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Abstract: Two concerns for the deployment of two stage actuators in disk drives are 
microactuator saturation and data recovery in the event of outright microactuator failure.  
Compensators designed for good performance with two intact actuators may be unstable 
when the microactuator saturates or stops working entirely.  This paper develops a 
modification of the PQ Method to guarantee stable operation in the event of 
microactuator failure. Application of the Circle Criterion shows that the resulting design 
can be robust to actuator saturation. A controller design for a simplified but realistic 
model of a disk drive two stage actuator system illustrates the approach. 
Copyright © 2005 IFAC 
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1.INTRODUCTION 

 
WO stage (or dual stage) actuators systems for 
head positioning in disk drives have been the 

subject of extensive research, and a number of 
techniques for the design of compensators have been 
proposed. Decoupled design [Li et al., 2001] and the 
PQ Method [Schroeck et al., 2001] (herein denoted 
the Standard PQ Method) are two techniques that 
exploit the structure of two stage systems. The H∞ 
[Semba, 2000] and µ-synthesis [Young et al., 2003] 
techniques are two multi-input/multi-output methods 
that can explicitly account for the uncertainties in 
actuator dynamics, but are less intuitive to use.  
 
Two concerns for the deployment of two stage 
systems are the susceptibility of the microactuator to 
saturation and data recovery in the event of outright 
microactuator failure. Neither the Decoupled Design 
nor the Standard PQ Method guarantees stability of 
the system when the microactuator saturates or fails. 
H∞ and µ-synthesis can account for actuator failure 
by adjusting the weighting functions representing 
uncertainties in the plant. However, the resulting 
controllers may be too conservative to realize the full 
performance benefits of the two stage system. 
 

This paper presents a modification of the PQ Method 
to guarantee stability of the closed loop system in the 
event of failure of the microactuator. The modified 
method requires the simultaneous stabilization of two 
plants by a single compensator. The paper also shows 
the resulting controller can be robust to actuator 
saturation.  
 
This paper is organized as follows. Section II 
presents the derivation of the Modified PQ Method.  
Section III demonstrates the application of the new 
technique to achieve specifications for the intact and 
compromised system based on a simplified but 
realistic two stage actuator model. Section IV shows 
that the resulting controller is robust to actuator 
saturation, and shows how to relax the design 
requirements, if robustness to saturation, rather than 
robustness to total failure, is the goal of the design. 
Section V contains concluding remarks. 
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Figure 1 – DISO system block diagram. 
 

 
2. DERIVATION OF THE MODIFIED PQ 

METHOD 
 
All linear time-invariant feedback systems consisting 
of a dual-input single-output system (DISO) with a 
single-input dual-output (SIDO) compensator have 
Figure 1 as one block diagram representation.  In this 
paper G1 represents the microactuator subsystem, 
and G2 represents the voice coil motor (VCM) 
subsystem. 
 
The Standard PQ Method has two parts. The first 
part selects C1 and C2 to allocate the outputs from the 
G1 and G2 as a function of frequency such that (i) the 
zeros of the parallel subsystem of Figure 1 are stable 
and (ii) there is minimal destructive interference 
between the G1 and G2. The second part then treats 
the selection of C0 as a standard SISO design 
problem. However, there is no guarantee that the 
closed loop will remain stable, if the microactuator 
saturates or fails. 
 
Both the Standard and the Modified PQ Method 
begin by forming the ratios 
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The zeros of the parallel system of Figure 1 are the 
roots of  
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Equation 2 is the characteristic equation of the PQ 
feedback system depicted in Figure 2.  
 
Choosing Q to stabilize the PQ feedback system 
ensures that the zeros of the parallel system of Figure 
1 will be stable. The 0 dB crossover of PQ is the 
frequency at which the outputs of the G1 and G2 
subsystems have equal magnitude. The phase margin  

 
Figure 2 –  PQ feedback system 
 

 
 

Figure 3 –   Rearranged DISO feedback system. 
 
of the PQ feedback system determines the relative 
phase of the outputs and thus how much the two 
subsystems destructively interfere. 

 
The Modified PQ Method and the Standard PQ 
Method are identical through the selection of Q. The 
difference is that the second part of new method 
combines the selection of C0 and C1. The combined 
selection relies on the block diagram of Figure 3 
which is a rearrangement of a Figure 1. 

