
BIAS ANALYSIS IN PERIODIC SIGNALSMODELING USING NONLINEAR ODE'S 1E. Abd-Elrady and T. S�oderstr�omDivision of Systems and Control, Dept. of InformationTehnology, Uppsala University, P.O. Box 337, SE-751 05Uppsala, Sweden. Email: fea,tsg�it.uu.seAbstrat: Seond-order nonlinear ordinary di�erential equations (ODE's) an beused for modeling periodi signals. The right hand side funtion of the ODEmodel is parameterized in terms of polynomial basis funtions. The least squares(LS) algorithm for estimating the oeÆients of the polynomial basis gives biasedestimates at low signal to noise ratios (SNRs). This is due to approximating thestates of the ODE model using �nite di�erene approximations from the noisymeasurements. An analysis for this bias is given in this paper.Copyright 2005 IFACKeywords: Bias, Disretization, Identi�ation, Least squares, Nonlinear systems.
1. INTRODUCTIONModeling of periodi signals is a fundamentalproblem in many appliations, see (Abd-Elrady,2004; Abd-Elrady, 2005; Stoia and Moses, 1997).Many systems that generate periodi signals anbe desribed by seond-order nonlinear ODE'swith polynomial right hand sides. Examples in-lude tunnel diodes, pendulums and predator-prey systems, see (Khalil, 2002; Perko, 1991).A seond-order nonlinear ODE is used in this pa-per to model periodi signals. The periodi signalis modeled as a funtion of the states of the ODE.The right hand side of this ODE is parameter-ized using polynomial basis funtions. The ODEapproah is expeted to obtain highly auratemodels by estimating only a few parameters. Dif-ferent estimators were developed in (Wigren etal., 2003a; Wigren et al., 2003b; Abd-Elrady etal., 2004) using the same idea.The LS estimator (Wigren et al., 2003b) givesbiased estimates espeially at low SNRs. This is1 This work was supported by Swedish Researh Counilfor Engineering Sienes under ontrat 98-654.

due to the fat that the derivatives of the modeledsignal evaluated using Euler approximations arehighly ontaminated with noise at low SNRs.A bias analysis for the LS estimate is given inthis paper assuming that the periodi signal isontaminated with zero mean Gaussian whitenoise. The objetive is to study the e�et of thesampling interval, the signal to noise ratio and thesystem parameters on the estimation bias.The paper is organized as follows. Setion 2 intro-dues the ODE model. Setion 3 reviews the LSalgorithm given in (Wigren et al., 2003b). Di�er-ent estimation errors are disussed in Setion 4. InSetion 5, bias analysis and disretization errorsfor some simple systems are evaluated. Setion 6gives a omparative simulation study betweenthree di�erent Euler approximation tehniques.Conlusions appear in Setion 7.2. THE ODE MODEL2.1 MeasurementsThe measured signal z(kh) is given byz(kh) = y(kh) + e(kh); k = 1; � � � ; N (1)



