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Abstract: One of the main problems in the high-order sliding-mode application is the
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1.     INTRODUCTION

Sliding-mode control remains one of the most
effective approaches to cope with uncertainty. The
idea is to react immediately to any deviation of the
system from some properly chosen constraint
steering it back by a sufficiently energetic effort.
Sliding mode is accurate and insensitive to
disturbances (Utkin, 1992; Edwards and Spurgeon,
1998). The main drawback of the standard sliding
modes is mostly related to the so-called chattering
effect (Fridman, 2002).

Let the constraint be given by the equation σ = s -
w(t) = 0, where s is some available output variable of
an uncertain single-input-single-output (SISO)
dynamic system and w(t) is an unknown-in-advance
smooth input to be tracked in real time.  Then the
standard sliding-mode control u = - k sign σ may be
considered as a universal output controller applicable
if the relative degree is 1, i.e. if σ&  explicitly depends
on the control u and uσ′&  > 0. Higher-order sliding
mode (HOSM) (Levant, 1993; 2003a) is applicable
for controlling SISO uncertain systems with arbitrary
relative degree r. The corresponding finite-time-

convergent controllers (r-sliding controllers) (Levant,
1993; 2003a,b; Bartolini et al., 2003) require actually
only the knowledge of the system relative degree.
The produced control is a discontinuous function of
the tracking deviation σ and of its real-time-
calculated successive derivatives &σ , &&σ , ...,    σ(r-1).
The controllers provide also for higher accuracy with
discrete sampling and, properly used, totally remove
the chattering effect. In order to remove the
chattering, the control derivative is to be treated as a
new control.

While the second-order sliding-mode controllers are
already widely used (Bartolini, et al., 2003; Sira-
Ramirez, 2002; Shtessel and Shkolnikov, 2003), the
higher-order controllers still wait for their
application. One of the main problems is the
parameter adjustment. Indeed, no algebraic criterion
was published for the parameter assignment, though it
could be developed based on the constructive proofs
(Levant 2003a, b). Such calculations would be
carried out separately for each relative degree, and
would produce highly conservative conditions on the
parameters. Thus, the author considers such
conditions practically useless. The proposed solution



was to find such parameters by simulation. Tested
parameter sets were published for the main practical
cases r = 2, 3, 4. Though theoretically already one set
is sufficient for any relative degree, in practice one
needs to adjust these parameters, in order to hasten or
to slow down the finite-time transient process. A
simple algorithm is presented in this paper producing
infinite number of valid parameter sets from a given
one. The convergence can be made arbitrarily fast or
slow.

Another known problem is the requirement of the
uncertainty boundedness. In the presence of globally
unbounded uncertainties the known results only
provide for the local convergence to the sliding
mode. This restriction is also removed in this paper
for a number of controllers.

Computer simulation demonstrates the applicability
of the proposed scheme on a model example.

2.   THE PROBLEM STATEMENT

Consider a smooth dynamic system with a smooth
output function σ, and let the system be closed by
some possibly-dynamical discontinuous feedback and
be understood in the Filippov sense (1988). Then,
provided that successive total time derivatives σ, σ& ,
..., σ

(r-1) are continuous functions of the closed-
system state-space variables; and the set σ = ... =
σ

(r-1) = 0 is a non-empty integral set, the motion on
the set is called  r-sliding (rth order sliding) mode
(Levant, 1993; 2003a).

The standard sliding mode used in the most variable
structure systems, is of the first order (σ is
continuous, and &σ  is discontinuous).  

Consider a dynamic system of the form

   x&  = a(t,x) + b(t,x)u,    σ = σ(t, x),          (1)

where x ∈ Rn, a, b and σ: Rn+1 → R are unknown
smooth functions, u ∈ R, n is also uncertain. The
relative degree r of the system is assumed to be
constant and known. That means that the control
appears explicitly for the first time in the rth total
time derivative of σ (Isidori, 1989). Full information
on the system state is assumed available. In
particular, t, x, σ and its r - 1 successive derivatives
are measured.  It is easy to check that

σ
(r) = h(t,x) + g(t,x)u,  (2)

where h(t,x) = σ
(r)|u=0, g(t,x) = u∂

∂ σ
(r) are some

uncertain functions, g(t,x) ≠ 0. A locally bounded
Lebesgue-measurable non-zero function Φ(t,x) is
supposed to be given, such that for any d. the
inequality

α g(t,x)Φ(t,x) > d + |h(t,x)| (3)

holds with sufficiently large α. The task is to provide
in finite time for the identity σ ≡ 0.

