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Abstract: In this paper we consider the use of linear periodic controllers (LPCs) to
minimize the weighted sensitivity function in the face of a multiplicative gain uncertainty.
We show that, under a technical assumption on the single-input single-output (siso) plant
(it is relative degree one), on the weighting function (it is strictly proper), and on the
multiplicative gain (it lies in a compact set not including zero), there exists a LPC
which can provide a near LTI-optimal weighted sensitivity for every admissible gain.
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1. INTRODUCTION

In this paper we consider a robust performance prob-
lem, namely that of minimizing the weighted sen-
sitivity function in the face of a multiplicative gain
uncertainty. It is well known that if a linear time-
invariant (LTI) plant is unstable and non-minimum
phase, then there is an upper bound on the gain margin
achievable using an LTI controller (Khargonekar and
Tannenbaum, 1985); however, it is also known that the
gain margin can be made arbitrarily large using a LPC
(e.g. Francis and Georgiou, 1988; Yang and Kabamba,
1994). On the other hand, it is well known that in
carrying out sensitivity minimization when there is
no plant uncertainty, there is no advantage to turning
to time-varying or nonlinear controllers when using
2 � norms on signals (Khargonekar and Poolla, 1986);
when using the ∞-norm, there is no advantage to using
time-varying controllers, at least in the discrete-time
case (Shamma and Dahleh, 1991), although there can
be an advantage to using nonlinear controllers (Stoor-
vogel, 1994), at least in the multi-input multi-output
case. Furthermore, it is shown in Yan and Anderson

(1990) that if one approaches the aforementioned ro-
bust performance problem using an LTI controller,
then for an unstable nonminimum phase plant the size
of sensitivity function (when using the 2 � norm) tends
to infinity as the gain margin required tends toward
the maximum attainable. This motivated the work of
Yan, Anderson, Bitmead (1994) where it is shown
that, under suitable assumptions, one can use a LPC
to make the gain margin be large as desired while en-
suring that the size of the sensitivity function remains
bounded. Here our goal is to show that, under suitable
assumptions, one can achieve any desired gain margin
while ensuring that the size of the weighted sensitivity
function is near LTI-optimal; indeed, we allow for a
much more general gain, namely that of a compact set
not containing zero, which means that it can include
ones of both signs. Hence, from a certain point of view
there is no cost in terms of performance by allowing
an uncertain gain in the plant model. Here we adopt
the ∞ � norm to measure our signal size.

The approach that we adopt is as follows. First, we
observe that if the LTI controller C0 � s � stabilizes the



nominal plant P0 � s � , then the LTI controller 1
kC0 � s �

stabilizes kP0 � s � and yields the same weighted sensi-
tivity function. Hence, we start with an LTI controller
C0 � s � which stabilizes P0 � s � and provides near optimal
performance. We then adopt the following periodic
control mechanism: during the period � jT � � j 	 1 � T �
we have three phases: the Estimation Phase, the Reset
Phase, and the Control Phase. During the Estimation
Phase we probe the plant and (linearly) estimate the
quantity 1

k e � jT � ; during the Reset Phase we approx-
imately erase the effect of the probing on the plant,
and in parallel apply the (suitably scaled) estimate
of 1

k e � jT � to the model of C0 � s � ; during the Control
Phase we first sample the output of C0 � s � and then
apply this (suitably scaled) to the plant. We end up
with a stable LPC, parameterized by the period T and
the approximation parameter ε, which will provide
stability for modest values of T and ε, and which will
recover the near-optimal performance as T 
 0 and
ε 
 0. Since the control signal is recomputed during
each period, we would expect that the controller will
tolerate slow time variations in the uncertain gain,
which is a highly desirable feature. The ideas used
here in the controller design are related to those used
in Miller (2003) in the model reference adaptive con-
trol problem.

2. NOTATION

Let R denote the set of real numbers, C denote the set
of complex numbers, C � denote the set of complex
numbers with a real part less than zero, and Z � denote
the set of non-negative integers. We use the Holder
∞-norm for vectors and the corresponding induced
norm for matrices, and denote the norm of a vector or
matrix by ��� . We let PC∞ denote the set of bounded
piecewise continuous signals, 1 , and we measure the
size of f � PC∞ by f  ∞ : � supt � 0  f � t ����
The norm of a linear operator G : PC∞ 
 PC∞ is given
by  G �� sup

f � PC∞ � f �� 0

 G f  ∞ f  ∞
�

3. PROBLEM FORMULATION

Our nominal siso plant model P0 is

ẋ � t ��� A x � t ��	 B u � t ��� x � 0 ��� x0 � (1)

y � t ��� E x � t ���
1 We could have used the essentially bounded Lebesgue measure-
able signals, but it provides a complication: since they are not well-
defined pointwise and the norm allows for the occasional extremely
large value, we would need to filter the signal before we sample it,
which complicates the controller design.