where y(t) is the periodi ontinuous signal to bemodeled, y(kh) its sampled value, h the samplinginterval and e(kh) is zero mean Gaussian whitenoise, i.e.e(kh) 2 N(0; �2); E[e(kh)e(kh+ jh)℄ = Æj;0�2.2.2 Model StruturesThe idea here is to model the generation of thesignal y(t) by means of a nonlinear ODE parame-terized with an unknown parameter vetor �, i.e._x = f(x;�); y = h(x): (2)As shown in (Wigren and S�oderstr�om, 2003; Wi-gren et al., 2003b), it an often be assumed thatthe seond order ODE�y(t) = f�y(t); _y(t);�� (3)generates the periodi signal that is measured.Thus hoosing the state variables as x1 = y(t)and x2 = _y(t), the model given in (2) beomes� _x1_x2 � = � x2(t)f�x1(t); x2(t);�� �y(t) = � 1 0 �� x1(t)x2(t)� : (4)2.3 ParameterizationThe right hand side of the seond state equationof (4) is expanded in terms of known basis fun-tions, modeling the right hand side as a trunatedsuperposition of these funtions. Polynomial basisfuntions were hosen in (Wigren et al., 2003b) tomodel f�x1(t); x2(t);��, i.e.f�x1(t); x2(t);�� = LXl=0 MXm=0 �l;mxl1(t)xm2 (t) (5)� = � �0;0 � � � �0;M � � � �L;0 � � � �L;M �T : (6)3. THE LEAST SQUARES ALGORITHMNow Eqs. (4)-(6) result in the model_x1(t) = x2(t)_x2(t) = �T �x1(t); x2(t)� � (7)where�T �x1(t); x2(t)� =� 1 � � � xM2 (t) � � � xL1 (t) � � � xL1 (t)xM2 (t) � : (8)To estimate the parameter vetor � from (7), someapproximations are needed. Sine x1(t), x2(t) and_x2(t) are not known, their estimates should beused. In this ase, the seond state equation (7)results in (at t = kh)b_x2(kh) = �T �bx1(kh); bx2(kh)� � + "(kh): (9)The expression (9) follows by performing a Tay-lor series expansion of the regression vetor

�T �x1(kh); x2(kh)� around �bx1(kh) bx2(kh)�T .In (9) the ombined regression error, "(kh), hasbeen introdued.The LS estimate of � has been studied in (Wigrenet al., 2003b) with bx1(kh), bx2(kh) and b_x2(kh)evaluated using �nite di�erene approximation. Itwas shown that the LS algorithm gives onsider-ably aurate models at high SNRs and furtherresearh is needed to extend the operating regiontoward low SNRs.4. ESTIMATION ERRORSThe LS estimates will su�er from two estima-tion errors, namely: random noise errors and dis-retization errors. Random noise errors results dueto di�erentiating additive measurement noise. Onthe other hand, disretization errors are aused byapproximating the signal derivatives using �niteapproximations.To investigate how the LS estimate behaves whenthe data length N beomes large, onsiderR = Eh��bx1(t); bx2(t)� �T �bx1(t); bx2(t)�i (10)r = Eh��bx1(t); bx2(t)� b_x2(t)i (11)where Ef(t) = limN!1 1N NXt=1 Ef(t): (12)Remark 1. E is used instead of the ordinaryexpetation E to aount for noise-free signals. Forfully random signals E = E.In this ase the asymptoti parameter vetorestimate �� is given by�� = R�1 r = �0 + ~�b (13)where �0 is the true parameter vetor and ~�b isthe bias vetor. SimilarlyR = R0 + ~Rb (14)r = r0 + ~rb (15)whereR0 = Eh��x1(t); x2(t)� �T �x1(t); x2(t)�ir0 = Eh��x1(t); x2(t)� _x2(t)i (16)and ~Rb and ~rb are the bias ontributions to R0and r0, respetively, due to using estimated statesbx1(t) and bx2(t) instead of the true states.Now using (13)-(15) gives�� = (R0 + ~Rb)�1 (r0 + ~rb)= R�10 r0| {z }�0 +(R0 + ~Rb)�1(~rb � ~Rb�o)| {z }~�b (17)Remark 2. The bias vetor ~�b is a ontributionof random noise errors and disretization errors.