It is also assumed that trajectories of (1) are infinitely
extendible in time for any Lebesgue-measurable
control u(t, x) with the bounded quotient u/Φ.
Actually the proposed method works for much larger
class of systems, and this assumption is needed only
to avoid finite-time escape. In practice the system is
supposed weakly minimum phase.

Note that the traditional assumption (Levant, 2003a,
Bartolini et al., 2003) is that

0 < Km ≤ u∂
∂ σ

(r) ≤ KM,  | σ(r)|u=0 | ≤ C         (4)

for some Km, KM, C > 0. It corresponds to Φ = 1. The
both problem statements are further considered.

3.    COPING WITH UNBOUNDED
UNCERTAINTIES

Two known families of high-order sliding controllers
are defined by recursive procedures. In the following
β1,...,   βr-1 > 0 and i = 1,..., r-1.

1. The following procedure defines the “standard”
r-sliding controller (Levant 2003a). Let p be the least
common multiple of 1, 2, ..., r. Define

        Ni,r = (|σ|p/r+ |σ& |p/(r-1)+ ... + |σ(i-1)| p/(r-i+1))(r- i)/p ;
        Ψ0,r = sign σ,    Ψi,r = sign(σ(i)+ βi Ni,r Ψi-1,r ).

2. Another procedure defines the so-called quasi-
continuous controller (Levant 2003b). Denote

ϕ0,r = σ,  N0,r = |σ|,      Ψ0,r = ϕ0,r /N0,r = sign σ,
ϕi,r = σ(i)+βi

)1/(1
,1

+−−
−

ir
riN ϕi-1,r,

Ni,r= |σ(i)|+βi
)1/(1

,1
+−−

−
ir

riN |ϕi-1,r|,
Ψi,r = ϕi,r / Ni,r.

In the both cases the controller takes on the form

u =  - α Φ(t,x)Ψr-1,r (σ, σ& , ..., σ(r-1)),    (5)

where α > 0. Note that in the case of the quasi-
continuous controller the function Ψr-1,r can be
redefined according to the continuity everywhere
except the  r-sliding set  σ = σ& =  ... = σ(r-1)= 0. Recall
that, according to the Filippov definition (1988),
values of the control on any set of the zero Lebesgue
measure do not influence the solutions.

Theorem 1. Provided β1,..., βr-1, α > 0 are chosen
sufficiently large in the list order, controller (5)
provides for the finite-time establishment of the
identity σ ≡ 0 for any initial conditions. Moreover,
any increase of the gain function Φ does not
interfere with the convergence.



In other words, the finite-time stable r-sliding mode
σ ≡ 0 is established in the system (1), (5). Note that
the Theorem does not claim that all parametric
combinations providing for the finite-time
convergence to the r-sliding mode, allow the
arbitrary increasing of α and Φ. Such parameter
combinations are called further gain-function robust.

A number of other HOSM controllers satisfy
Theorem 1. Such controllers and parameter
combinations are also called gain-function robust.
The popular sub-optimal and twisting controllers are
not gain-function robust and require special efforts to
deal with unbounded uncertainties (Bartolini et al.,
2001; Levant, 1993).

Proof. The proofs are similar for the both controllers.
The main idea is that with sufficiently large α any
system trajectory enters some specific region in finite
time to stay in it. The region is described by some
differential inequalities, which do not “remember”
anything on the original process. These inequalities
determine the further convergence. Consider, for
example, the quasi-continuous controller. The proof
is based on a number of Lemmas.

