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Abstract: We analyze the stability of our novel 2-way fuzzy adaptive controller
using describing function technique. We use additivity property of fuzzy systems
to develop a systematic analytical approach for the design of a multi-input single-
output fuzzy controller that we use for the control of a flexible-joint robot arm.
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1. INTRODUCTION

Flexible robotic systems have been developed due
to the need of having faster, lighter and more
precise robots handling heavy payloads (Tang et
al., 2001), (Carrera and Serna, 1996), (Yang et
al., 1997). In the modeling and control of such
systems, it is important to incorporate the flexibil-
ity. There are different controllers designed in the
literature for such systems ((Tang et al., 2001),
(Nicosia and Tomei, 1995), (Ge, 1996), (Spong,
1995), (Ailon, 1996), (Wang, 1995)). We have
modeled the inconsistencies and uncertainties in
the system using our 2-way fuzzy adaptive system
(Gürkan et al., 2002).

In this paper, we use our 2-way fuzzy adaptive sys-
tem to control the flexible-joint robot arm system,
so it becomes important to analyze the stability
of this controller. We use describing function tech-
nique to develop a systematic design procedure.
Kim et al. (Kim et al., 2000) derive analytical
expressions for the describing functions of a fuzzy
system with single input, and a fuzzy system
with two inputs, where the second input is the
derivative of the first. The existence of the limit-
cycle of the fuzzy control system is predicted using
the describing function analysis. In (Aracil and

Gordillo, 2003), the describing function method
is used to analyze the behavior of PD and PI
fuzzy logic controllers. The existence of stable
and unstable limit cycles are predicted. Describing
function analysis of a T-S fuzzy system is done in
(Cuesta et al., 1999), where the describing func-
tion is evaluated experimentally. The existence of
multiple equilibria and limit cycles are examined.

The describing function analysis is generally ex-
perimental in the discussed papers apart from the
analysis in (Kim et al., 2000). However, this analy-
sis is only for two input fuzzy systems. We extend
the analytical calculation of describing function to
multi-input fuzzy systems by using the additivity
property introduced in (Cuesta et al., 1999). In
Section 2, we briefly introduce our 2-way fuzzy
adaptive system structure, and discuss the addi-
tivity property together with the describing func-
tion of our system. Section 3 gives the stability
analysis of the controller. We apply the designed
controller to a flexible-joint robot arm system in
Section 4. Section 5 concludes the paper.



2. MATHEMATICAL OVERVIEW

2.1 2-Way Fuzzy Adaptive System

Our proposed 2-way fuzzy adaptive system models
uncertainty and inconsistency using intuitionis-
tic fuzzy sets and generate the novel architec-
ture 2-way fuzzy adaptive system. The 2-way
fuzzy adaptive system uses intuitionistic fuzzy
sets that model intuitive uncertainty in place of
classical fuzzy sets. An intuitionistic fuzzy set A
(Atanassov, 1986), of a given underlying set E
is represented by a pair of functions {µA, υA}
mapping E → [0, 1], for all x ∈ E where µA(x)
gives the degree of membership to A, υA(x) gives
the degree of nonmembership subject to the re-
striction: µA(x)+υA(x) ≤ 1 stressing consistency
in intuition.

The rule structure for our system is as follows:

R(ijk...l) : IF x1 is F1i and x2 is F2j and
... and xn is Fnl, THEN y is yijk...l

(1)

where F are the antecedent fuzzy sets, x =
(x1, ..., xn)T ∈ U and y ∈ V are respectively input
and output linguistic variables.

The closed form of our fuzzy logic system with
center average defuzzifier, product-inference rule
and singleton fuzzifier is:

f(x) =
∑

i

∑
j

∑
k

. . .
∑

l

Ωijk...lyijk...l (2)

where,

Ωijk...l =
µ1i(x1)µ2j(x2) . . . µnl(xn)∑

p

∑
r

∑
s

. . .
∑

t

µ1p(x1) . . . µnt(xn)
(3)

We have used our system in modeling uncertainty
and inconsistency (Gürkan et al., 2002) and we
have applied the developed technique to the mod-
eling of a flexible-joint robot arm. The modeled in-
consistencies and uncertainties have been reduced
by a two-phase training procedure. In this paper,
we analyze the stability of this system when used
as a controller.

