATC tracking and the
parameter selection for the algorithms will be



presented in section 4. In section 5, the simulation
results will be presented. Conclusion will be drawn
in Section 6.

2. BAYESIAN DESCRIPTION FOR
MANEUVERING TARGET TRACKING

Many recursive estimation problems can be for-
mulated as

xk+1 = f(xk,wk) (1)

yk = h(xk,vk) (2)

where f is a possibly non-linear function of the
state xk ∈ <n and the observation yk ∈ <m is
often a non-linear mapping of the current state.
Both the dynamic model and the measurement
model are inaccurate, due to modeling and/or
sensor errors. This is described by the stochas-
tic processes wk and vk. Then the objective of
tracking is to recursively estimate and predict the
state xk using the observations y1:k = {yi}k

i=1 up
to and including time k.

From a Bayesian perspective, the tracking prob-
lem is required to construct the pdf p(xk|y1:k),
given the data y1:k up to time k. It is assumed the
signals are independent with probability densities
p(wk), p(vk), and the initial pdf, p(x0|y0) ≡
p(x0), of the state vector, also known as the
prior, is available (y0 being the set of no mea-
surements) and independent. Then, in principle,
the pdf p(xk|y1:k) may be obtained recursively in
two stages: time update in (3) and measurement
update in (4).

p(xk+1|y1:k) =
∫

<n

p(xk+1|xk)p(xk|y1:k)dxk (3)

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
(4)

These equations can easily be derived using the
Markov property, Bayes’s rule and some standard
calculations from probability theory.

The recurrence relations (3) and (4) form the basis
for the optimal Bayesian solution. This recursive
propagation of the posterior density is only a
conceptual solution in that in general, it cannot
be determined analytically.

3. UNSCENTED KALMAN FILTER

3.1 The Unscented Transform (UT)

Consider propagating a n-dimension random vari-
able x through a nonlinear transformation y =

1. Compute the set of 2n+1 points from the rows
or columns of the matrix

√
(n + λ)Pxx:

x0 = mx

x0 = mx + (
√

(n + λ)Pxx)i, i = 1, . . . , n

x0 = mx − (
√

(n + λ)Pxx)n+i, i = 1, . . . , n

and the associated weights:

Wm
0 = λ/(n + λ)

W c
0 = λ/(n + λ) + (1− α2 + β)

Wm
i = λ/{2(n + λ)} i = n + 1, . . . , 2n

W c
i = λ/{2(n + λ)} i = n + 1, . . . , 2n

Parameter λ is a scaling parameter defined as

λ = α2(n + κ)− n

The positive constants α, β and κ are used as
parameters of the method.
2. Transform each of the sigma points as

Yi = g(xi), i = 0, . . . , 2n

3. Mean and covariance estimates for y can be
calculated as

my ≈
2n∑

i=0

Wm
i Yi

Pyy ≈
2n∑

i=0

W c
i (Yi −my)(Yi −my)T

Fig. 1. Unscented Transform

g(x), where x is assumed to be multivariate nor-
mally distributed with mean x̄ and covariance P,
and we wish to estimate the mean and variance
of y. The UT bares a superficial resemblance
to Monte Carlo-type methods, but uses a small
deterministically chosen set of sigma points. The
sigma points are selected so that distribution of
y can be estimated from these transformed sigma
points as accurately as possible. The procedure
is presented in Fig. 1. The nonlinear function is
applied to each point in turn to yield a cloud of
transformed points and ȳ and Pyy are the statis-
tics of the transformed points. Since the problems
of statistical convergence are not an issue, high
order information about the distribution can be
captured using only a very small number of points.

In the rest of the section, we will first introduce
the standard UKF, and will have an overview
of other various UKF algorithms. On this base,
the complete UPF algorithm that uses the UKF
to generate its proposal distribution will be pre-
sented.



3.2 The Unscented Kalman Filter

Unscented Kalman filter was first proposed by
Julier and Uhlmann in (Julier et al., 1997), which
is a straightforward extension of the unscented
transformation (UT) to the recursive estimation.
The standard UKF implementation is given in
(Merwe et al., 2001) for state-estimation.

The deceptively simple approach taken with the
UT results in approximations that are accurate to
the third order for Gaussian inputs for all nonlin-
earities. For non-Gaussian inputs, approximations
are accurate to at least the second-order, with the
accuracy of third and higher order moments deter-
mined by the choice of α and β. It is interesting to
note that no explicit calculation of Jacobians are
necessary to implement this algorithm. The total
number of computations is only O(n2) as com-
pared to O(n3) for the EKF (Wan et al., 2000a).