Lemma 1. Let i = 0, ..., r -1. Ni,r is positive definite,
i.e. Ni,r = 0 iff  σ = σ& = ... = σ(i) = 0. The inequality
|Ψi,r| ≤ 1 holds whenever Ni,r > 0. The function
Ψi,r(σ, σ& , ..., σ

(i-1)) is continuous everywhere (i.e. it
can be redefined by continuity) except the point σ
= σ& = ... = σ(i-1) = 0.

Assign the weights (homogeneity degrees) r - i  to
σ

(i), i = 0, ..., r - 1 and the weight 1 (minus system
homogeneity degree, Bacciotti and Rosier, 2001) to t,
which corresponds to the r-sliding homogeneity
(Levant, 2005).

Lemma 2. The weight of Ni,r equals r - i,  i = 0, ..., r -
1. Each homogeneous locally-bounded function
ω(σ, σ& , ..., σ

(i)) of the weight r - i satisfies the
inequality | ω | ≤ c Ni,r  for some c > 0.

Lemma 3. For any γ > 0 with sufficiently large α  >
0 the inequality |σ(r-1) + βr-1

2/1
,2 rrN −  Ψr-2,r| ≤ γ 2/1

,2 rrN −

is established in finite-time and kept afterwards.

Proof. Consider the point set Ω(ξ) = {(σ, σ& , ...,
σ

(r-1)) | |Ψr-1,r| ≤ ξ} for some fixed ξ > 0, ξ < γ/4.
Simple calculations show that Ω(ξ) ⊂ Ω1(ξ) with
small ξ, where Ω1(ξ) is defined by the inequality

|σ(r-1) + βr-1 
2/1

,2 rrN − Ψr-2,r | ≤ 4ξ 2/1
,2 rrN − .

That inequality is equivalent to the inequality  φ- ≤
σ

(r-1) ≤ φ+ , where φ-, φ+ are homogeneous functions
of σ, σ& , ..., σ(r-2) of the weight 1. Restricting φ- and φ+

to the homogeneous sphere σ
2p/r + σ&

2p/(r-1)
+ ...+

(σ(r-2))2 p = 1, where p is the least multiple of 1, 2, ...,
r - 1, achieve some continuous on the sphere
functions φ1- and φ1+. Functions φ1- and φ1+ can be
approximated on the sphere by some smooth
functions φ2- and φ2+ from beneath and from above
respectively. Functions φ2- and φ2+ are extended by
homogeneity to the homogeneous functions Φ- and
Φ+ of σ, σ& , ..., σ

(r-2) of the weight 1, smooth
everywhere except 0, so that Ω(ξ) ⊂ Ω2 = {(σ, σ& , ...,
σ

(r-1))| Φ- ≤ σ(r-1) ≤ Φ+}.

Thus, the inequality |Ψr-1,r| ≥ ξ is assured outside of
Ω2. Prove now that Ω2 is invariant and attracts the
trajectories with large α. The “upper” boundary of Ω2

is given by the equation π+ = σ(r-1) - Φ+ = 0. Suppose
that at the initial moment π+ > 0 and, therefore, Ψr-1,r

≥ ξ. Taking into account that +Φ& (σ, σ& , ..., σ(r-1)) is a
locally bounded homogeneous function of the zero
weight, obtain | +Φ& | ≤ κ for some κ > 0.
Differentiating achieve that +π&  ≤ -d ξ + κ < 0 if d
is properly chosen and α is sufficiently large.

Hence, π+ vanishes in finite time with βi+1 large
enough. Thus, the trajectory inevitably enters the
region Ω2 in finite time. Similarly, the trajectory
enters Ω2 if the initial value of π+ is negative and,
therefore, Ψi,r ≤ - ξ. Obviously, Ω2 is invariant.

Choosing Φ- and Φ+ sufficiently close to φ- and φ+ on
the homogeneous sphere and α respectively large
enough, achieve from Lemma 2 that Ω2 ⊂ Ω1(γi/4)
and the statement of Lemma 3.n

The fulfilment of the statement of Lemma 3 triggers a
chain collapse as follows from the next Lemma.