2.2 Additively Decomposable Fuzzy Systems

In order to compute the describing function of a
fuzzy system with more than two inputs, we make
use of the additivity property of fuzzy systems to
reduce the multi-input single-output fuzzy system
into one of single-input single-output. Towards
this end, we bring an extension to the theory
of additivity of fuzzy systems in Cuesta et al.
(Cuesta et al., 1999). In this paper, for simplicity,
we develop the theory for n = 4 since in our

application example (flexible-joint robot arm) the
system is of degree 4, so there are four inputs to
the fuzzy controller. Extension of the theory to
higher degrees is straightforward.

For the fuzzy system to be additively decom-
posable, it should satisfy the following property
(Cuesta et al., 1999):

f(x) = f(x1, x2, . . . , xn) = f(x1, 0, . . . , 0)+
f(0, x2, . . . , 0) + . . . + f(0, 0, . . . , xn) (4)

In order to simplify the notation, we consider
fi(xi) = f(0, . . . , xi, . . . , 0), for i = 1, 2, . . . , n.

The assumptions on the membership functions
for the system to be decomposable are given in
(Cuesta et al., 1999) as follows:

1. µqp(xq = 0) = 1, µqi(xq = 0) = 0, i �= p,
i = 1, . . . , rule number and q = 1, . . . , n.

2.
ruleno∑

i=1

µqi(xq) = 1, ∀xq
, q = 1, . . . , n.

Our fuzzy system uses triangular membership
functions that satisfy the above assumptions:

µqi(xq) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xq − φqi−1

φqi − φqi−1
, φqi−1 ≤ xq < φqi

xq − φqi+1

φqi − φqi+1
, φqi ≤ xq < φqi+1

0 otherwise

(5)

where φ−qi = −φqi. The reason for choosing
these type of membership functions is that they
also satisfy the assumptions in the calculation of
the describing function, which is introduced in
subsection 2.3.

The fuzzy controller is represented by Equations
2 and 3 with n replaced by the value 4. For all the
inputs x1, x2, x3 and x4 in Equation 3, we assign
the triangular memberships of Equation 5. These
memberships satisfy the assumptions (1) and (2),
and the denominator of Ωijkl in Equation 3 is:
∑

p

∑
r

∑
s

∑
t

µ1p(x1)µ2r(x2)µ3s(x3)µ4t(x4) = 1

so,

Ωijkl = µ1i(x1)µ2j(x2)µ3k(x3)µ4l(x4) (6)

When φ1a ≤ x1 < φ1a+1, two consequent rules
are fired for x1 with memberships µ1a(x1) and
µ1a+1(x1). The same applies for the other inputs:
for φ2b ≤ x2 < φ2b+1 with µ2b(x2) and µ2b+1(x2),
for φ3c ≤ x3 < φ3c+1 with µ3c(x3) and µ3c+1(x3)
and for φ4d ≤ x4 < φ4d+1 with µ4d(x4) and
µ4d+1(x4). As a total, there are 24 = 16 rules fired,
an example of which is:

R(abcd) : IF x1 is µ1a and x2 is µ2b

and x3 is µ3c and x4 is µ4d, THEN y is yabcd.