These ontributions are denoted by ~�n and ~�d,respetively. Hene~�b = ~�n + ~�d: (18)The bias vetor ~�b will depend on the samplinginterval (h) and the derivative approximations.In this paper the estimation of the parametervetor will be onsidered for the following threesimple �nite di�erene approximations of x2(kh)and _x2(kh) (in all approximations, we hosedbx1(kh) = z(kh) and i = 1; 2):� A1: Euler bakward approx. (EB)b_xi(kh) = �bxi(kh)� bxi(kh� h)�=h: (19)� A2: Euler forward approx. (EF)b_xi(kh) = �bxi(kh+ h)� bxi(kh)�=h: (20)� A3: Euler enter approx. (EC)b_xi(kh) = �bxi(kh+ h)� bxi(kh� h)�=(2h):(21)Remark 3. A1-A3 are hosen as examples for�nite di�erene approximation. Many other dif-ferent approximations an be onsidered. See(S�oderstr�om et al., 1997) for more details.It is well known from the numerial analysis lit-erature that EC approximation gives lower dis-retization error ompared to EB and EF approxi-mations. Also, the disretization error is expetedto derease as h dereases. On the other hand,random noise error is expeted to inrease as hdereases sine the noise will be highly ampli�edfor small h. Small values of h will only be suitablewhen the SNR is high.In the next setion some simple systems will beonsidered to analyze di�erent estimation errors.The aim of this study is to know if the bias in theLS estimates will follow the same expetations asfor disretization errors and random noise errors,and if these two errors are additive so we an �ndan optimal sampling interval (hopt) that ahievesthe lowest bias for eah system.5. EXPLICIT ANALYSIS FOR SIMPLESYSTEMSConsider the following two nonlinear systems:S1: � _x1_x2 � = � x2��x31 � : (22)S2: � _x1_x2 � = � x2�x1 + �x2 + x21x2 � : (23)Remark 4. Note that S1 does not have a uniquestable periodi orbit as the ase in S2. Therefore,the amplitude of the periodi signal generated byS1 is fully determined by the initial state.

5.1 Random noise errorsNow let bx1(kh) = x1(kh) + ~x1(kh) where ~x1(kh)represents the noise ontribution. It is lear fromEq. (1) that ~x1(kh) = e(kh). Similarly, we anevaluate ~x2(kh) and ~_x2(kh) for Eqs. (19)-(21).Therefore, the noise ontribution in bx2(kh) andb_x2(kh) are as follows:� A1: (EB)~x2(kh) = e(kh)� e(kh� h)h~_x2(kh) = e(kh)� 2e(kh� h) + e(kh� 2h)h2� A2: (EF)~x2(kh) = e(kh+ h)� e(kh)h~_x2(kh) = e(kh+ 2h)� 2e(kh+ h) + e(kh)h2� A3: (EC)~x2(kh) = e(kh+ h)� e(kh� h)2h~_x2(kh) = e(kh+ 2h)� 2e(kh) + e(kh� 2h)4h2In the following two examples, the bias ontribu-tion due to random noise errors is analyzed.Example 1. Random noise errors of S1.Here � = �bx31. ThusR = E(bx61) and r = E(�bx31b_x2).Straightforward alulations giveR = E(x1 + ~x1)6= E(x61)| {z }R0 +15�2E(x41) + 45�4E(x21) + 15�6| {z }~Rnr = E[�(x1 + ~x1)3( _x2 + ~_x2)℄= �E(x61)| {z }r0 �3E(x21)E(~x1~_x2) + 3�2�E(x41)� E(~x31~_x2)| {z }~rnNow, the bias ~�n an be evaluated using Eq. (17)for A1-A3 by replaing E(~x1~_x2) and E(~x31~_x2)by their orresponding values. Straightforwardalulations assuming high SNR, see (Abd-Elradyand S�oderstr�om, 2004), give~�EBn = ~�EFn� � 3h2 [E(x21)℄2 � 12�E(x21)E(x41)SNR E(x61) (24)~�ECn � 32h2 [E(x21)℄2 � 12�E(x21)E(x41)SNR E(x61) : (25)Therefore, ~�n satis�es the following relation:~�n / 1h2SNR (26)