Lemma 4. Let 1 ≤ i ≤ r-2, then for any positive βi, γi,
γi+1 with sufficiently large βi+1 > 0 the inequality

 |σ(i+1) + βi+1
)/()1(

,
irir

riN −−− Ψi,r| ≤ γi+1
)/()1(

,
irir

riN −−−

provides for the finite-time establishment and
keeping of the inequality

|σ(i) + βi 
)1/()(

,1
+−−

−
irir

riN Ψi-1,r | ≤ γi 
)1/()(

,1
+−−

−
irir

riN .

The proof is very similar to Lemma 3. The point set
Ω(ξ) = {(σ, σ& , ..., σ

(i))| |Ψi,r| ≤ ξ} is considered for
some fixed ξ > 0, ξ < γi/4. The set Ω1(ξ) ⊃ Ω(ξ) is
defined by the inequality

|σ(i) + βi 
)1/()(

,1
+−−

−
irir

riN Ψi-1,r | ≤ 4ξ )1/()(
,1

+−−
−

irir
riN .

The further proof uses Lemma 2 to estimate +Φ&

Since N0,r = |σ|, ϕ0,r = σ, Lemma 4 is replaced by the
next simple Lemma with i = 0.

Lemma 5. The inequality |σ&  + β1|σ|
(r-1}/rsign σ| ≤



γ1|σ|
(r-1}/r provides with 0 ≤ γ1< β1 for the

establishment in finite time and keeping the identity
σ ≡ 0.

This finishes the proof of the Theorem in the case of
the quasi-continuous controller. In the case of the
standard controller a homogeneous vicinity of the
controller discontinuity set is shown to attract the
trajectories in finite-time. n

   4.    ADJUSTMENT OF THE PARAMETERS

Consider the problem (1), (4). Then the equality (3)
implies the differential inclusion

σ
(r) ∈ [-C, C] + [Km, KM]u.  (6)

The problem is solved now building a bounded
feedback control in the form

u = αΨ(σ, σ& , ...,  σ(r-1)),  (7)

providing for the finite-time stability of the closed
inclusion (6), (7).

Inclusion  (6), (7) and the controller (7) are called
further r-sliding homogeneous, if for any κ > 0 the
combined time-coordinate transformation

Gκ:  (t, Σ) a ( κt, dκ Σ)    (8)

where Σ = (σ, &σ , ..., σ(r-1)), dκ Σ = (κr
σ, κr-1

&σ , ...,
κσ

(r-1)), preserves the closed-loop inclusion (6), (7)
and its solutions.

It is easy to check that (7) is r-sliding homogeneous,
iff

Ψ(κr
σ, κr-1

σ& , ..., κσ
(r-1)) = Ψ(σ, σ& , ..., σ(r-1)).

Almost all known HOSM controllers are r-sliding
homogeneous. Note that though the sub-optimal
controller (Bartolini et al. 2003) does not exactly
satisfy the described feedback form (7), it is invariant
with respect to (8) with r = 2 and is considered here
as 2-sliding homogeneous.

Denote by Tmax(s1, s2, ..., sr) and Tmin(s1, s2, ..., sr) the
maximal and the minimal convergence times of the
solutions of (6), (7) with initial conditions σ = s1, σ& =
s2, ..., σ

(r-1) = sr to the origin σ = σ& = ... = σ(r-1) = 0. It
is easy to see that these functions are well defined
(Filippov 1988) and continuous when r-sliding
homogeneous controllers are applied. They are also
homogeneous in that case with the homogeneity
degree 1 (Levant 2005).

Let λ > 0. Consider the differential inclusion

σ
(r) ∈ λr[-C, C] + [Km, KM]u.   (9)

and the controller

u = λr
αΨ(σ, σ& /λ, ...,  σ(r-1)/λr-1).l  (10)

Denote by ΩR and RΩ  the sets |σ|1/r + |σ& |1/(r-1) + ... +

|σ(r-1)| ≤ R and |σ|1/r + ... +|σ(r-1)| ≥ R, and let max
~T (Σ)

and min
~T (Σ) be the convergence-time functions for

controller (10).

Proposition 1. Let the differential inclusion (6), (7)
be finite time stable and r-sliding homogeneous, then
also (9), (10) is finite time stable and

max{ max
~T (Σ)|Σ ∈ΩR}≤ λ

1 max{Tmax(Σ)|Σ ∈ΩR}, (11)

min{ min
~T (Σ)|Σ ∈ RΩ }≥ λ

1 min{Tmin(Σ)|Σ ∈ RΩ } (12)

hold with λ > 1 and λ < 1 respectively.