It builds on the principle that it is easier to
approximate a Gaussian distribution than it is
to approximate an arbitrary nonlinear function or
transformation (J.K.Uhlmann, 1994).

The superior performance of the UKF over that
of the EKF have been reported in numerous
publications including (Wan et al., 2000a) (Wan
et al., 2000b) (Julier et al., 1997).

3.3 A Overview of Unscented Kalman filter

The UKF has superior performance and superior
implementation properties to the EKF, however,
all of these sigma point solutions share the prop-
erty that as the dimension of the state space
increases, the radius of the sphere that bounds all
the sigma points increases as well. Even though
the specified information is still captured cor-
rectly (i.e., the mean and covariance of the sigma
points matches the apprior distribution for all
dimensions), it does so at the cost of sampling
non-local effects. For many kinds of nonlinear-
ities (such as exponents or trigonometric func-
tions) this can lead to significant difficulties. In
(Julier et al., 2000), a method was proposed for
overcoming these difficulties through the use of
negative weights and a ”modified” form of the
algorithm to guarantee positive semi-definiteness.
Unfortunately, the approach was developed from
studying the higher order properties of the system
and no physical intuition was used. Second, it
was only developed to study the problem of point
scaling for the specific set introduced in (Julier
et al., 1995) and its applicability to other sigma
point sets was not examined.

In (Merwe et al., 2001), it introduce the square-
root unscented Kalman filter (SR-UKF). It has
better numerical properties and guaranteed posi-

tive semi-definiteness of the underlying state co-
variance.

In (James, 2001), a more robust unscented trans-
form was proposed. The unscented transforma-
tion is extended to use extra test points beyond
the minimum necessary to determine the second
moments of a multivariate normal distribution.
A convenient way to add test points is to intro-
duce ”hidden variables” and a suitable orthogonal
transformation. The additional test points can
improve the estimated mean and variance of the
transformation distribution when the transform-
ing function or its derivatives have discontinuities.
But the UT is still accurate only to third order
even with the added test points proposed here.

In (Julier, 2002), it re-examines the problem of
sigma point scaling and introduces a new, general
framework. Called the scaled unscented transfor-
mation, the method allows any set of sigma points
to be scaled by an arbitrary scaling factor in such
a manner that the first two moments of the set
are preserved. It is equivalent to applying the
conventional unscented transformation followed
by a simple post-processing step. The storage and
computational costs are exactly the same as a non-
scaled version of the same transformation. The
method can also be used to partially incorporate
contributions higher order information into the
estimates.

3.4 Unscented Particle Filter (UPF)

It has been shown that the UKF is able to more
accurately propagate the mean and covariance of
the Gaussian approximation to the state distri-
bution, than the EKF. And the UKF also has
the ability to scale the approximation errors in
the higher tailed distributions. This makes the
UKF very attractive for the generation of proposal
distributions within the particle filter framework.
Recently, Merwe et al. have proposed a new par-
ticle filter named Unscented particle filter (UPF)
(Merwe et al., 2000), which takes advantage of the
good features of both UKF and particle filters,
and avoids their limitations. Specifically, the pro-
posal distribution for each particle is as follows:

q(xi
k|xi

0:k−1,y1:k) = N (x̄i
k, P̂i

k), i = 1, . . . , N (5)

where x̄k and P̂k are the mean and covariance
of x, computed using UKF. The UPF algorithm
is easily obtained by plugging the UKF step
and Equation (5) into the generic particle filter
algorithm.

Since the UKF can theoretically have heavier tails
than EKF, while still incorporating the latest in-
formation before the evaluation of the importance



weights, the theory predicts that UPF can per-
form very well in situations where the likelihood
is peaked or when one finds outliers in the data.

4. SIMULATION SETUP

4.1 Dynamic and Measurement Models For ATC
Tracking

For civil aircraft a common model is to use the
nearly coordinated turn model (Li, X. R. et al.,
2000). The model is a discretized continuous time
nonlinear stochastic differential equation model
where the turn rate state ω is gives a strong
nonlinear behavior. The discrete two dimensional
system is given by

Xt+1 = A(ωt+1)Xt + [Bv Bω]wt (6)

Xt = (xt ωt+1)
′
,xt = (ξ ξ̇ η η̇)

′
(7)

where ξ and η are the Cartesian position coordi-
nates and ξ̇, η̇ are the velocity components, wt is
the process noise with zero mean and covariance
Qt. System constraints are incorporated in the
model, so that non-feasible maneuvers are avoided
using the UPF technique.