C kP0
 ! ! ! !"# u yW! yre f er

Figure 1: Basic feedback control structure.

with x � t �$� Rn the state, u � t ��� R the control input, and
y � t �%� R the plant output. Our standing assumption is

Assumption 1: � A � B � is controllable, � E � A � is observ-
able, and EB &� 0.

We capture uncertainty in the model by supposing that
the actual system P is given by

ẋ � t �'� A x � t ��	 B u � t ��� x � 0 �$� x0 �
y � t �'� kE x � t �(� (2)

with k � R; we represent this system by the triple� A � B � kE � . Our parameter k is assumed to be in a
compact set K not including zero, so our plant model
is assumed to lie in

P �*) � A � B � kE � : k � K +,�
Our feedback configuration is given in Figure 1, with
C representing the controller and W representing the
weighting function (or filter). The latter is assumed
to be finite-dimensional, LTI, low-pass and (naturally)
stable: it represents a model of the class of reference
signals which are to be tracked - we adopt a state-
space representation of

η̇ � Kη 	 Lr� v � 0 �$� v0 � (3)

yre f � Mv � (4)

We define closed loop stability in the usual way: with
zero initial conditions on the plant, controller and
filter, and with w1 and w2 fictitious signals introduced
at the plant input and output, respectively, closed loop

stability means that the map from

-.
w1
w2
r

/0*1# 
 2 uy 3
has a finite gain. The sensitivity function is

Sk � � I 	 kP0C � � 1 �
which represents the map from the reference signal to
the tracking error; we define S : � S1. The goal is to
minimize SkW in the face of uncertainty in k.

Remark 1. In the gain margin problem we have K �� a � b 4�5 0. If a controller stabilizes P then it provides
a gain margin of b

a for P0. It is well-known that there
is an upper bound on the gain margin achievable by
an LTI controller for a non-minimum phase unstable
plant (Khargonekar and Tannenbaum, 1985), although
there is no such bound if one uses an LPC, e.g. see
(e.g. Francis and Georgiou, 1988; Yang and Kabamba,
1994; Rossi and Miller, 1999). Since we allow gains of
both signs here, even when dealing with simple nomi-
nal models such as 1

s � 1 , one must typically use either



a time-varying or nonlinear controller to stabilize P ,
let alone provide good performance.

Before proceeding, we define

αlti : 6 inf
C is LTI and stabilizes P0 7 SW 798

For k :6 0, it is clear that C stabilizes P0 iff 1
k C

stabilizes kP0, so

inf
C is LTI and stabilizes kP0 7 SkW 7 6 αlti ;

i.e. the optimal cost is the same for all k. We will be
able to prove the following:

Theorem 1. For every γ < 0 there exists a linear

periodic controller CLPC which stabilizes P and pro-

vides the following performance bound:

sup
k = K 7�> I ? kP0CLPC @BA 1W 7DC αlti ? γ 8

Remark 2. This means that we can tolerate an uncer-
tain gain and still achieve near-optimal LTI perfor-
mance.

The idea behind the controller goes as follows. First,
we start with a stabilizing LTI controller (possibly
near optimal) Clti for P0; the goal is to apply a good
approximation of 1

k Clti. Since k is uncertain, some
form of estimation is required. We use a periodic
controller of period T which will achieve the objective
if T is small enough.

The controller that we adopt here has two components
- a continuous-time part and a sampled-data part. We
let Clti denote any finite-dimensional LTI control law
which stabilizes P0:

ż 6 Fz ? Ge ; z > 0 @ 6 z0 E Rl

u 6 Hz ? Je 8
Since we are not implementing this controller directly
we rename its input and output:

ż 6 Fz ? Ge0

u0 6 Hz ? Je0 8 (5)

Before defining the sampled-data component we group
the plant, Clti, and the filter W together:FG