We write µi. instead of µi.(xi) in what follows in
order to simplify the notation. The corresponding
fuzzy system output is:

f(x) = µ1aµ2bµ3cµ4dyabcd+
+ . . . + µ1a+1µ2b+1µ3c+1µ4dya+1b+1c+1d

+µ1a+1µ2b+1µ3c+1µ4d+1ya+1b+1c+1d+1

(7)

The decomposed system should have four single-
input single-output systems of the form:

f1(x1) = µ1ayafgh + µ1a+1ya+1fgh

f2(x2) = µ2byebgh + µ2b+1yeb+1gh

f3(x3) = µ3cyefch + µ3c+1yefc+1h

f4(x4) = µ4dyefgd + µ4d+1yefgd+1

(8)

We derive the condition under which f1(x1) +
f2(x2) + f3(x3) + f4(x4) = f(x) is satisfied. First
we multiply the above equations by
(µ2b + µ2b+1)(µ3c + µ3c+1)(µ4d + µ4d+1),
(µ1a + µ1a+1)(µ3c + µ3c+1)(µ4d + µ4d+1),
(µ1a + µ1a+1)(µ2b + µ2b+1)(µ4d + µ4d+1),
and (µ1a + µ1a+1)(µ2b + µ2b+1)(µ3c + µ3c+1) re-
spectively. All these four terms are equal to 1 for
the membership assignments of Equation 5. The
equations in 8 become:

f1(x1) = µ1aµ2bµ3cµ4dyafgh+
+ . . . + µ1a+1µ2bµ3cµ4dya+1fgh + . . . +
µ1a+1µ2b+1µ3c+1µ4d+1ya+1fgh

f2(x2) = µ1aµ2bµ3cµ4dyebgh+
+ . . . + µ1aµ2b+1µ3cµ4dyeb+1gh + . . . +
µ1a+1µ2b+1µ3c+1µ4d+1yeb+1gh

f3(x3) = µ1aµ2bµ3cµ4dyefch+
+ . . . + µ1aµ2bµ3c+1µ4dyefc+1h + . . . +
µ1a+1µ2b+1µ3c+1µ4d+1yefc+1h

f4(x4) = µ1aµ2bµ3cµ4dyefgd+
+ . . . + µ1a+1µ2bµ3cµ4dyefgd + . . . +
µ1a+1µ2b+1µ3c+1µ4d+1yefgd+1

(9)

Then, we add the above equations in Equation
9 and compare the terms with Equation 7. From
the comparison of the first terms, we derive that
if we choose yafgh + yebgh + yefch + yefgd =
yabcd, the first terms become equal. If we do this
comparison for the rest of the terms, we derive
all the constraints under which the system is
additively decomposable.

2.3 Describing Function of a 2-Way Fuzzy Adaptive
System

We extend the analytical calculation of describ-
ing function of fuzzy systems introduced in (Kim
et al., 2000) so that it applies to our 2-way
fuzzy adaptive system. We consider a single-input

single-output case, since using the additivity prop-
erty, fuzzy systems can be decomposed into single-
input single-output fuzzy systems. The reason for
the need of such a decomposition is that, for
more than two inputs the calculation of describing
function is experimental (Kim et al., 2000). Our
aim is to find an analytical expression to be used
in the design of a 2-way fuzzy adaptive controller.

First, we review the describing function for a 1-
way fuzzy system without giving the proofs (the
basic assumptions and proofs can be found in
(Kim et al., 2000)). The system has the rule
structure:

Ri : IF x is Fi, THEN u is ui (10)

where x and u are the input and output variables
respectively, Fi’s are the fuzzy sets corresponding
to the ith rule, and ui is the output fuzzy set,
which is a singleton in this case.