A(ω) =




1 sin ωT
ω 0 − 1−cos ωT

ω 0
0 cos ωT 0 − sinωT 0
0 1−cos ωT

ω 1 sin ωT
ω 0

0 sinωT 0 cos ωT 0
0 0 0 0 1


 ,

Bv =




T 2

2 0
T 0
0 T 2

2
0 T
0 0




, Bω =




0
0
0
0
1


 .

The range, azimuth and elevation radar measure-
ments are modeled as

yt = h(xt) + vt =
[ √

ξ2 + η2

arctan (η
ξ )

]
+ vt (8)

where vt is zero mean noise with covariance Rt.
Note that for the general case, the measurement
equation must be modified so the angle equations
are continuous. Independence in time and between
the measurement and process noise is assumed.
For this model we have neglected the relative
height value.

4.2 Parameter Selection

Selection of noise levels for dynamic models is an
important part of the estimator design. The pro-
cess noise wt is used to model the air turbulence,
wind change, and so forth. The right choice of the
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Fig. 2. Position and Velocity Posteriori Probabil-
ities

noise level of the nearly coordinated turn model
depends on what turn rate range is expected. In
the experiment study, the Qt is chosen as

Qt =




0.001 0
0 0.001 0
0 0 0.001




In the algorithm UKF, the constant α determines
the spread of the sigma points around x̄. κ is
a secondary scaling parameter, and β is used to
incorporate prior knowledge of the distribution of
x. In this experiment, α = 1, β = 2 and κ = 0.

5. SIMULATION RESULTS

A simulation study using the nearly coordinated
turn model from section 4.1 is performed where
the sampling period is chosen to T = 4s to
emulate a track-while-scan (TWS) behavior. The
target was making a turn in a plane at nearly con-
stant turn rate of 3◦/sec and the distribution of
the measurement noise is chosen to be Gaussian,
with angular and distance standard deviations of
0.5◦ and 20 m respectively. In this simulation,
UKF and UPF are implemented. For the pur-
pose of comparison, other filters such as EKF and
generic PF are also implemented.

In Figure 2, a posteriori probabilities for each
coordinate is presented for the predicted particles
for one realization.

In Table 1 the position Root Mean Square Error
(RMSE) for the UKF and UPF are compared to
the other methods, using Nmc = 100 Monte Carlo
simulation and the particle filters used N = 500
particles. The RMSE using meausrements only is
also presented in Table 1. The RMSE is defined
as follows:

RMSE =

√√√√ 1
L

L∑

k=1

1
Nmc

Nmc∑

i=1

((ξ̂i
k − ξi

k)2 + (η̂i
k − ηi

k)2)

where L = 60 is the simulation path length and
ξ̂i
k, η̂i

k are the filter position estimates at time k
in Monte Carlo run i.
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Table 1. RMSE for 100 Monte Carlo
simulations with different mehtods

Algorithm RMSE Execution time
mean var (s)

EKF 39.6427 20.9801 0.03685
UKF 30.6539 11.2789 0.03353

PF 27.4149 12.5382 0.08123

UPF 22.3407 11.9321 2.8613
Measurements 41.3064 21.3309 -
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Fig. 4. particle filters with different number of
particles

In Figure 3 the RMSE for different tracking meth-
ods is presented for each time, i.e., according to
the following equation for the different methods

RMSE(t) =

√√√√ 1
Nmc

Nmc∑

i=1

((ξ̂i
k − ξi

k)2 + (η̂i
k − ηi

k)2).

Figure 4 shows performance of UPF using dif-
ferent number of particles: 50, 100, 200, 500, 1000.
The RMSEs using particles from 50 to 500 de-
crease rapidly , and 1000 and beyond have little
room for improvement.

6. CONCLUSION

In the simulation study in section 5 the UT
improved the tracking performance compared to
the traditional methods for the track-while-scan
(TWS) Air Traffic Control (ATC) application.
The UKF showed superior performance over the

EKF. And the UPF is flexible than traditional
methods since it can also incorporate system
constraints and non-Gaussian noise assumptions.
However, UPF can be time consuming if many
particles are used. To improve the real time execu-
tion performance the particle filter update could
be run in parallel.

The UPF is shown to be superior to UKF at
the cost of more computation but it can provide
flexible accuracy by using more or less particles.
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