Proof. Apply the time transformation t = λτ. Then
d/dt = λ

1  d/dτ and in the new time the closed loop
inclusion takes the form (9), (10). Obviously,

Tmax(σ, σ& , ..., σ(r-1)) = λ max
~T ( σ, σ& /λ, ..., σ(r-1)/λr-1),

Tmin(σ, σ& , ..., σ(r-1)) = λ min
~T ( σ, σ& /λ, ..., σ(r-1)/λr-1).

The Proposition follows now from the fact that with λ
> 1 the point (σ, σ& /λ, ..., σ

(r-1)/λr-1) belongs to ΩR,
while with λ < 1 it belongs to RΩ . Due to the
homogeneity, the minimum of Tmin in RΩ  exists and

takes place on the set |σ|1/r + ... +|σ(r-1)| = R. n

Note that with λ > 1 inequality (11) holds also for the
inclusion (6), (10), which means that controller (10)
provides for the convergence acceleration. In the case
when C = 0, pure acceleration or slow down of the
convergence occurs.

Obviously, if (7) is a gain-function-robust r-sliding
homogeneous controller, then also (10) is gain-
function robust and r-sliding homogeneous. In the
special case of the quasi-continuous controller, (10)
has the same form as the original controller (7).

Proposition 2. The above-defined quasi-continuos
controller preserves its form after the transformation
(10) with r > 1. Its new parameters take on the values

1
~
β = λβ1, 2

~
β = λr/(r-1)

β2, ..., 1
~

−βr = λ
r/2

βr-1, α~ = λr
α.

Note that this controller is gain-function robust,
which means that each λ produces a new valid
combination of βi effective for any SISO system with
the given relative degree r, provided a sufficiently
large gain function is taken. Following are the
resulting quasi-continuous controllers with r ≤ 4,
simulation-tested βi and a general gain function Φ:

1. u = - α Φ sign σ,
2. u = - α Φ (| &σ |+λ|σ|1/2)-1 ( &σ +λ |σ|1/2sign σ),
3. u =
 -αΦ [ &&σ +2λ

3/2(| &σ |+ λ|σ|2/3
)

-1/2( &σ +λ|σ|2/3sign σ)] /
 [| &&σ |+ 2λ

3/2(| &σ |+λ|σ|2/3
)

-1/2| &σ + λ|σ|2/3sign σ|],



4. ϕ3,4 = &&&σ +⋅
3λ

2[| &&σ |+λ
4/3(| &σ | + 0.5λ |σ|3/4)-1/3

| &σ + 0.5λ |σ|3/4sign σ|]-1/2

[ &&σ +λ
4/3(| &σ |+ 0.5λ |σ|3/4)-1/3

( &σ + 0.5λ |σ|3/4sign σ)],
N3,4 =|&&&σ | +

3λ
2[| &&σ | + λ4/3(| &σ | + 0.5λ |σ|3/4)-1/3

| &σ + 0.5λ |σ|3/4sign σ|]-1/2

| &&σ + λ4/3(| &σ | + 0.5λ |σ|3/4)-1/3

( &σ + 0.5λ |σ|3/4sign σ)|,
u = - αΦ ϕ3,4 / N3,4 .

As follows from Proposition 2 one needs a valid
basic set of parameters to produce sets featuring
different convergence rate with respect to λ. The
larger λ the faster the convergence.

It is easy to show that each gain-function robust set
of parameters providing for the convergence of the
solutions of the differential equation σ(r) = u to Σ = 0
can be used as such a basic set. The inverse is
obvious.