The membership functions are in the form of
Equation 5, and the closed form of the system
is given by Equation 2 for n = 1. The describ-
ing function of a single-input single-output 1-way
fuzzy system is then given as:

N(A,w) = N(A) =
b1

A
=

4
πA

d∑
i=0

{∆uiA

2∆φi

(δi+1 − sin δi+1 cos δi+1 − δi + sin δi cos δi)

+
1

∆φi
(φiui+1 − φi+1ui)(cos δi+1 − cos δi)}

(11)

where d satisfies φd ≤ A < φd+1, d > 0, and
varies with A; {δi} are defined to be the angles
where the input sinusoid x = A sin δ intersects
the centers {φi}’s of membership functions. For
{δi}’s, we have:

δ0 ≡ 0

δi ≡ sin−1(
φi

A
), (i = 1, . . . , d, 0 < δi <

π

2
)

δd+1 ≡ π

2

(12)

The describing function of a 2-way fuzzy adaptive
system has two components: the describing func-
tion of the system with membership functions,
and the describing function of the system with
1-nonmemberships. The one for the system with
membership functions is the same as that of a 1-
way fuzzy system. We derive the expression for
the system with 1-nonmemberships, together with
adaptation of the assumptions in the 1-way fuzzy
system case.

The closed form of the fuzzy system is the same
as 1-way fuzzy system apart from the definition of
membership functions. In this case, we have 1 −
υ(x), and the closed form of the system becomes:

u = f(x) =
∑

l

Ωl(x)ul (13)



where

Ωl(x) =
1 − υl(x)

ruleno∑
k=1

1 − υk(x)

(14)

The assumptions, lemmas and the proofs of the
lemmas for the case with 1-nonmemberships can
be found in (Gürkan, 2003). The describing func-
tion of the fuzzy system with nonmembership
functions satisfying the assumptions, and lemmas
given in (Gürkan, 2003) is given in Theorem 1, the
proof of which is also in (Gürkan, 2003).

Theorem 1: The describing function of the fuzzy
system given by Equation 13 that satisfies the four
assumptions is a real number, which depends only
on the amplitude A of the input sinusoid, and is
in the following form:

N̄(A,w) = N̄(A) =
b1

A

=
4

πA

d∑
i=0

((ui + ui+1)(cos δi − cos δi+1))−

{∆uiA

2∆αi
((δi+1 − sin δi+1 cos δi+1)−

(δi − sin δi cos δi))
+ 1

∆αi
(αiui+1 − αi+1ui)(cos δi+1 − cos δi)}

(15)

where αi’s are the centers of the triangular non-
membership functions. The rest of the definitions
are the same as for N(A) with φi’s replaced with
αi’s.

The describing function of the 2-way fuzzy adap-
tive system is given by {N(A), N̄(A)}.

3. STABILITY ANALYSIS

We use describing function method for the stabil-
ity analysis of our 2-way fuzzy adaptive system. In
this method, the describing function of the fuzzy
system is considered in cascade with a linear plant

with transfer function G(s) =
n(s)
d(s)

, which has a

low-pass property.

The characteristic equation of the feedback sys-
tem with the fuzzy controller replaced by the
describing function {N(A), N̄(A)} that is in cas-
cade with the linear plant G(s) is: C(s) = 1 +
{N(A), N̄(A)}G(s), so we have:

C1(s) = 1 + N(A)G(s) = d(s) + N(A)n(s)
C2(s) = 1 + N̄(A)G(s) = d(s) + N̄(A)n(s) (16)

The C1 and C2 in the above equation are both
interval polynomials, since N(A) and N̄(A) are
real and interval-valued that depend on A. For
the stability analysis of these interval polynomials,

we use Kharitonov’s theorem for real polynomials
(Bhattacharyya et al., 1995).

Theorem 2: Let I(s) be the set of real polynomials
of degree n of the form δ(s) = δ0 + δ1s + δ2s

2 +
δ3s

3 + . . . + δnsn, where the coefficients lie within
given ranges, δ0 ∈ [x0, y0], δ1 ∈ [x1, y1],. . ., δn ∈
[xn, yn].

Every polynomial in the family I(s) is Hurwitz if
and only if the following four extreme polynomials
are Hurwitz:

K1(s) = x0 + x1s + y2s
2 + y3s

3 + x4s
4 + . . .

K2(s) = x0 + y1s + y2s
2 + x3s

3 + x4s
4 + . . .