 
Substituting the definitions of P and Q and defining 
 

K1 = C0C1                            (3) 
 
leads to Figure 4, which depicts the system when the 
microactuator and the VCM are both working. Figure 
5 shows the block diagram when the microactuator 
fails, and the upper branch of the parallel system 
disappears. Note that G1 represents the dynamics of 
the intact microactuator, and therefore does not 
change when the microactuator fails. 
 
The second part of the modified PQ Method is the 
selection of K1 so that the feedback system of Figure 
4 and the feedback system of Figure 5 are 
simultaneously stabilized. The selection of K1 must 
also ensure that the feedback system of Figure 4 
meets the performance specifications that required 
the microactuator in the first place. However, it is 
unclear a priori how much compromise in the two 
stage performance will be required to assure 
robustness to microactuator failure.  
 
Since one may assume that C1 = 1 without loss of 
generality, one also can assume C0 = K1. In that case, 
both K1 and C2 = Q must be realizable. 

 
 
Figure 4 –  DISO Feedback system with P, Q, and K1 

substitutions. 
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Figure 5. Block diagram of system when the 
microactuator fails. 

 
3. ILLUSTRATION OF THE MODIFIED PQ 

METHOD  
 
3.1. Plant Models and Servo Specifictions.  

 
Figure 6 shows the frequency responses of two 
actuator subsystems models in discrete time with a 
zero order hold operating at a 30 kHz sampling rate. 
The specifications for the intact two stage system are 
 

0 dB crossover  > 2,500 Hz 
Phase margin  > 45 degrees 
Gain margin  > 8 dB 
Hand-off frequency 167 Hz 
Hand-off phase margin > 60 degrees 
Zero steady-state error for 
   a constant disturbance 

 
The performance objective in the event of micro 
actuator failure is to maintain at least 40 degrees of 
phase margin while maximizing the 0 dB crossover 
frequency.  
 
3.2. Allocating the Actuator Effort: Selection of Q  
 
The first step is to allocate the actuator effort by 
forming the ratio P and selecting Q. Figure 7 shows 
the frequency response of P. Since zero steady state 
error is desired, the final controller must contain an 
integrator. If Q contains an integrator, then C2 will 
also contain an integrator (if it is not cancelled by 
K1). A discrete-time PID compensator is a reasonable 
choice for Q. The following Q achieves the hand-off  

 
Figure 6. Frequency responses of the actuator 

subsystems. 

 
 

Figure  7 –  Frequency response of P = G2 /G1. 
 

specifications:  
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Figure 8 shows the frequency response of PQ. The 
hand-off phase margin is 83 degrees at 167 Hz. 

 
 

3.3. Selection of K1 
 

The second step is to select K1 to achieve the 
performance specifications of subsection 3.1. When 
the microactuator is intact, the parallel system inside 
the dashed box in Figure 4 represents the dynamics 
compensated by K1. The expression for these intact 
dynamics is 
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When the microactuator fails, the system inside the 
dashed box in Figure 5 represents the dynamics 
compensated by K1. Equation 6 is the expression for 
these compromised dynamics. 
 

 
Figure  8. Frequency response of PQ = G2C2 / G1C1. 
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Figure 9 – Frequency response of Fdual and Fsingle. 
 

PQGF 1single = .         (6) 
 
Figure 9 shows the frequency responses of Fdual and 
Fsingle.     
      
It is instructive to examine the implications of the 
shape of the magnitude plots of Fdual and Fsingle on the 
potential performance when the microactuator fails. 
At 2500 Hz, the intended crossover frequency when 
the microactuator is intact, the slope of Fdual is 
essentially zero, while the slope of Fsingle is 
approximately -20 dB/dec. The difference in 
magnitude between Fdual and Fsingle is about 23 dB. 
The slope of K1 will add to the slope of both open 
loop responses. 
 
Using these facts, an estimate of the 0 dB crossover 
frequency when the microactuator fails is 
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If K1 has a slope of -20 dB/dec at 2,500 Hz, then the 
approximation is f0dB_single ≈ 665 Hz. However, when 
the slope of K1 is -20 dB/dec, its phase will be ~-90 
degrees, resulting in an unacceptable phase margin 
for FsingleK1. Therefore f0dB_single will be less than 665 
Hz, because selecting K1 with phase greater than -90 
degrees results in a shallower magnitude slope. 
 
