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Abstract: Estimating the Domain of Attraction (DA) of equilibrium points is a
problem of fundamental importance in systems engineering. Several approaches
have been developed for computing the Largest Estimate of the DA (LEDA)
corresponding to a Lyapunov function in the case of polynomial systems. In
the case of non-polynomial systems, the computation of the LEDA is still an
open problem. In this paper, an LMI technique is proposed to deal with such a
problem for a class of non-polynomial systems. The key point consists of using
sum of squares relaxations for taking into account the worst-case remainders
corresponding to truncated Taylor expansions of the non-polynomial terms. As
shown by some examples, low degree remainders may be sufficient to obtain almost
tight estimates. Copyright c©2005 IFAC
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1. INTRODUCTION

Establishing that an equilibrium point is locally
asymptotically stable is in general not sufficient
to guarantee an asymptotically stable behavior of
the system around such a point. In fact, except
the case of linear systems, the behavior depends
also on the initial condition. The local asymptotic
stability ensures only that there exists a neighbor-
hood of the equilibrium point such that the tra-
jectory of the system converges to the point itself
for any initial condition in such a neighborhood.
However, further investigations on the extension
of this neighborhood are required in order to allow
a correct initialization of the system.

This is a problem of fundamental importance in
the use of real plants where an incorrect initial-
ization may determine a completely wrong action
of the system. Obviously, this is even more crucial
in expensive and/or dangerous plants, for exam-

ple aircrafts, nuclear reactors, chemical plants,
etc..., where unstable behaviors are not acceptable
due to the disastrous consequences to which they
could lead. Hence, it appears clear the importance
of determining the Domain of Attraction (DA)
of an equilibrium point, that is the set of initial
condition from which the trajectory of the system
converges to the point itself.

It is well known (see, e.g., (Genesio et al., 1985;
Khalil, 2001)) that the DA is a complicated set
and it does not admit a tractable analytic rep-
resentation in the most cases. Therefore, the in-
ner approximation of the DA via an estimate of
a simple shape has become a fundamental issue
since long time. A common way of obtaining such
estimates makes use of the Lyapunov stability
theory. Specifically, given a Lyapunov Function
(LF) for the equilibrium point, any LF level set in-
cluded in the region where the LF time derivative
assumes negative values is guaranteed to belong



to the DA. The largest level set in such a region
is called the Largest Estimate of the DA (LEDA)
corresponding to the LF.

In the recent years, several approaches have
been proposed for calculating the LEDA in the
simpler case of polynomial systems, as for ex-
ample the multidimensional gridding approach
(Tibken and Dilaver, 2002) based on the use of
Chebychev points, and the more powerful ap-
proaches (Parrilo, 2000; Tibken, 2000; Hachicho
and Tibken, 2002; Chesi et al., 2003) based on sum
of squares relaxations which lead to convex opti-
mizations constrained by LMIs. These approaches
provide lower bounds of the LEDA whose conserv-
ativeness may be, in general, arbitrarily decreased
by increasing the number of relaxing parameters.

Unfortunately, the most real systems do not be-
long to the class of polynomial systems. To name
but a few, consider for example simple cases as
pendulums and systems with saturations in addi-
tion to complex systems as aircrafts and reactors.
Recently, the problem of recasting non-polynomial
systems in polynomial ones has been addressed
in (Papachristodoulou and Prajna, 2002; Pa-
pachristodoulou and Prajna, 2004) which propose
suitable changes of coordinates for the problem
of finding LFs for establishing the stability of
equilibrium points. However, it is presently not
clear the degree of conservativeness that the so
obtained polynomial systems may introduce in the
computation of the LEDA of the original systems
due to the augmented system dimension and mod-
ified system structure. The problem of estimating
the DA for non-polynomial systems is still an open
problem.