K3(s) = y0 + x1s + x2s
2 + y3s

3 + y4s
4 + . . .

K4(s) = y0 + y1s + x2s
2 + x3s

3 + y4s
4 + . . .

The proof of the theorem can be found in
(Bhattacharyya et al., 1995).

For our system in Equation 16, we need to
check the Kharitonov polynomials for each char-
acteristic equation C1 and C2, with N(A) ∈
[Nmin, Nmax] and N̄(A) ∈ [N̄min, N̄max]. If both
polynomials are found to be Hurwitz, then we
conclude that our system is stable.

4. APPLICATION EXAMPLE

In this section, we design a fuzzy controller given
by Equation 2 for a flexible-joint robot arm system
defined by the state equations:

ẋ1 = x2

ẋ2 = −mgl
I1

sin(x1) + k
I1

(x3 − x1)
ẋ3 = x4

ẋ4 = k
I2

(x1 − x3) + u
I2

(17)

where x1 = θ1 (joint1 angular position), x2 = θ̇1,
x3 = θ2 (joint2 angular position) and x4 = θ̇2,
whereas u is the torque input, I1 the link inertia,
I2 the motor inertia, m the mass, g the gravity
constant, l the link length, k the stiffness.

We use the input-state linearization of the system
introduced in (Slotine and Li, 1991) to be able to
apply the stability analysis derived in this paper.
The linear state equations are as follows:

ż1 = z2 ż2 = z3 ż3 = z4 ż4 = v (18)

with the corresponding input transformation:

u =
I1I2

k
(v − a(x)) (19)

where a(x) = mgl
I1

sin x1(x2
2 + mgl

I1
cos x1 + k

I1
) +

k
I1

(x1 − x3)( k
I1

+ k
I2

+ mgl
I1

cos x1).

The transfer function of this linearized system is

G(s) =
1
s4

. The degree of this system is n = 4,



so there are four inputs to our fuzzy controller. In
order to be able to find an analytical expression
for the describing function of our fuzzy controller,
we use additivity property reviewed in Section
2.2. We assume that the system parameters yijkl

in Equation 2 are assigned such that the fuzzy
system is additively decomposable, so the output
of the fuzzy controller is:

v = f(z) = f(z1, z2, z3, z4) =
= f1(z1) + f2(z2) + f3(z3) + f4(z4)

(20)

If the describing functions of f(z) are {N(A),
N̄(A)}, then under the light of Equation 20, the
describing functions become N(A) = N1(A) +
N2(A)s + N3(A)s2 + N4(A)s3, and N̄(A) =
N̄1(A) + N̄2(A)s + N̄3(A)s2 + N̄4(A)s3, where
{N1(A), N̄1(A)} are the describing functions of
the system with input z1, calculated using Equa-
tions 11 and 15, and so on. The reason for having
terms like N2(A)s is that for example, the input
to N2(A) is z2 = ż1 = sz1, so the effect of N2(A)
in N(A) is N2(A)s. It is straightforward to derive
the rest of the terms in both N(A) and N̄(A).

The characteristic equation of the closed loop
system is calculated as:

C1(s) = s4 + N4s
3 + N3s

2 + N2s + N1 (21)

for the fuzzy system with membership functions
and

C2(s) = s4 + N̄4s
3 + N̄3s

2 + N̄2s + N̄1 (22)

for the fuzzy system with nonmembership func-
tions. N1 stands for N1(A) and so on. We have
dropped (A) for a simpler representation.