Example 2. Random noise errors for S2.In this ase, we have �T = (bx2 bx1 bx21bx2) and� = (� � )T . ThereforeR = E(��T ) = E0� bx22 bx1bx2 bx21bx22bx1bx2 bx21 bx31bx2bx21bx22 bx31bx2 bx41bx22 1A ; (27)r = E(�b_x2) = E0� bx2b_x2bx1b_x2bx21bx2b_x21A : (28)Similarly as done in Example 1, replaing bx1, bx2and b_x2 by (x1 + ~x1), (x2 + ~x2) and ( _x2 + ~_x2),it follows (for high SNR and small h2) that, see(Abd-Elrady and S�oderstr�om, 2004),k~�nk � "2h2SNRrL2 +Q2 + 1"2 (29)whereL = E(x21)�E(x21)E(x21x22) + E(x21)E(x41x22)� E(x41x22)� E(x41)E(x21x22)� (30)Q = E(x21)�E(x21x22) + E(x41)E(x22)� E(x21)E(x22)� E(x21)E(x21x22)�: (31)Hene k~�nk / 1h2SNR (32)5.2 Disretization errorsIn this setion the evaluation of disretizationerrors is onsidered. The data are assumed tobe noise-free (i.e. bx1(kh) = x1(kh)) and theestimates bx2(kh) and b_x2(kh) are hosen as oneof A1-A3.The disretization error ontributions to bx2(kh)and b_x2(kh) an be evaluated using Taylor seriesexpansions assuming the solution to the ODEmodel desribed by Eq. (4) is suÆiently di�er-entiable. The disretization errors for A1-A3 anbe summarized as follows, see (Abd-Elrady andS�oderstr�om, 2004):� A1: (EB)~x2(kh) = �h2D2x1(kh) + h26 D3x1(kh) +O(h3)~_x2(kh) = �hD2x2(kh) + 7h212 D3x2(kh) +O(h3)� A2: (EF)~x2(kh) = h2D2x1(kh) + h26 D3x1(kh) +O(h3)~_x2(kh) = hD2x2(kh) + 7h212 D3x2(kh) +O(h3)

� A3: (EC)~x2(kh) = h26 D3x1(kh) + h4120D5x1(kh) +O(h6)~_x2(kh) = h23 D3x2(kh) +O(h4)In the next two examples, disretization errors ofS1 and S2 are evaluated.Example 3. Disretization errors of S1.Here � = �x31. ThusR = E(x61) and r = E(�x31b_x2).Eq. (13) gives�� = E(�x31b_x2)E(x61) = E(�x31 _x2)E(x61)| {z }� + E(�x31~_x2)E(x61)| {z }~�d (33)Taking into aount that x31D3x2 = �6�x41x22 +3�2x81, straightforward alulations give~�EBd = ~�EFd � 7h2�4 E(2x41x22 � �x81)E(x61) (34)~�ECd � h2�E(2x41x22 � �x81)E(x61) : (35)It an be onluded from Eqs. (34)-(35) that~�d / h2 (36)Now the total estimation bias ~� an be found forS1 by the addition of Eqs. (34)-(35) and Eqs. (24)-(25), respetively. Di�erentiating j~�j w.r.t. h to�nd the optimal sampling interval value thatminimize the total bias ~� gives, see (Abd-Elradyand S�oderstr�om, 2004) for details,hEBopt = hEFopt � ���� 6[E(x21)℄27� SNR E(2x41x22 � �x81) ���� 14 (37)hECopt �� 6E(x21)E(x41)SNR E(2x41x22 � �x81)��1�s1� SNR E(2x41x22 � �x81)24�[E(x41)℄2 �� 12 (38)Example 4. Disretization errors of S2.In this ase, we have �T = (bx2 x1 x21bx2).ThereforeR = E(��T ) = E0� bx22 x1bx2 x21bx22x1bx2 x21 x31bx2x21bx22 x31bx2 x41bx22 1A ; (39)r = E(�b_x2) = E0� bx2b_x2x1b_x2x21bx2b_x21A : (40)Straightforward alulations in (Abd-Elrady andS�oderstr�om, 2004) for A3 at high SNR show thatk~�dk / h2 (41)and the analyti expression of hECopt is given byEq. (42).