In this paper, a technique for computing the
LEDA corresponding to a given polynomial LF is
presented for a class of non-polynomial systems.
Specifically, the key idea consists of substituting
the non-polynomial terms with their Taylor ex-
pansions truncated at a given degree. In order to
guarantee to obtain sets that are really included
in the DA, i.e. DA estimates, the remainders of
such truncations in the Lagrange form are taken
into account. Then, it is shown how sum of squares
relaxations can be used to derive a sufficient con-
dition for establishing whether a level set of the
LF is an estimate of the DA by decomposing the
problem of establishing the negativity of the time
derivative over the level set into a set of subprob-
lems where the negativity has to be established
over subregions of such a set corresponding to the
worst-case remainders. Such a condition meanly
requires to solve an LMI feasibility problem, i.e.
a convex optimization (see for example (Boyd et

al., 1994)) for which powerful tools have been
developed. A lower bound of the LEDA is readily
obtained through a one-parameter search on the

level of the set which can be quickly performed,
for example, via a bisection algorithm.

As shown by some examples, low degree remain-
ders may be sufficient to obtain almost tight lower
bounds. The extension of the proposed technique
to systems not belonging to the considered class,
currently under investigation, is briefly discussed.

2. PRELIMINARIES

2.1 Problem formulation

Notation:

• N,R: natural and real numbers sets;
• M

n: R
n×n;

• 0n: origin of R
n;

• In: identity matrix n× n;
• A′: transpose of matrix A;
• A > 0 (A ≥ 0): symmetric positive definite

(semidefinite) matrix A;
• Cn: set of functions whose first n derivatives

are continuous over all the domain.

Consider the following class of continuous-time
state space models











ẋ(t) = p0(x(t)) +

r
∑

i=1

pi(x(t))gi(xµi
(t))

x(0) = xinit

(1)

where x(t) = (x1(t), x2(t), . . . , xn(t))
′ ∈ R

n is
the state, xinit ∈ R

n is the initial condition, and
pj : R

n → R
n are polynomial vectors of degree

ǫj ∈ N for j = 0, . . . , r. The functions gi : R → R

are non polynomial in C∞ and µi ∈ {1, . . . , n}
are indexes for i = 1, . . . , r. In the sequel the
dependence of x(t) on the time t will be omitted
for ease of notation.

It is assumed that the origin is the equilibrium
point of interest in the system (1). Therefore, it is
assumed that

p0(0n) +

r
∑

i=1

pi(0n)gi(0) = 0n. (2)

Let ϕ(t, xinit) ∈ R
n denote the solution of (1) at

time t. The DA of the origin is

∆ =

{

xinit : lim
t→+∞

ϕ(t, xinit) = 0n

}

. (3)



Let v : R
n → R be a positive definite 1 and

radially unbounded 2 function in C1, and suppose
that v(x) is a LF for the origin in system (1), i.e.
such that the time derivative of v(x) along the
trajectories,

v̇(x) =
∂v(x)

∂x

(

p0(x) +
r
∑

i=1

pi(x)gi(xµi
)

)

, (4)

is locally negative definite. The set

V(c) = {x : v(x) ≤ c} (5)

is an estimate of the DA if V(c) ⊂ D where
D = {x : v̇(x) < 0} ∪ {0n}.

The problem dealt with in this paper is the
determination of the LEDA, i.e. the computation
of the maximum c such that V(c) is an estimate
of the DA, for a given polynomial LF v(x). In
particular, the LEDA is given by V(γ) where

γ = inf
x∈Rn\{0n}

v(x)

s.t. v̇(x) = 0.
(6)

In order to simplify the presentation of the pro-
posed technique it is supposed that the linearized
system in the origin is asymptotically stable, i.e.
that

A =
d

dx

(

p0(x) +

r
∑

i=1

pi(x)gi(xµi
)

)∣

∣

∣

∣

∣

x=0n

(7)

is Hurwitz. Moreover, it is assumed that the LF
v(x) is a polynomial of degree 2δv whose quadratic
part is positive definite.

2.2 Representation of polynomials

Before proceeding let us introduce the Complete
Square Matricial Representation (CSMR) of poly-
nomials which provides all the possible represen-
tations of a polynomial in terms of a quadratic
form (see (Chesi et al., 2003) where the CSMR
is similarly defined for homogeneous forms; the
CSMR is also known as Gram matrix (Choi et

al., 1995)).