The ranges for Ni’s are: N1(A) ∈ [a1, b1], N2(A) ∈
[a2, b2], N3(A) ∈ [a3, b3], and N4(A) ∈ [a4, b4],
and for N̄i’s: N̄1(A) ∈ [c1, d1], N̄2(A) ∈ [c2, d2],
N̄3(A) ∈ [c3, d3], and N̄4(A) ∈ [c4, d4]. For sta-
bility, we check the Kharitonov polynomials, and
since our system is of degree 4, we only need to
check K3 and K4 of Theorem 2 (Bhattacharyya
et al., 1995). For C1(s):

K3(s) = b1 + a2s + a3s
2 + b4s

3 + s4

K4(s) = b1 + b2s + a3s
2 + a4s

3 + s4 (23)

and for C2(s):

K3(s) = d1 + c2s + c3s
2 + d4s

3 + s4

K4(s) = d1 + d2s + c3s
2 + c4s

3 + s4 (24)

Since there are too many parameters to be ad-
justed, we fix the ranges for the first three de-
scribing functions and we only solve for the range
of N4(A) and N̄4(A), i.e. we solve for a4, b4, c4

and d4.
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Fig. 1. Contour Plots for (a) Minimum N4, (b)
Maximum N4

We take five rules for each system f1(z1), f2(z2),
f3(z3) and f4(z4), and the parameters for the first
three systems are given in Table 1.

Table 1. Fuzzy Controller Parameters

For f1

φ−2 = −π
φ−1 = −0.5π
φ0 = 0
φ1 = 0.5π
φ2 = π

y−2 = −5
y−1 = −1
y0 = 0
y1 = 1
y2 = 5

For f2

φ−2 = −π
φ−1 = −0.5π
φ0 = 0
φ1 = 0.5π
φ2 = π

y−2 = −10
y−1 = −8
y0 = 0
y1 = 8
y2 = 10

For f3

φ−2 = −π
φ−1 = −0.5π
φ0 = 0
φ1 = 0.5π
φ2 = π

y−2 = −20
y−1 = −25
y0 = 0
y1 = 25
y2 = 20

For the parameters in Table 1, the corresponding
ranges for Ni’s are: N1 ∈ [0.6366, 1.3831], N2 ∈
[3.6, 5.0930], and N3 ∈ [8.4506, 15.9155], and for
N̄i’s: N̄1 ∈ [0.1739, 1.7608], N̄2 ∈ [1.3916, 4.3835]
and N̄3 ∈ [4.3487, 10.0923].

We use these ranges in Equations 23 and 24 to
solve for the ranges of N4 and N̄4, which are
found to be N4 ∈ (0.6148, 21.5611) and N̄4 ∈
(1.1249, 3.0798). In order to have a stable con-
troller, we need to assign the parameters for f4(z4)
such that its describing functions {N4, N̄4} fall in
the calculated ranges for stability.

We take the same φi’s for f4 as in the other
fi’s. Then, we find the range of yi’s so that
the controller is stable. The contour plots for
minimum and maximum of N4 are shown in Fig.1
(a) and (b) respectively.

The contour plots for minimum and maximum of
N̄4 are given in Fig.2 (a) and (b) respectively.

From the plots, we see that if we choose y1 =
y2 = 1, the system is unstable, since N4 and N̄4

are out of the stability range. When we apply
the controller with these settings for f4 and with
the settings in Table 1, the result is as expected
and it is represented in Fig.3. Since we have
chosen the parameters of the system outside the
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stable region, the states of the closed loop system
become unstable (Fig.3). If we choose y1 = 5
and y2 = 8 such that N4 ∈ (0.6148, 21.5611)
and N̄4 ∈ (1.1249, 3.0798) from Figures 1 and 2,
wee see that N4 and N̄4 are both in the stability
range and the stable system states are shown in
Fig.4. As can be seen from the figure, the closed
loop system states are stable. This agrees with the
theoretical results stating that if the parameters
are chosen from the stability range for N4 and N̄4,
the closed loop system becomes stable.

5. CONCLUSION

We have extended the theory of describing func-
tion of a fuzzy system to multi-input single-output
2-way fuzzy adaptive systems using additivity
property, and developed a systematic method for
the design of a stable 2-way fuzzy adaptive con-
troller. We have applied the theoretical results to
the control of a flexible-joint robot arm system,

where the simulation results are found to agree
with the theory.
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