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Abstract: This paper deals with a robust H2/H∞ synthesis and an analysis tech-
nique applied to an induction motor. In order to robustify a linearizing decoupled
feedback against parametric variations, H2/H∞ controllers with a reference model
are added. The main interests are performances and real decoupling between the
rotor flux and the speed in spite of parameter variations. A stability analysis
method using parameter-dependent Lyapunov function is also proposed to verify
the global stability. Real time implementations are carried out.
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1. INTRODUCTION

The industrial development of power electronics
and real time controller board allows everyday
to experiment new algorithms of control more
sophisticated. These algorithms counteract some
nonlinearities and minimize the number of sen-
sors while increasing performances. Techniques
like field oriented control developed by Blaschke
(Blaschke, 1972) can be improved by achieving
exact input-output decoupling and linearization
via a nonlinear state feedback as shown in (Marino
et al., 1993).

The behavior of these nonlinear feedbacks of lin-
earization are deteriorated by the presence of
parametric variations. Nonlinearities and cou-
plings are reintroduced by these variations. A
model of the effects of the variations of parameter
is made up, in order to carry out a linear robust
synthesis of controller. This one would maintain

faculties of decoupling of the initial nonlinear feed-
back.

A model of reference (Morari and Zafiriou, 1989)
is added to the loop of linearization in order to
improve the synthesis of the robust controller.

Consequently, we propose to use a mixed opti-
mization of H2/H∞ by using linear matrix in-
equalities which tools as those introduced by
(Chilali and Gahinet, 1996; Gahinet et al., 1995).
This approach synthesize a robust controller who
allows good performance. An analysis tool is per-
formed to analyze the robustness of the synthe-
sized controller by adding the neglected nonlin-
earities and the polytopic description.

The proposed approach consider an optimization
of the polytopic parameter variation of a linear
system in order to find a Lyapunov function which
include a maximized H2 norm bounded nonlinear-
ity. The originality of the method is in the com-
bination of reference model and H2/H∞ design



coupled with an analysis tool which takes into
account nonlinearities and parameter variation
neglected in the design step.

2. PROBLEM FORMULATION

2.1 Preliminaries

In this paper, multi-inputs and multi-outputs non-
linear systems with parametric uncertainties are
considered, they are defined by the following equa-
tions :
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index n corresponds to the nominal system and p
to the perturbed system. Where ξ ∈ R

n denotes
vector of state variables, v ∈ R

m denotes the
input vectors, θ ∈ R

q denotes the vector of the
uncertain parameters which are assumed to be
time-unvarying and y ∈ R

m denotes the output
vector.
The different matrices Ai and Bi are constant.

3. ROBUST CONTROL SYNTHESIS

In order to synthesize the output feedback con-
troller, the variations are not considered. This
condition is taken into account to have an op-
timum controller which can be synthesized with
L.M.I. tools. Differently, the solution must be
found with the bilinear tools (B.M.I., iterative
L.M.I. ), but it is not sure that the solution is
the optimal one.

So, the feedback controller is designed on the
nominal linear part of the model (1).

3.1 Reference model

In order to counteract the deviations of the per-
turbed linearized model, a tracking model based
on a reference model is used, see (Morari and
Zafiriou, 1989). The reference model control ob-
jective is to design a compensator so that the
input-output operator of the closed-loop system
matches that of a specified reference model.

For this study, the reference model is taken equal

to the nominal linearized model
(

i.e. θ̃ = 0
)

:

In fact, the reference model acts to attenuate the
contribution of the nonlinear part Hd(θ̃, ξ(t)) of
the model (1) in presence of parameter deviation.

3.2 Performance specifications

A mixed H2/H∞ linear synthesis is designed in or-
der to take into account some performances. The
control problem can be formulated as an H∞ op-
timization problem on the nominal case in (Doyle
et al., 1989; Safonov et al., 1993) and for a treat-
ment of H2/H∞ output-feedback problem with an
L.M.I. formulation in (Chilali and Gahinet, 1996).
The H∞ specifications of closed loop system can
be integrated by shaping the sensitivity function
S and the complementary sensitivity function T
(or KS).

The H2 optimization will concerns the error out-
puts between the reference model and the lin-
earized system. So, a shaping filter We (s) can be
used to integrate these specifications.

4. ROBUST STABILITY ANALYSIS

In order to prove the global stability for the closed
loop of the designed controller, a stability analysis
is presented integrating the nonlinear perturba-
tion of the equation (1) and the parameter varia-
tion which have been put aside for the synthesis.