ẋ
ż
η̇

HI 6 FG
A 0 0
0 F 0
0 0 K

HIJ K�L MN :Ā

FG
x
z
η

HIJ K�L MN :x̄

? FG
B 0
0 G
0 0

HIJ K�L MN :B̄2

O
u
e0 PJ K(L MN :ū

? FG
0
0
L

HIJ K(L M
B̄1

r

O
u0

e PJ K�L MN :ē

6 O
0 H 0Q kE 0 M PJ K�L MN :Ēk

FG
x
z
η

HI ? O
0 J
0 0 PJ K(L MN :D̄

O
u
e0 P 8

Notice that if we wish to apply the nominal controller
Clti we simply set

ū 6 ē;

however, to apply 1
k Clti, we would set

ū 6 O
1 0
0 1 R k P ē 8 (6)

Of course, since k is unknown we need to do some
form of estimation. To do this we use the following
sampled-data component:

z̄ S j ? 1 TU6 F̄ S j T z̄ S j TV? Ḡ S j T ē > jh @�; z S 0 T�6 z0 E Rl̄

ψ S j TW6 H̄ S j T z̄ S j TV? J̄ S j T ē > jh @ū > t @ 6 ψ S j T ; t E S jh ; > j ? 1 @ h @ 8 (7)

Here the controller gains > F̄ ; Ḡ ; H̄ ; J̄ @ are periodic of
period p E N; hence, the controller is periodic of
period T : 6 ph and we associate it with the 6 Q tuple> F̄ ; Ḡ ; H̄ ; J̄ ; h ; p @ . Note that (7) can be implemented
with a sampler, a zero-order-hold, and an l̄th order
periodic discrete-time system of period p .

The idea behind the sampled-data part of the controller
(7) goes as follows. First, notice that the control law

ū > t @ 6 O
u > t @e0 > t @ P 6 O

1 0
0 1 R k P ē > jT @ 6YX u0 > jT @1

k
e > jT @�Z ;

t E S jT ; > j ? 1 @ T @ (8)

should achieve our objective if T is small enough,
since it is clearly a good approximation to (6). Second,
with T1 E > 0 ; T @ and T2 E > T1 ; T @ notice that the control
law

ū > t @ 6 O
u > t @e0 > t @ P 6[\\\\\\\\\\\\] \\\\\\\\\\\\^

O
0
0 P ; t E S jT ; jT ? T1 @FG

0
T

k > T2 Q T1 @ e > jT @ HI ; t E S jT ? T1 ; jT ? T2 @FG
T

T Q T2
S u0 > jT @ ? 1

k
Je > jT @ T

0

HI ;
t E S jT ? T2 ; > j ? 1 @ T @

should achieve our objective if T is small enough.
(Notice that u0 > jT @ 6 Hz > jT @ .) It turns out that we
can design (7) in such a way as to approximate the
above. We split each interval S jT ; > j ? 1 @ T @ into three
phases, described below in open loop:_ Estimation Phase: On the interval S jT ; jT ? T1 @

we probe the plant in order to estimate 1
k e > jT @ .



` Reset Phase: On the interval a jT b T1 c jT b T2 d
we probe the plant in such a way as to (almost)
cancel the effect of the Estimation Phase and to
apply the above (suitably scaled) estimate to the
LTI compensator Clti.` Control Phase: On the interval a jT b T2 cBe j b
1 d T d we apply a (suitably scaled) output of the
LTI compensator Clti to the plant.

At this point we need to further elaborate on the three
phases, especially the problematic first phase. Once
this is done we will write down our proposed sampled-
data controller parameters and then prove Theorem 1.

4. THE CONTROLLER DESIGN

4.1 Phase 1 - Estimation

In this phase we would like to estimate the quantity
1
k e e jT d . It will turn out that we can estimate kie e jT d
quite accurately, so the first step is to approximate 1

k
by a polynomial on K. From the Stone-Weierstrass
Approximation Theorem we know that we can ap-
proximate it arbitrarily well over K. Indeed, for every
ε f 0 we can choose a polynomial φε e k d�g ∑q

i h 0 ciki so
that i

1 j kφε e k d i9k ε c k l K m (9)

Proposition 1. There exist constants ε̄ f 0 and c f 0

so that, for every ε l e 0 c ε̄ d and k l K, the controller

φε e k d Clti stabilizes kP0 and satisfiesn a 1 b kP0φε e k d Clti oqp 1W jra 1 b P0Clti osp 1W
nUt

cε m
Proof: This follows easily from perturbation analysis.

QED

At this point we freeze ε l e 0 c ε̄ d , q l N, and ci l R so
that i

1 j k
q

∑
i h 0

cikiu v�w xh :φε y k z
i{k

ε c k l K m
Hence, the goal becomes that of estimating ∑q

i h 0 cikie e jT d .
The following lemma proves useful.