The selection of K1 begins with a 40 dB notch for the 
resonance. Deliberate mistuning by 200 Hz shows 
the robustness to small resonance shifts. 
 
The slope at the 0 dB crossover of FdualK1 should be 
at least 20 dB/dec. There is no need for K1 to include 
an integrator, since Q already contains one. A first-
order low pass filter with corner frequency 167 Hz 
will make the slope of FdualK1 be -20 dB/dec, and the 
slope of FsingleK1 be -40 dB/dec above 167 Hz. Figure 
10 shows the result of applying the notch and the low 
pass. The phase margin of FdualK1 is approximately 
48 degrees at 2.5 kHz, but the phase margin of 
FsingleK1 is 0.5 degrees at 650 Hz. 

 
Figure 10 – Fdual and Fsingle with notch and low pass 

compensation.
 

Lead compensation is necessary, but it will flatten 
the magnitude responses and decrease the 0 dB 
frequency of FsingleK1. Adding 35 degrees of phase at 
525 Hz by appying a complex lead compensator 
[Messner, 2000] with a 0.7 damping ratio results in 
the response shown in Figure 11. The phase margin 
of FsingleK1 is 40 degrees at 511 Hz. The phase margin 
for FdualK1 is 56 degrees at 2.5 kHz, and its gain 
margin is 8.1 dB at 5,500 Hz. 

 
The final form of K1 is 
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The three factors are the low pass filter, the notch 
filter, and the complex lead compensator, 
respectively.  
 
The trade off between performance and robustness to 
microactuator failure is now apparent. If 
compensation of  Fsingle  were  of  no concern, then K1  

 
Figure 11. Bode plots of FdualK1 and FsingleK1. 
 

    



 

    

Figure 12. Sensitivity functions for intact and failed 
microactuator systems. 

 
could have a steeper magnitude slope below 2.5 kHz. 
The magnitude of FdualK1, which could have been 20 
dB at 250 Hz, is only 13 dB. Figure 12 shows the 
Bode magnitude plots of the sensitivity functions. 
The disturbance rejection below 100 Hz is about 8 
dB less than would have been possible without the 
need to compensate for the Fsingle. Of course, if a 
lower FsingleK1 phase margin were acceptable, then a 
steeper K1 slope would be possible also.  
 
 

4. CONFIRMING STABILITY IN THE 
PRESENCE OF SATURATION 

 
Microactuator failure is an extreme form of 
saturation where the saturation limit is zero. This fact 
suggests that the the controller designed for total 
actuator failure will be robust to actuator saturation. 
Checking for such robustness requires some block 
diagram algebra and the Circle Criterion 
[Vidyasagar, 1978]. 
 
Figure 13 is the result of rearranging Figure 4, and 
including the saturation nonlinearity ψ, where  
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Leaving out the reference input, judicious block 
diagram algebra leads to Figure 14 with ψ in the 
feedback path and the following definition of H: 

 
Figure 13. Two stage actuator system including 

saturation nonlinearity. 

 
Figure 14. Block diagram with ψ the feedback path. 
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One version of the Circle Criterion states that the 
feedback system of Figure 14 is stable if the (i) ψ 
belongs to the sector [0, 1], (ii) H has no unstable 
poles, and (iii) the Nyquist plot of H lies to the right 
of vertical line through -1. The nonlinearity ψ 
satisfies (i), because 

 
22 )( yyyy βψα ≤≤ ,  (11) 

 
where α=0, and β=1. The poles of H satisfy (ii), 
because they are the roots of  
 

01 11 =+ KPQG ,   (12) 
 
which is the characteristic equation of the stable 
feedback system of Figure 5. Figure 15 clearly shows 
that Nyquist plot of H satisfies (iii). Thus, the dual 
stage system will be stable in the presence of 
microactuator saturation.  
 
Note that the Circle Criterion only provides sufficient 
conditions for stability. Therefore, a controller that is 
robust to microactuator failure might result in an H, 
which does not satisfy (iii) but is still robust to 
microactuator saturation.  
 
