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Abstract: This paper presents new concepts in the design and implementation of a virtual 
endoscope. Starting from standard magnetic resonance images, and applying a two-step 
image processing, inner views of the human body can be obtained, even of such parts of 
the body, which cannot be penetrated by a traditional endoscope. The first step of the 
image processing consists in an enhanced version of the fuzzy C-means segmentation. 
Then a shape recovery algorithm is employed in order to reconstruct the 3-D object. The 
algorithms provide good-quality segmented images a very quick way, which makes them 
excellent tools to support a virtual endoscopy. IFAC © 2005 Copyright 
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1.  INTRODUCTION 
 

Traditional endoscopes penetrate the human body in 
order to provide high resolution internal views of 
cavities and hollow organs. Even though such 
examinations are mostly considered non-invasive, the 
procedure causes pain, or at least discomforts the 
patient, who consequently needs some kind of 
sedation or anesthesia.  
 
Magnetic resonance imaging (MRI) is a non-invasive 
diagnostic tool that views the internal anatomy of the 
human body in 2-D cross sections called slices. A 
virtual endoscope establishes 3-D internal views 
based on these sets of 2-D slices, using modern 
image processing techniques and computer graphics 
as well. Besides the comfort provided, another 
relevant advantage is the fact, that it can create 
images of any body part. 
 
This paper presents a new concept of the virtual 
endoscope, being developed in the Biomedical 
Engineering Laboratory at TU Budapest. During the 
development process, MRI brain images are used for 
testing the methods, but the algorithm is capable to 
process other kinds of medical images, too. 

Consequently the virtual endoscope will have several 
medical applications. 
 
In order to create a virtual endoscope based on 
magnetic resonance images, the following image 
processing tasks need to be performed (Fig. 1.): 

 
1. Segmentation of the 2-D slices, to reduce the 
number of grey shades from 256 to 3, as required by 
medical scientists.  

 
2. A shape recovery algorithm is applied to 
reconstruct the 3-D image of the brain. 

 
3. Visualization via modern computer graphics tools. 
 
 

 
Fig. 1. Schematic representation of the whole image 

processing procedure 
 



2. METHODS 
 

2.1. 2-D Segmentation of medical images using an 
enhanced fuzzy C-means (FCM) algorithm 

 
The standard FCM algorithm, introduced by Bezdek 
et al. (1991, 1993), groups the values kx , nk ..1=  
into c  clusters, using the objective function 
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where iv  represents the prototype value of the i th 
cluster, iku  represents the fuzzy membership of the 
k th voxel with respect to cluster i , and p  is a 
weighting exponent. By definition, for any k  we 
have  

∑
=

=
c

i
iku

1
1 .             (2) 

 
To minimize the objective function, it is necessary to 
assign high membership values to those voxels, 
whose intensities are situated close to the prototype 
values of their particular clusters. FCM has several 
merits in brain image segmentation for its speed, but 
it performs no filtering, so the image quality remains 
poor. 
 
In order to avoid this drawback, Ahmed et al (2002) 
proposed a modification to the original objective 
function by introducing a term that allows the 
labeling of a voxel to be influenced by the labels in 
its immediate neighborhood. This effect regularizes, 
and biases the solution toward piecewise-
homogeneous labeling. It proved useful in 
segmenting images corrupted by salt and pepper 
noise. The modified objective function is given by 
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where rkx ,  represents the neighbor voxels of kx , and 

kN  stands for the number of voxels in the 
neighborhood of the k th voxel. The parameter α  
controls the intensity of the neighboring effect. These 
modifications led to better image quality, but the 
performance in time is very slow.  
 
In the followings, some modifications will be 
introduced to these algorithms. MR brain images are 
stacks of approximately 200 slices, which at their 
turn represent large matrices of voxels. A set of MR 
brain image slices contains around ten million ( 710 ) 
voxels. The intensity of the voxels is generally 
encoded with 8 bit resolution, that is, there are only 
256 possible levels of intensity for each voxel. To 
considerably reduce the amount of calculations 

performed during the segmentation process, the 
algorithm will be modified the following way.  
 
Step 1. First we apply a local filtering to each voxel. 
Let us consider the neighborhood of the k th voxel, 
as described by Ahmed et al. (2002). Let us denote 
by kξ  the filtered intensity level of the k th voxel, 
and we will compute it as follows: 
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Voxel intensity levels have normalized values, they 
are situated in the ]1,0[  interval. 
 