5.    SIMULATION EXAMPLE

Consider a model example

1x&&&  = cos 10t ( 2xe + x1
2sin 1x& ) + (2+sin t)(x2

2+1) Φ u;

2x&  = x1 - x2 + cos t,
where Φ is the gain function to be specified further.
Here x1 is the output which has to track the function

x1c = 0.08 sin t + 0.12 cos 0.3t.
Respectively,  σ = x1 - x1c is taken. The standard
3-sliding controller has the form

u = -αΦ sign( &&σ +2(| &σ |3+|σ|2)1/6sign( &σ +|σ|2/3sign σ)),

also the 3-sliding quasi-continuous controller was
applied listed in Section 4. The initial conditions x1 =
6, 1x& =1, 1x&&  = 15, x2 = 10 were taken at t = 0. The
gain functions

Φ = ( 2xe + x1
2)/( x2

2+1)+1 (13)

and

Φ = 2xe + x1
2+1 (14)

were considered. In all the cases α = 5 is taken. The
integration was carried out according to the Euler
method (the only integration method possible with
discontinuous dynamics) with the integration step
10-5.

The both considered controllers were applied with
the listed gain functions. With the smaller gain-
function (13) the controllers demonstrate their
standard transient features (Fig. 1 and Fig. 2, λ = 1).
With the redundantly large gain-function (14) some
large but quickly decreasing chattering of the control

and &&σ  arises. One cannot distinguish between the
joint graphs of σ, &σ , &&σ  for the both controllers in
that case. It is interesting to mark that the graphs of σ
and &σ  do not change drastically. Also the transient
time does not change (Fig. 1). This is explained by
the common dynamics in the “configuration” space σ,
&σ  (see the proof of Theorem 1).

Fig. 1:  Standard  3-sliding controller with different
gain functions

Fig. 2: Adjustment of the quasi-continuous controller
with the gain function Φ = ( 2xe + x1

2)/( x2
2+1)+1

It is seen in Fig. 2 that the control magnitude drops
instantly from very large values. After the sliding
mode is established, i.e. the trajectory approaches the



control discontinuity set σ = &σ = &&σ  = 0, the
character sliding-mode control chattering arises with
the magnitude αΦ(t, x(t)).

In all the cases almost the same sliding accuracy is
obtained  |σ| ≤ 2⋅10-12, | &σ | ≤ 3⋅10-8, | &&σ | ≤ 1.⋅10-3  for
the standard controller and |σ| ≤ 6⋅10-13, | &σ | ≤ 2⋅10-8,
| &&σ | ≤ 8⋅10-4 for the quasi-continuous controller. After
the integration step was changed to 10-6 the accuracy
of the standard controller changed to |σ| ≤ 2⋅10-15, | &σ |
≤ 4⋅10-10, | &&σ | ≤ 1.⋅10-4 which corresponds to the
classical 3-sliding accuracy.

The parametric adjustment is demonstrated for the
quasi-continuous controller. It is seen that with λ =
0.5 the transient is 2 times longer, while with λ = 2 it
is 2 times shorter. In the latter case, with respect to
(10), also α was changed to the value 2⋅5 = 10.

7.    CONCLUSIONS

Two long lasted problems of the high-order sliding
mode control are solved in this paper. It is shown that
the both main types of HOSM controllers allow
functional gains of very general form, providing for
the suppression of unbounded uncertainties. The
relative degree can be artificially increased,
producing arbitrarily smooth control and removing
the chattering effect.

The convergence rate is not much influenced by the
large gain determining the control magnitude. It is
defined mostly by the other controller parameters. In
their turn those parameters can be adjusted providing
for the faster or slower convergence (Propositions 1,
2). Thus, having one valid  parameter set, one obtains
a whole family of parameter sets with different
convergence rates.

The main method of building such basic parameters’
sets remains the computer simulation. It is sufficient
to carry out such simulation for the simplest equation
σ

(r) = u .

A list of quasi-continuous controllers is presented in
Section 4 with relative degrees less or equal 4 and
simulation tested gain-function-robust parameters.
Since in the most practically important problems of
output control the relative degree r does not exceed
4, this list constitutes a base for easy application of
higher order sliding mode controllers.

Arbitrary-order real-time exact differentiation is
known to provide for the output-feedback control of
the SISO systems with bounded uncertainties
(Levant, 2003a). Unfortunately, its application needs
the boundedness of σ

(r), which is not true in the
considered case. The development of differentiators
with a known functional bound is a challenge for the

future.
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