Lemma 1. (Probing Lemma) With δ l e 0 c 1 d and

ρ f 0, there exist constants c f 0 and h̄ f 0 so that

for every ū l R and h l e 0 c h̄ d , if the control signal

u e t d$g ρh p δū c t l|a t0 c t0 b h o
is applied to the plant/filter combination (2)-(4), we

have i
e e t0 b h d j e e t0 d b ρkEBh1 p δū

i t
ch
n
η e t0 d n b ch

n
x e t0 d n b ch

n
r
n

∞ b ch2 p δ n ū n m
Proof: This follows easily from direct analysis of the
system equations.

QED

This result provides a mechanism to carry out estima-
tion. With ρ f 0 a scaling parameter and δ l e 0 c 1 d , on
the interval a jT c jT b h d we set

u e t d$g ρh p δe e jT d m
We see from above that we should define

Est a ke e jT d o : g j 1
ρEB

hδ p 1 a e e jT b h d j e e jT d o ;
recalling the definition of e, it follows that the error in
our estimate is

O e hδ d a n η e jT d n b n
x e jT d n b n

r
n

∞ o
Indeed, if we recursively set

u e t d$g ρh p δEst a kie e jT d o c t l}a jT b ih c jT b e i b 1 d h d�c
for i g 1 c m~m�m c q j 1, then it follows that we should define

Est a ki � 1e e jT d o : gj 1
ρEB

hδ p 1 a e e jT b e i b 1 d h d j e e jT b ih d o m
At t g jT b qh, we have good estimates of

kie e jT d(c i g 0 c m~m�m c q c
from which we can form a good estimate of 1

k e e jT d
for all k l K. At this point we freeze p l N satisfying

p f q b 1 m
4.2 The Reset Phase

At the end of the Estimation Phase we have a good
estimate of 1

k e e jT d , but we have disturbed the plant
state by approximately



jT � qh�
jT

eA � qh � τ � Bu � jT � τ � dτ � jT � qh�
jT

Bu � jT � τ � dτ� Bρh1 � δ
q

∑
i � 0

Est � kie � jT �����
This can be largely undone by setting

u � t �$��� ρh � δ
q

∑
i � 0

Est � kie � jT �����
for t ��� jT � qh � jT ��� q � 1 � h � .
Now we turn to the controller Clti. We define

Est � 1
k

e � jT ��� : � q

∑
i � 0

ciEst � kie � jT �����
We would like to apply an input to Clti over the interval� jT � qh � jT ��� q � 1 � h � (and zero for the remainder of
the interval � jT �B� j � 1 � T � ) so that

z ��� j � 1 � T ��� eFT z � jT ��� T�
0

eF � T � τ � Ge0 � jT � τ � dτ

which we can achieve by setting

e0 � t �$� T
h

Est � 1
k

e � jT ����� pEst � 1
k

e � jT ���
for t ��� jT � qh � jT ��� q � 1 � h � .
4.3 The Control Phase

On the rest of the period, namely � jT ��� q � 1 � h ��� j �
1 � T � , we simply apply a control signal to the plant.
Given that it is active for only a fraction of the period,
it must be scaled accordingly. We would like to set

u � t �$� p
p � q � 1 � Hz � t ��� J

1
k

e � t ���
for t � � jT �¡� q � 1 � h ��� j � 1 � T � ; instead we use a good
approximation, namely

u � t �$� p
p � q � 1 � u0 � jT ��� JEst � 1

k
e � jT �����,�

for t �¢� jT �r� q � 1 � h �B� j � 1 � T � . (Notice from Section
4.2 that u0 � jT �$� Hz � jT � .)
4.4 The Proposed Sampled-Data Compensator

At this point we can use the previous three subsections
to construct a controller. We first write down the

complete control signal and procedure in open loop.
To this end, with Est � e � jT ��� : � e � jT � , we set

u � t �$�
£¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¥ ¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¦

ρh � δEst � kie � jT �����
t ��� jT � ih � jT ��� i � 1 � h ���
i � 0 � 1 �B���~�~� q � 1� ρh � δ

q

∑
i � 0

Est � kie � jT �����
t ��� jT � qh � jT ��� q � 1 � h �

p
p � q � 1 � u0 � jT ���

J
q

∑
i � 0

ciEst � kie � jT �����,�
t ��� jT ��� q � 1 � h � jT � ph �(�

(10)

e0 � t �$�
£¤¤¤¤¤¤¤¤¥ ¤¤¤¤¤¤¤¤¦

0 �
t �|� jT � jT � qh �

p
q

∑
i � 0

ciEst � kie � jT �����
t �|� jT � qh � jT ��� q � 1 � h �

0 �
t �|� jT ��� q � 1 � h � jT � ph ��� (11)

with Est � kie � jT ��� , i � 1 �B���~��� q, given by

Est � kie � jT ��� : �� 1
ρEB

hδ � 1 � e � jT � ih �§� e � jT ��� i � 1 � h ����� (12)