Integrating the reference model and the controller,
let the final closed loop system be described as:

Ẋ = Afcl

(

θ̃
)

X + Hfcl
.d(θ̃, X(t)) (6)

Considering this uncertain model, a sufficient LMI
condition for the system to prove its stability is
proposed. This condition involves Lyapunov func-
tions that depend on the polytopic structure of the
uncertainty in order to reduce the conservatism
of the method. This work refers to the results of
(Geromel et al., 1998). The affine structure of the
previous model which depends of the parameter

variation (equation 6:Ag

(

θ̃
)

and Bg

(

θ̃
)

) can be

used to perform a polytopic description of the
structure.



4.1 Problem statement

Considering a polytope A (which corresponds to

Afcl

(

θ̃
)

) precisely defined by its known vertices,

it is aimed to find the greatest nonlinear uncer-
tainty d(θ̃, X(t)) structured by Hf , in the sense of
a norm, so that stability is ensured in the presence
of both uncertainties. More precisely, a bound ρ
is derived so that if:

||d(θ̃, X(t))||2
||X(t)||2

< ρ ,∀X(t) ∈ R
n∗ (7)

The system (6) is stable whatever the value of
α ∈ ∆.

This problem is closed to the derivation of the so-
called “robust stability bounds”.

Many investigations have been led on this topic
since Patel and Toda have proposed a first result.
A robust stability bound is in fact the inverse of
an upper bound of µ.
Most of those works consider only one uncertainty
case: unstructured one or parametric structured
one. An original point in this work is the presence
of both the polytopic uncertainty and the nonlin-
ear one.

4.2 LMI condition

In this part, a LMI condition for robust stability
of model (6) is proposed.

Theorem 1. : Let a system be described by (6)
where A is some matrix belonging to a polytope
A, where Hf ∈ R

n×q is a known matrix and where
d(.) is a norm bounded function from R × R

n to
R

q. This system is robustly stable if

||d(θ̃, X(t))||2
||X(t)||2

< ρ = ν
1

2 ∀X(t) ∈ R
n∗ (8)

and if there exist F ∈ R
n×n, G ∈ R

n×n and N
symmetric matrices Pj = P ∗

j ∈ R
n×n, j = 1, ..., N

such that, ∀j ∈ {1, ..., N}, the following LMIs
hold:































Mj =




A′
jF

′ + FAj + νIn Pj − F + A′
jG PjHf

Pj − F ′ + G′Aj −(G + G′) O

H ′
fPj O −Iq



 < 0

Pj > 0
(9)

Proof: The reasoning uses some arguments bor-
rowed from (Peaucelle et al., 2000) but because of

the presence of the additive terms relevant to the
nonlinearity the proof has to be detailed.
Assume that there exist some matrices F , G,
Pj , j = 1, ..., N and a scalar number ν solution
of (9). Define the following parameter-dependent
matrices M(α) and P (α) (∀α ∈ ∆)are obviously
convex combinations of respectively Mj and Pj ,
j = 1, ..., N . Hence, for any instance α ∈ ∆, there
exists a triple of R

n×n-matrices, {F,G, P (α)}.
Thus, inequality (9) holds for the vertices of poly-
tope A and also for each point inside A. The
notation “.(α)” and “∀α ∈ ∆” are omitted to
make the proof shorter. If M is negative definite
whatever α ∈ ∆ is, then the following inequality
stands ∀X(t) ∈ R

n∗:

[

X ′(t) X ′(t)A′ d′(θ̃, X(t))
]

M





X(t)
AX(t)

d(θ̃, X(t))



 < 0

(10)
⇔ X ′(t)(A′P + PA)X(t) + νX ′(t)X(t)+

d′(θ̃, X(t))H ′
fPX(t) + X ′(t)PHf .d(θ̃, X(t))−

d′(θ̃, X(t))d(θ̃, X(t)) < 0∀X(t) ∈ R
n∗ (11)

If inequality (8) holds, then it comes:

d′(θ̃, X(t))d(θ̃, X(t)) < νX ′(t)X(t) (12)

Taking (11) and (12) into account yields:

X ′(t)(A′P + PA)X(t) + d′(θ̃, X(t))H ′
f .PX(t)+

X ′(t)PHf .d(θ̃, X(t)) < 0 ∀X(t) ∈ R
n∗ (13)

Inequality (13) can be written V̇ (X(t)) < 0 with
V (X(t)) being a parameter-dependent Lyapunov.
Hence, system (6) is stable. 2

Condition given in theorem 1 is tractable from a
computational point of view. Maximizing ν while
LMI system (9) holds for some F , G and Pj can
be achieved owing to the function fminu of the
LMI Toolbox of Matlab. If the LMIs are found
feasible, the optimal value of ν is such that for any
nonlinear uncertainty d(θ̃, X(t)) whose spectral

norm is less than ρ = ν
1

2 , system (6) is stable
whatever α ∈ ∆ is.