Given m ∈ N let us define the vector x{m} =
[

x1, x2, . . . , xn, x
2
1, x1x2, . . . , x

m
n

]′
∈ R

σ(n,m) con-
taining all monomials of degree less or equal to m
in x but the constant term (the reason for which

1 A function v(x) is said to be positive definite if v(0n) = 0
and v(x) > 0 for all x 6= 0n. It is said to be locally positive

definite if v(0n) = 0 and there exists δ > 0 such that
v(x) > 0 for all x 6= 0n such that ‖x‖ < δ.
2 A function v(x) is radially unbounded if
lim‖x‖→+∞ v(x) = +∞.

we exclude the constant term will be clear in the
sequel), where

σ(n,m) =
(n+m)!

n!m!
− 1. (8)

Let p(x) be a polynomial of degree less or equal to
2m without constant and linear terms. The CSMR
of p(x) with respect to the vector x{m} is defined
as

p(x) = x{m}′

P (α)x{m} (9)

P (α) = P + L(α) (10)

where P ∈ M
σ(n,m) is any symmetric matrix such

that p(x) = x{m}′

Px{m}, α ∈ R
τ(n,m) is a vector

of free parameters and L(α) is a linear parameter-

ization of the set L =
{

L = L′ : x{m}′

Lx{m} = 0

∀x ∈ R
n}. It can be verified that

τ(n,m) =
1

2
σ(n,m)(σ(n,m) + 1) + n

−σ(n, 2m).
(11)

3. LEDA COMPUTATION

Let us write gi(xµi
) via the Taylor expansion up to

the ai-th power for a given ai ∈ N and expressing
the remainder in the Lagrange form:

gi(xµi
) = hi(xµi

) + li(xµi
)θi(yi) (12)

where

hi(xµi
) =

ai
∑

j=0

xjµi

j!

djgi(xµi
)

dx
j
µi

∣

∣

∣

∣

∣

xµi
=0

(13)

li(xµi
) =

xai+1
µi

(ai + 1)!
(14)

θi(yi) =
dai+1gi(xµi

)

dxai+1
µi

∣

∣

∣

∣

xµi
=yi

(15)

yi ∈

{

[0, xµi
] if xµi

≥ 0
[xµi

, 0] otherwise.
(16)

The time derivative v̇(x) becomes:

v̇(x) = f0(x) +

r
∑

i=1

fi(x)θi(yi) (17)

where

f0(x) =
∂v(x)

∂x

(

p0(x) +
r
∑

i=1

pi(x)hi(xµi
)

)

(18)

fi(x) =
∂v(x)

∂x
pi(x)li(xµi

). (19)

Let δq ∈ N and define



m=

⌈

δd

2

⌉

+ δq (20)

δs =m− δv (21)

where δd is the degree of v̇(x)

δd = 2δv + max{ǫ0 − 1, ǫ1 + a1, . . . , ǫr + ar}. (22)

Let Sψ ∈ M
σ(n,δs) and Qi,ψ ∈ M

σ(n,δq)+1 be free
matrices for ψ ∈ {0, 1}r and i = 1, . . . , r, and
define the polynomials

sψ(x) = x{δs}
′

Sψx
{δs} (23)

qi,ψ(x) =
[

1, x{δq}
′

]

Qi,ψ

[

1, x{δq}
′

]′

. (24)

Let S̃(Sψ) ∈ M
m, Ṽ (Sψ) ∈ M

m, F̃i(Qi,ψ) ∈ M
m

for i = 1, . . . , r, and Fj ∈ M
m for j = 0, . . . , r be

any SMR matrices satisfying

sψ(x) = x{m}′

S̃(Sψ)x{m} (25)

v(x)sψ(x) = x{m}′

Ṽ (Sψ)x{m} (26)

fi(x)qi,ψ(x) = x{m}′

F̃i(Qi,ψ)x{m} (27)

fj(x) = x{m}′

Fjx
{m}. (28)

Define for i = 1, . . . , r and c ∈ R

Xi(c) =

[

min
x∈V(c)

xµi
, max
x∈V(c)

xµi

]

(29)

ξi(0, c) = max
yi∈Xi(c)

θi(yi) (30)

ξi(1, c) = min
yi∈Xi(c)

θi(yi) (31)

The following result provides a sufficient condition
for establishing whether a level set is an estimate
of the DA through an LMI feasibility test.