hECopt � ������ 9(SNR)2 � jR0j2[E(x21)℄2 + "2[E(x21)℄2(T 21 + T 25 )4jR0j2[E(x21)℄4T 24 + 4(T 22 + T 26 ) + "2(T 23 + T 27 ) + 4"(T2T3 + T6T7) ������ 18 (42)whereT1 = E(x21)E(x21x22)� E(x41x22)� E(x41)E(x21x22) + E(x21)E(x41x22)T2 = E(x41x22)E(x2D3x2)� E(x21x22)E(x21x2D3x2)T3 = E(x21x22)E(x21x2D2x2)� E(x41x22)E(x2D2x2)� E(x21x22)E(x41x2D2x2) + E(x41x22)E(x21x2D2x2)T4 = E(x1D3x2)� "2E(x1D2x2) + "2E(x31D2x2)T5 = E(x21x22)� E(x21)E(x22)� E(x21)E(x21x22) + E(x41)E(x22)T6 = E(x22)E(x21x2D3x2)� E(x21x22)E(x2D3x2)T7 = E(x21x22)E(x2D2x2)� E(x22)E(x21x2D2x2)� E(x21x22)E(x21x2D2x2) + E(x22)E(x41x2D2x2)
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Fig. 1. k~�nk vs SNR.6. NUMERICAL STUDYIn this setion a numerial study of the estimationerrors of S2 using A1-A3 is given. The study isbased on numerial evaluation of the trunatedanalytial expressions derived in Setion 5. Anumerial study of S1 an be found in (Abd-Elrady and S�oderstr�om, 2004). In the numerialalulation of the derived expressions, E(f(t)) wasapproximated by 1N PNt=1 f(t).Example 5. Random noise error study.In this example 104 samples were generated fromS2 using the Matlab routine ode45 for � = �1,� = 2 and  = �2. The initial state of S2was seleted as �x1(0) x2(0)�T = �2 0�T . First,the bias error was studied at di�erent SNRs withh = 0:05 s. Seond, the bias was studied at di�er-ent sampling intervals with SNR of 60 dB. Theresults are shown in the log-log sale Figs. 1-2.As it is shown in Fig. 1, log k~�nk using A1-A3is proportional to �� log(SNR) + onstant� (formoderate and high SNR). Also, we an on-lude from Fig. 2 that log k~�nk is proportionalto �� log(h) + onstant�. These results math thederived asymptoti results in Eq. (32), and ourearlier expetation that random noise errors an
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Fig. 2. k~�nk vs h.
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ECFig. 3. k~�dk vs h.be redued by inreasing the sampling time h orusing smaller h whenever the SNR is high. Also,it an be notied that A3 gives the lowest bias asexpeted.Example 6. Disretization error study.In this example, a noise-free data length of 104samples was generated from system S2 as done inExample 5. The bias orresponding to disretiza-tion errors (~�d) was evaluated. The results areplotted in the log-log sale Fig. 3.
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Fig. 4. k~�k vs h.The results of Fig. 3 show that log k~�dk is propor-tional to � log(h) + onstant�, see Eq. (41). Thisresult also mathes our earlier expetation thatthe disretization error inreases as the samplingtime is inreased. It an be notied also from Fig. 3that A3 gives the lowest disretization bias.It an be onluded from Examples 5 and 6 thatthere are two ontraditing requirements to obtainan aurate estimate for the parameter vetor �using the LS algorithm. A small h is needed toredue ~�d, and a large h is required to redue~�n. Therefore, it is expeted that there is anoptimal sampling interval hopt that ahieves min-imal total estimation bias. This hopt an be easilydetermined by adding the two bias ontributionsand plotting the results versus h as shown inFig. 4. Figure 4 shows that hopt = 0:03 s for S2in ase EB or EF approximations are used. Onthe other hand, if EC approximation is used, ishopt = 0:02 s. The expression of hECopt in Eq. (42)gives 0:0190 s.Also in (Abd-Elrady and S�oderstr�om, 2004), ~�nand ~�d were studied with the nonlinear systemparameters �, �, � and . The results showthat k~�nk and k~�dk inreases as the value ofthese parameters is inreased. This is so beausethe nonlinear dynamis of the systems S1 andS2 beome more e�etive as these parametersinrease. Then the signals generated by S1 andS2 beome more nonlinearly distorted and theauray of the �nite di�erene approximationsdereases. 7. CONCLUSIONSIn this paper, estimation errors in least squaresestimation of periodi signals using seond-ordernonlinear ODE model have been studied. Thestudy has onsidered the estimation of two non-linear systems using Euler approximations for thederivatives of the modeled signal. The bias analy-sis shows that
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