Now we can turn to a state-space model. We need one
of dimension q � 2:¨ z̄1 of dimension q � 1 is used to hold the samples

of e � jT � ih � , i � 0 � 1 ���~�~��� q, for the period.¨ z̄2 of dimension one is used to hold the sample of
u0 � jT � for the period.

It is routine, though tedious, to construct the pa-
rameters � F̄ � Ḡ � H̄ � J̄ � so that the corresponding con-
troller (7) implements the estimation, reset and control
phases described above and encapsulated in (10)-(12);
for space reasons the details are not included here.
With ρ © 0 we label this controller Cl pc � h � . The next
step is to prove that the proposed controller achieves
our objective. To do so we need the following propo-
sition.

Proposition 2. There exist constants h̄ © 0 and c © 0

so that the controller Cl pc � h � stabilizes kP0 for every

h �|� 0 � h̄ � and k � K and satisfiesª � 1 � kP0φε � k � Clti � � 1W �«� 1 � kP0Cl pc � h ��� � 1W
ª¬

c � hδ � h1 � δ �(� h �}� 0 � h̄ ��� k � K �



Proof:

We first analyse the closed system behaviour at integer
multiples of T  ph, and prove that it is very close to
that provided by φε ® k ¯ Clti. At this point we can prove
the same about the inter-sample behaviour.

QED

Proof of Theorem 1:

First, let γ ° 0. Choose Clti to be a finite-dimensional
LTI controller which stabilizes P0 and ensures that± ® I ² P0Clti ¯�³ 1W

±U´
αlti ² γ µ 3 ¶

From Proposition 1 we know that there exist constants
ε̄ ° 0 and c ° 0 so that, for every ε · ® 0 ¸ ε̄ ¯ , the
controller φε ® k ¯ Clti  ® ∑q

i ¹ 0 ciki ¯ Clti stabilizes kP0 for
every k · K and satisfies±�º

1 ² kP0φε ® k ¯ Clti » ³ 1W ¼ º 1 ² P0Clti » ³ 1W
±U´

cε

for k · K. Choose ε · ® 0 ¸ ε̄ ¯ so that cε ½ γ µ 3. Fix
ρ ° 0 and p ° q ² 1. From Proposition 2 there exists an
h̄ ° 0 and c̄ ° 0 so that the controller Cl pc ® h ¯ stabilizes
kP0 for every h · ® 0 ¸ h̄ ¯ and k · K and satisfies±¾º

1 ² kP0φε ® k ¯ Clti » ³ 1W ¼ º 1 ² kP0Cl pc ® h ¯ » ³ 1W
±´

c̄ ® hδ ² h1 ³ δ ¯
for h · ® 0 ¸ h̄ ¯ and k · K. Choose h · ® 0 ¸ h̄ ¯ so that

c̄ ® hδ ² h1 ³ δ ¯%½ γ µ 3 ¶
Using the triangle inequality, it follows that Cl pc ® h ¯
stabilizes kP0 for every k · K and ensures that±�º

1 ² kP0Cl pc ® h ¯ » ³ 1W
±U´

αlti ² γ ¸ k · K ¸
as desired, so we set CLPC  Cl pc ® h ¯ .

QED

5. SUMMARY AND CONCLUSIONS

In this paper we have considered the problem of min-
imizing the weighted sensitivity in the face of an un-
certain multiplicative gain uncertainty. We show that,
under a technical assumption on the plant (it is rel-
ative degree one), on the weighting function (it is
strictly proper), and on the multiplicative gain (it lies
in a compact set not including zero), there exists a
LPC which can provide a near LTI-optimal weighted
sensitivity for every admissible gain. The controller
consists of two parts: an LTI controller which is
near optimal for the nominal plant, together with a
sampled-data linear periodic controller which carries
out some probing. While we have used the ∞-norm on
our signals here, we expect that the approach should
translate to the 2 ¼ norm case with a proper choice of

the controller parameters. We are presently working
on removing the plant relative degree restriction and
on proving that the controller tolerates slow time-
variations in the gain.
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