Theorem 1. Given c ∈ R, suppose that for all
ψ ∈ {0, 1}r there exist Sψ ∈ M

σ(n,δs), Qi,ψ ∈
M
σ(n,δq)+1 and αψ ∈ R

τ(n,m) such that the set of
LMIs


























0 < Sψ
0 < Qi,ψ, i = 1, . . . , r

0 > L(αψ) + cS̃(Sψ) − Ṽ (Sψ) + F0

+
r
∑

i=1

(

ξi(ψi, c)Fi + (−1)ψi F̃i(Qi,ψ)
)

(32)

is satisfied. Then, V(c) ⊆ ∆.

Proof Suppose that (32) is satisfied for all ψ ∈
{0, 1}r and let x̄ be any point in V(c). Define

ψ̄ = [β1, β2, . . . , βr]
′

βi =

{

0 if fi(x̄) ≥ 0
1 otherwise

and consider the LMI set (32) relative to the index
vector ψ̄. Let us multiply both sides of the third

inequality times x̄{m}′

at left and x̄{m} at right.
Since x̄{m}′

L(αψ̄)x̄{m} = 0 we obtain

0> (c− v(x̄))sψ̄(x̄) + f0(x̄) +
r
∑

i=1

(

ξi(ψ̄i, c)fi(x̄)

+(−1)ψ̄ifi(x̄)qi,ψ̄(x̄)
)

≥ (c− v(x̄))sψ̄(x̄) + f0(x̄) +

r
∑

i=1

(

θi(yi)fi(x̄)

+|fi(x̄)|qi,ψ̄(x̄)
)

= (c− v(x̄))sψ̄(x̄) +

r
∑

i=1

|fi(x̄)|qi,ψ̄(x̄) + v̇(x̄).

Now, let us observe that the first two inequalities
in (32) imply that sψ̄(x̄) > 0 and qi,ψ̄(x̄) > 0.
Since x̄ ⊆ V(c) it follows that c − v(x̄) ≥ 0 and,
hence, v̇(x̄) < 0. This implies that V(c) ⊂ D, i.e.
V(c) is an estimate of the DA. �

The condition of Theorem 1 consists of 2r LMI
feasibility tests in the form (32) which have the
role of considering the worst-case effects of the
remainders in the Taylor expansions. Specifically,
sum of squares relaxations through the matrices
Qi,ψ and Sψ are used to test the negativity of v̇(x)
in the subregions of V(c) where the remainders act
in a certain way depending on the sign of fi(x̄).
It is worthwhile to notice that these tests can
be performed separately in order to reduce the
computational burden.

In order to build the set of LMIs (32) one has
to calculate the sets Xi(c) and, from these, the
quantities ξi(0, c) and ξi(1, c). The sets Xi(c) can
be trivially found in closed-form solution if the
LF is quadratic, otherwise by solving a system of
polynomial equations. The computation of ξi(0, c)
and ξi(1, c) amounts to finding the minimum and
maximum values of a one-variable function over
an interval, and it is an easy task for standard
non-polynomial terms.

Finally, define the lower bound of γ in (6)

γ̂ = sup {c : the condition in Theorem 1
is satisfied} .

(33)

This lower bound can be found by a sweep on the
scalar c, for example via a bisection algorithm in
order to speed up the convergence. The conserva-
tiveness of γ̂ can be decreased by increasing:

• the degree δq (and hence δm and δs) since this
allows one to obtain less conservative sum of
squares relaxations;

• the degrees ai of the Taylor expansions for
the non-polynomial terms in (1) since this re-
duces the remainders and their conservative
effects on the DA estimates.



Remark. The proposed technique can be ex-
tended to systems that are not in the form of
(1), i.e. systems containing non-polynomial terms
that are functions of more than one variable, that
gi(x) instead of gi(xµi

). This can be done by using
the remainder of the Taylor expansion for multi-
variable functions. However, each non-polynomial
term determines more than one unknown parame-
ter θi(yi) in the expression of v̇(x) in (17) and,
consequently, a larger computational burden in
the LMI feasibility test (32). Moreover, the com-
putation of ξi(0, c) and ξi(1, c) is more involved
since the remainders depend on more than one
variable. Therefore, the use of the proposed tech-
nique for systems that either are not in the form
of (1) or cannot be recast in such a form may be
a difficult task, and it is the subject of current
research.