5. SYNTHESIS AND ANALYSIS APPROACH
APPLIED TO A NONLINEAR

EXPERIMENTAL SET-UP: AN INDUCTION
MOTOR

The proposed methodology has been applied for
a 1.1kW squirrel induction motor, whose data
are listed in the appendix. Considering the previ-

ously described model such that θ1 = θ̄1

(

1 + θ̃1

)



and θ2 = θ̄2

(

1 + θ̃2

)

(where θ̄i corresponds

to the medium value of θi)), the functioning
changes in induction motor resistances θ̃1 range
in [−0.5,+0.5] and inductances change θ̃2 range
in [−0.2, 0.2].

5.1 Modelization approach

The induction motor model is nonlinear, therefore
a linearizing input-output control feedback is used
like thus described in section 2.1 (see (Marino
et al., 1993),(Cauet et al., 2002)) concerning in-
duction motor linearization). When a parameter
deviation occurs, the closed-loop behavior can be
described by a two parts model, a linear part
which is composed of an affine dependency of
the parameter variation and an additive nonlinear
part. Here is the linearized system, see (Cauet et

al., 2002) for detailed calculus :

ξ̇ =

(

An +
2
∑

p=1

Ap.θ̃p

)

ξ+
(

Bn + B2.θ̃2

)

v+R
(

ξ, θ̃
)

(14)

Where:

ξ =
[

x1, ẋ1, h2 = (x2

2
+ x2

3
), Lfn

h2

]′
(15)

And
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0 0 0 1
0 0 −b20 b21









A
1
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−b11 0

0 0
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and where R
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0
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(

ξ, θ̃
)

0
R2 (x)











(16)

(17)

With

R1

(

ξ, θ̃
)

=−θ̃2

a1p

M

(

x1x4

2a2

+ x1x3

)

R2

(

ξ, θ̃
)

= θ̃2

(

2pa2M

a1

x1x2

)

+
(

θ̃1 + θ̃2

)

.

(

2α2

nM2

x3

[

(

x4 + 2a2x3

2a2M

)2

+
x2

2

a2

1

])

Subscript n refers to the nominal parameter val-
ues. Where the state vector of the original nonlin-
ear model, x, is given by: x = [x1, x2, x3, x4, x5]

′.
x1 is the induction machine speed, (x2, x3) denote
the (α, β) rotor flux, (x4, x5) denote the (α, β)

stator current. The input vector u = [u1, u2]
′

represents the (α, β) components of the stator
voltage inputs.

The other parameters are listed in the appendix,

a1 = pM
JLr

, a2 = Rr

Lr

, a3 = M
σLsLr

, a4 = M2Rr
σLsL2

r

+
Rs

σLs

and a5 = 1

σLs

be a reparametrization of
the induction motor model (in function of the
real parameters described in the appendix). The
closed loop poles of the nominal linearized model
are represented by b10 = 2790, b11 = −201,
b20 = 96100, b21 = −620.

5.2 Design of weighting functions

In this study, the controlled output are ξ1(1) = x1

(the rotor speed) and ξ2(1) = x2

2
+ x2

3
(the square

of the flux norm).

The design of the weighting functions WS ,WKS

and We associated to the requirements is per-
formed as follows :

WS = diag(wS1, wS2) with wSi

of the form
s

Ms

+ wbsi

s + εs.wbsi

WKS = diag(wKS1, wKS2) with wKSi

of the form
s + wbksi

Mu

εks.s + wbksi

We = diag(we1, we2) with wei = 1

The weighting filters wS1 (wS2) and wKS1 (wKS2)
are respectively the weighting function of S and
KS of the dynamics of x1

((

x2

2
+ x2

3

))

where x1

represents the rotor speed and
(

x2

2
+ x2

3

)

repre-
sents the square modulus of the rotor flux.