Step 2. Let us denote the number of intensity levels 
by q . As it was previously stated, q  is much smaller 
then N . We denote by lγ  the number of pixels from 
the whole stack of slices, having the intensity equal 
to l , where ql ..1= , Szilágyi et al (2003). By 
definition, the following equality holds: 
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Step 3. The objective function used for the 
segmentation of the filtered signal will be: 
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We need to find those values of the parameters ilu  
and iv , for which this objective function has the 
minimum value. Let us consider the Lagrange 
multiplier defined according to the following 
formula: 
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Step 4. Taking the derivative of SF  with respect to 

ilu , and equaling it to 0 , we get: 
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Applying (2), we obtain  
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and so  
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Step 5. Taking the derivative of SF  with respect to 

iv , and equaling it to 0 , we get: 
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Fig. 2. The algorithm of the 2-D segmentation 

 
The enhanced FCM algorithm for MR brain image 
segmentation can be summarized as follows: 
a. Determine the values of q

ll 1}{ =γ , select initial 

cluster prototypes c
ii civ 1})2()12({ =−= . 

 
b. Update membership function values according to 
(9). 
 
c. Compute the new values for cluster prototypes 
according to (11). 
 
d. Repeat b-c until the Euclidean norm of the change 
of the prototype vector is smaller then a previously 
set small positive number ε .  
 
2.2. Reconstruction of the 3-D object from the 

segmented slices  
 
The shape recovery or reconstruction of the 3-D 
object is performed according to the following idea: 
 
Starting from the segmented slices obtained using the 
FCM algorithm, three scalar spaces are defined, 
corresponding to the black matter, grey matter and 
white matter, according to this formula: 

ikik uR 21−= . The value povided so is negative if 
the pixel k is inside the region i, positive if it is 
outside, and is zero at the surface of the region i. 
 
Then a parametrized small closed surface is defined 
inside the region whose boundaries are wished to be 
detected. In order to lead this closed surface to the 
boundary of the region, such an objective function is 
needed, which contains the square of all Rik values.  
 
Several solutions exists to this problem, some 
remarkable ones are presented by Fan et al (2002), 
van Ginneken et al (2002), Marroquin et al (2002), 
Pitiot et al (2002), Suri et al (2002b), and Wink et al 
(2002), while Suri et al (2002a) gives a great 
comparison of such methods. 
 
The first 3-D reconstructed surfaces presented in this 
paper have been obtained using a generalized 
marching cube algorithm. Elastic surface driven 
solutions are still under construction. 

 
 

3. RESULTS 
 
Medical requirements at brain imaging generally use 
segmentation into three clusters, corresponding to 
background, gray matter, and white matter. Fig. 3 
presents a brain MRI example, an original image 
with 256 grey levels, and a segmented version of the 
same slice, obtained using the enhanced FCM 
method. 
 
The cluster prototype grey levels show a quick 
convergence, which is illustrated in Fig. 4. Practically 
after 2 or 3 cycles they do not change. 



 
 
Fig. 3. Original MR brain cross section (left), and 

segmented brain slice (right) 
 
 

 
 
Fig. 4. Convergence of cluster prototypes in case of 

three clusters 
 
The parameters introduced in the previous section, 
namely p , α , and kN  largely influence the 
efficiency of the algorithm. For example, if the 
exponent p  is smaller than 1, the algorithm will not 
converge at all. BCFCM algorithm uses 2=p , which 
slightly simplifies the calculations, but this value 
does not assure the quickest convergence. Fig. 5 
shows the relation between the objective functions 

AJ   (with 2=p ) and SJ  (with 2.1=p ), and makes 
it visible, that after two or more cycles we get 

5
minmin

≈−− SSAA JJJJ , which means the 

proposed algorithm needs less cycles to get the same 
accuracy. 

 

 
Fig. 5. Convergence of the objective function 

The quality of filtering depends on the chosen 
neighborhood effect, and its intensity value α . This 
α  has to be great enough so that it eliminates most 
of the salt and pepper noise, but it also has to be 
small enough, so that the image will not lose much of 
its sharpness. The optimal value of α  varies between 

5.0  and 2.1 . The cardinality of the neighborhood 
taken in consideration for each pixel also influences 
the quality of the obtained image. A necessary and 
sufficient choice is to use a neighborhood, which 
contains the 8 immediate neighbors of the pixel. 
 
Because of the considerable difference between the 
number of pixels in an MR slice (or the whole brain 
volume) ( N ), and the number of grey intensity levels 
of the original image ( q ), the amount of calculation, 
that is needed to perform during each cycle, is 
reduced by the new method approximately 40 times. 
 
Fig. 6 shows some of the first 3-D images obtained 
using the described methods. Results are promising, 
but in order to visualize smaller details of the human 
body with the right accuracy, MR images with higher 
resolution will be needed. 

 

 
 

Fig. 6. Some brain images obtained using the 
described methods 

 
4. CONCLUSION 

 
The proposed algorithm provides a slight 
improvement in the quality of segmented brain 
images, and it performs significantly quicker then its 
ancestors. The smooth boundaries between the black, 
grey, and white matter, shown in Fig. 3, will lead to 
good quality 3-D images. These make the algorithms 
capable to support a virtual brain endoscope. 
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