4. EXAMPLES

In this section some examples are reported to
show the applicability and the potentialities of
the proposed technique. The lower bounds γ̂ have
been computed in all examples by using δq = 1 in
(20).

4.1 Example 1

Let us consider the simple pendulum-system
{

ẋ1 = x2

ẋ2 = −x2 − sinx1

and the problem of estimating the DA of the
origin. To this end, let us calculate the LEDA
corresponding to the LF v(x) = 4x2

1+2x1x2+3x2
2.

The time derivative is:

v̇(x) = 6x1x2 − 4x2
2 + (−2x1 − 6x2) sinx1.

Table 1 shows the lower bounds γ̂ for some degrees
a1 of the Taylor expansion of sinx1. Figure 1

Table 1. (Example 1) Lower bounds of
γ for some values of a1.

a1 2 3 4 5 6

γ̂ 18.07 12.79 16.55 21.11 22.94

shows the estimate V(γ̂a1=6) and the curve v̇(x) =
0. As we can see, the lower bound is almost tight
since the ellipse almost touches this curve.

4.2 Example 2

Let us consider the system

−10 −8 −6 −4 −2 0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

8

x1

x
2

Fig. 1. Example 1. Estimate of the DA for a1 = 6
(green ellipse) and curve v̇(x) = 0 (black
line). The estimate almost coincides with the
LEDA, i.e. the lower bound is tight, since the
ellipse is almost tangent to the curve.















ẋ1 = −
1

4
x1 + ln(1 + x2)

ẋ2 = −
3

8
x1 −

1

5
x1x2 +

(

1

8
x1 − x2

)

cosx1

and the problem of calculating the LEDA corre-
sponding to the LF v(x) = x2

1 + x2
2. The time

derivative is:

v̇(x) = −
1

2
x2

1 −
3

4
x1x2 −

2

5
x1x

2
2

+

(

1

4
x1x2 − 2x2

2

)

cosx1

+(2x1) ln(1 + x2).

Table 2 shows the lower bounds γ̂ for some degrees
a1 and a2. As shown by Figure 2, the lower bound

Table 2. (Example 2) Lower bounds of
γ for some values of a = a1 = a2.

a 2 3 4 5 6

γ̂ 0.1768 0.2138 0.2367 0.2514 0.2606

for a1 = a2 = 6 is satisfactorily tight since the
circle is quite close to the curve v̇(x) = 0.

4.3 Example 3

Let us consider the system


















ẋ1 = 1 + x3 +
1

8
x2

3 − ex1

ẋ2 = −x2 − x3

ẋ3 = −x2 − 2x3 −
1

2
x2

1

and the problem of calculating the LEDA corre-
sponding to the LF v(x) = x2

1 +x2
2 +x2

3. The time
derivative is:



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x1

x
2

Fig. 2. Example 2. Estimate of the DA for a1 =
a2 = 5 (green circle) and curve v̇(x) = 0
(black line).

−3 −2 −1 0 1 2

−2
0

2
4

6
8

−5

−4

−3

−2

−1

0

1

x1
x2

x
3

Fig. 3. Example 3. Estimate of the DA for a1 = 6
(green sphere) and surface v̇(x) = 0 (black
net).

v̇(x) = 2x1 + 2x1x3 − 2x2
2 − 4x2x3 − 4x2

3

−x2
1x3 +

1

4
x1x

2
3 + (−2x1)e

x1 .

Table 3 shows the lower bounds γ̂ for some degrees
a1. As shown by Figure 3, the estimate for a1 = 6

Table 3. (Example 3) Lower bounds of
γ for some values of a1.

a1 2 3 4 5 6

γ̂ 1.816 1.595 2.531 2.483 2.655

almost coincides with the LEDA.

5. CONCLUSION

An LMI technique has been proposed to compute
the Largest Estimate of the DA (LEDA) cor-
responding to a polynomial Lyapunov Function
(LF) for a class of non-polynomial systems. This

technique is based on truncated Taylor expansions
of the non-polynomial terms and uses sum of
squares relaxations to take into account the worst-
case remainders. As shown by some examples,
low degree remainders may be sufficient to obtain
almost tight estimates.

Future work will deal with the problem of extend-
ing the proposed technique to all non-polynomial
systems. Also the selection of the LF for obtaining
better estimates of the DA is under investigation.
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