Each parameter of WS(s), WKS(s) and We (s) has
a physical meaning.

In our case, we choose εs ≪ 1 , Ms ≃ 2,wbs1 = 60
rad/s and wbs2 = 120 rad/s.
While the weighting filters of KS are designed to



non-saturate the actuators, so Mu = 3 wbks1 =
300 rad/s, wbks2 = 20000 rad/s and εks = 2.

Concerning the filter We , Me ≃ 3 , we1
= 60

rad/s we2
= 120 rad/s and εe = 2.

For this choice of the weighting filters, the al-
gorithm with H2/H∞ optimization via LMI ap-
proach has been used to obtain a γ achieved for
the value 1.13 (H∞ bound) and µ = 0.05 (H2

bound). The value of γ is more than 1 but already
allows to have the specified performances.

The controller which has been designed is com-
posed of two diagonal sub-controller.

In order to implement the designed controller,
a reduction using (Etien et al., 2000) has been
applied. The following reduced controller K (s)
has been obtained:

K =















k1(s) 0 0 0
0 k2(s) 0 0

0 0
5.933s + 1714

s + 363.4
0

0 0 0
6.08s + 3355

s + 1155















with k1(s) =
2.013s2 + 3904s + 5.775 104

s2 + 1292s + 386.7

k2(s) =
0.2061s + 94.15

s + 1.199

5.3 Analysis numerical results.

The nonlinear term R(x) in (16) can be redefined
to have the proposed structure of the term Hfcl

.d
in (6) owing to:

Hfcl
=

[

0 0 0 1
0 1 0 0

]T

(18)

Considering all the nonlinearities that can occur,
in practice, while the induction motor is function-
ing, it was calculated that the worst case leads
to a bound norm ρmax = ||d(θ̃, X(t))||max =
115. In order to demonstrate the robust stabil-
ity with respect to both polytopic and nonlinear
uncertainties, it then matters that our analytical
tool leads to a value of ρ that is greater than
ρmax. We have used, on one hand, some classical
tools relevant to quadratic stability, i.e. involving
a Fixed Lyapunov Function (FLF) and, on the
other hand, our condition involving Parameter-
Dependent Lyapunov Functions (PDLF) with ei-
ther H given in (18) or with H equals to In.
The performed computation is summarized in the
table 1.

Table 1 highlights the importance of introducing
H to avoid pessimistic computation and it empha-
sizes the fact that the framework involving PDLF
enables to prove robust stability for this induction

FLF PDLF FLF;H = In PDLF;H = In

ρ 159.72 170.9 0.03 0.04

Table 1. Comparison between quadratic
stability and parameter-dependent Lya-

punov stability

motor model whereas quadratic stability is more
pessimistic.

5.4 Implementation on experimental set-up

The solution to test the robustness of the con-
troller consists to vary the parameters in the con-
trol loop.

In our case, it acts to make evolve the parameters
in the linearization loop.

Let us underline that a nonlinear observer pro-
posed in (Verghese and Sanders, 1988) is used
with regards to real time requirement. An encoder
transfer the rotor position information to the con-
troller.

Experimental results have been brought on these
figures for the reference trajectories of figure (1).
We have superposed the results for the different
couple of resistances and inductances.
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We can notice that the flux rotor modulus is
really decoupled of the rotor speed but this rotor
flux is the estimated one. The odd scaling of the
figure (3) is used for clarity. As a matter of fact,
the results will be fewer impressive. The various
control loops act in complementarity to have an
identical behavior (decoupling and performance),
and this, in spite of the variations of parameters.

6. CONCLUSION

It must be noticed that the synthesis method
makes a possible way to maintain a real decou-
pling between the outputs of the nonlinear model
of the induction motor in spite of the resistance
variations and inductance variations. The analysis
tool can perform a verification of the stability of
the closed loop before the implementation.

In final, these results have been confirmed by
experimental tests on the real plant.

7. APPENDIX A

Motor parameters:

P = 1.1kW motor power, p = 2 pair number of
poles, Ls = 471.8mH stator inductance, M =
447.5mH mutual inductance, Lr = 471.8mH
rotor inductance, Rs = 9.65Ω stator resistance,

Rr = 4.3047Ω rotor resistance,σ = 1 − M2

LsLr

Blondel coefficient, J = 29.3.10−3 Kg.m2 rotor
inertia, Tmax = 17.5N.m maximum motor torque.
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