If robustness to saturation of the microactuator, 
rather robustness to its total failure, is the concern of 
the design, then there are two complementary 
approaches to improving the performance of the two 
stage system using the Modified PQ Method. First, 
the phase margin for FsingleK1 can be much lower. The 
system need only retain stability so that it can 
recover from saturation. It need not have good 
performance while in saturation, because the satur- 

 
Figure 15. Nyquist plot of H. 
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ation is intermittent. 
 
Figure 16 shows the improvement in the sensitivity 
function of the intact system when the phase margin 
of FsingleK1 is 15 degrees at 597 Hz. The only design 
change is that the complex lead compensator adds 13 
degrees of phase at 609 Hz. The disturbance 
rejection increases by 4.8 dB below 100 Hz. 
 
Second, rather than choosing K1 to simultaneously 
stabilize Fdual and Fsingle, K1 need only simultaneously 
stabilize of Fdual  and Fsat where 
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with umax being an upper bound on absolute value of 
the output of K1. The “failure” mode of the 
microactuator is where the gain is reduced by the 
ratio of the maximum output to the maximum input, 
given by Equation 14. For this case, H becomes 
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and the sufficient condition (iii) for stability in the 
presence of saturation relaxes to requiring that 
Nyquist plot of H remain to the right of )1(1 α−− .  
 

5. CONCLUSIONS 
 
This paper derived and demonstrated the Modified 
PQ Method to achieve stable operation in the 
presence of actuator failure. The first part of the 
Modified PQ Method is the same as the Standard PQ 
Method, in which actuator effort is allocated as a 
function of frequency. The difference is in the 
second part, where the new method relies on the 
simultaneous stabilization of two systems with a 
single compensator. Thus, there is likely to be some 
compromise between achieving the robustness to 
microactuator failure and achieving the highest 
possible performance when the microactuator is 
intact. 
 
The fact that microactuator failure is an extreme 
form of saturation suggests that a controller that is 
robust to total failure of the microactuator is likely to 
be robust to microactuator saturation also. However, 
saturation robustness of the controller resulting from 
the Modified PQ Method is not known a priori. 
Instead, the Circle Criterion provides a 
straightforward way to check for such robustness. 
Future work will attempt to eliminate the need for 
this check. 
 
If robustness to saturation of the microactuator, 
rather  than  its  failure,  is  the concern of the design,  

 
 
Figure 16. Sensitivity functions for lower Fsingle, K1 

phase margin. 
 
then the phase margin of in  the  failure mode can  be  
low, because only recovery from saturation is 
needed, rather than good performance in saturation. 
The simultaneous stabilization problem can also 
change to the stabilization of the “failure” mode 
where the gain at the input to the microactuator 
decreases to a positive value less than one, rather 
than to zero for complete failure.  The check for 
stability in saturation correspondingly relaxes. 
 

ACKNOWLEDGEMENT 
 
This work was supported in part by the National 
Science Foundation  under grant ECS-0072752 
 
 

REFERENCES 
 
Li, Y. and Horowitz, R. (2001). Design and testing of 

track-following controllers for dual-ctage servo 
systems with PZT actuated suspensions in HDD.  
Microsystem Technologies 8, 194-205. 

Messner, W. (2000). The Development, Properties, 
and Application of the Complex Phase Lead 
Compensator. In: Proceedings of the 2000 
American Controls Conference, 2621-6 C. 

Schroeck, S.J.  Messner, W.C., and R.J. McNab, R.J. 
(2001). On Compensator Design for Linear 
Time-Invariant Dual-Input Single-Output 
Systems. IEEE/ASME Transactions on 
Mechatronics, 6, 50-57. 

Semba, T. (2001). An H∞ design method for a multi-
rate servo controller and applications to a high 
density hard disk drive. In: Proceedings of the 
40th IEEE Conference on Decision and Control, 
4693-8. 

Young, P.M., Morris, J.C., and Ho, H.T., (2003) 
Servo control of a dual-stage actuator for a high 
performance disk drive. part2: controller design 
and implementation. In: Proceeding of the 2003 
American Control Conference, 2529-34. 

Vidyasagar, M. (1978). Nonlinear Systems Analysis, 
Prentice Hall, Englewood Cliffs, New Jersey. 

 

    


