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Abstract: Multi parametric quadratic programming is an alternative means of
implementing conventional predictive control algorithms whereby one transfers
much of the computational load to offline calculations. This paper demonstrates
how one can formulate a robust MPC problem as a quadratic program and hence
make it amenable to MPQP solutions. The paper then derives some MPQP
solutions and discusses the efficacy of these. Copyright c©2005 IFAC
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1. INTRODUCTION

In recent years Multi parametric quadratic pro-
gramming (MPQP) (Bemporad et al., 2002) has
become a useful tool for characterising, offline, the
model predictive control (MPC) algorithm. The
effectiveness of this approach is due to several
factors: (i) the online implementation reduces to
a look up table and hence is easy to code and (ii)
the structure of the control strategy is transpar-
ent, which is not the case when using an online
optimisation. Naturally there are limitations and
much of the current research is investigating ways
of simplifying the computation and complexity of
the solution as these are significant barriers to
applications with many states.

This paper however is concerned with a different
aspect, that is robustness. Much of the works in
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the literature (Bemporad et al., 2001; Borrelli et
al., 2001; Rossiter, 2004; Tondel et al., 2003; Jo-
hansen et al., 2003) concentrate on the linear case
(hybrid and continuous time systems are not the
topic of this paper). Yet if one looks at the MPC
literature outside of the topic of MPQP, much
of the current emphasis is on either robustness
issues e.g. (Kothare et al., 1996; Kouvaritakis et
al., 2000; Kerrigan, 2000) or non-linear systems.
What makes this dichotomy seem even more sur-
prising is that the very power of MPQP is its
ability to handle the heavy computations offline
and it is the need for burdensome optimisations
that has severely limited the progress of robust
MPC towards implementable algorithms; in fact
this is recognised in some of the current offerings
(Kouvaritakis et al., 2000; Kothare et al., 2003)
which sacrifice some optimality and feasibility in
order to deliver a simpler implementation.

Hence this paper has the purpose of considering
how one might use the potential of MPQP to
implement a robust MPC law. The solution may
seem to be relatively obvious, but the application
to robust MPC has specific advantages in the



sense that the number of MPQP regions is shown
to rise less steeply than the number of constraints
in the QP formulation and hence facilitates online
implementation.

The main reason why MPQP is difficult to ap-
ply to robust systems is that one needs to cap-
ture a whole class of predictions as opposed
to just the nominal. Although this may seem
tractable for a few steps, the combinatorial ex-
plosion (Schuurmanns et al., 2000) of the possible
predictions makes this intractable for even rela-
tively low horizons and of course the usual think-
ing within MPC (Mayne et al., 2000; Rossiter,
2003) is that large horizons are to be prefered in
general. Of course there are ways around this, for
instance works concentrating on disturbance re-
jection (Kerrigan, 2000) make use of one-step sets
and backwards prediction as such an approach
avoids the combinatorial difficulties.

However, many implementations nevertheless tend
to rely upon the definition of an invariant and
feasible terminal region, that is a space in which
the trajectories for all possible uncertainties will
remain once they have entered and of course,
satisfy constraints. The existence of such a target
region (Scokaert et al., 1998; Rossiter et al., 1998)
allows one to restrict the active prediction hori-
zon, nc, to the same length as the number of free
control moves; usually a low number and hence
manageable even with a combinatorial growth in
possible trajectories. Unfortunately, in the case of
uncertain systems, most commonly modelled as
linear parameter varying (LPV) systems, authors
have generally assumed that maximal volume
invariant terminal regions are not computable
easily and have pursued other avenues. Typical
routes in the literature assume that the invari-
ant regions are ellipsoidal (which implies that the
MPC algorithm becomes a semi-definite program
(Cannon et al., 2001)) or low complexity poly-
hedrals (Cannon et al., 2002) (which severely re-
stricts the feasible region); moreover these works
often assume symmetric constraints. However, the
good news is that a recent work (Pluymers et
al., 2004) demonstrated that, under certain condi-
tions, it is possible to compute a maximal volume
polyhedral terminal region for an LPV system;
this result underpins the developments presented
here.

This paper therefore unites several concepts:

(1) The use of a terminal region for robust
MPC to keep the active prediction horizon
small and hence to handle the combinatorial
growth of possible trajectories.

(2) The use of backwards prediction in order to
define the terminal region.

(3) Once the control law has been established as
deploying a QP optimiser, it can immediately
be solved as an MPQP.

(4) The method is not restricted to symmetric
constraints (a typical assumption in many
papers) and hence extends feasibility exten-
sively.

The paper is organised as follows. Section 2 gives
some background to the formulation of the robust
MPC algorithm (Pluymers et al., 2004), section 3
dicusses the MPQP implementation for the robust
and nominal algorithms and section 4 gives some
numerical illustrations of the differences. Section
5 contains conclusions.

2. BACKGROUND

2.1 A nominal MPC algorithm

This paper will assume discrete LPV state space
models

xk+1 = A(k)xk + B(k)uk;
(A(k), B(k)) ∈ Co{(A1, B1), ..., (Am, Bm)} (1)

with the nominal model being (A, B). The ‘pre-
dicted’ control law (Rossiter et al., 1998; Scokaert
et al., 1998) takes the form

uk = −Kxk + ck k = 0, ..., nc − 1
uk = −Kxk k ≥ nc

(2)

where only the first move of this is ever imple-
mented; ck are d.o.f. available for constraint han-
dling and thus are chosen as ci = 0 when this is
feasible. Performance, either predicted or actual,
will be assessed by the cost

J =
∞∑

k=0

xT
k Qxk + uT

k Ruk (3)

Substituting a nominal model and ‘optimal’ con-
trol law (2) into (3) and ignoring terms that
do not depend upon the d.o.f., one can show
(Rossiter, 2003) that the cost to be minimised,
Jc, takes the form

Jc = CT WDC; C = [cT
0 , ..., cT

nc−1]
T (4)

where WD =diag(W, ..., W ), and W = BT ΣB +
R, Σ − ΦT ΣΦ = Q + KT RK.

Assume that the process is subject to constraints:

u ≤ uk ≤ u; x ≤ xk ≤ x, k = 0, . . . ,∞ (5)

Then the maximal admissible set 1 (MAS) S0

(Gilbert et al., 1991) can be defined as:

S0 = {x : M0x ≤ d0} (6)

The maximal control admissible set (MCAS) Sc,
the set from which in at most nc moves one can
drive the state into S0, again without violating
constraints, takes the form:

Sc = {x : ∃C s.t. M0x + N0C ≤ d0} (7)

1 The largest invariant set in which the state trajectories
do not violate constraints.



Finally therefore, a popular MPC algorithm with
guarantees of recursive feasibility and conver-
gence, for the nominal case, is given as:
MPC Algorithm: At each sampling instant,
minimise the performance index:

min
C

J = CT WDC s.t. M0x + N0C ≤ d0 (8)

where only the first block element of C is imple-
mented.

2.2 RMPC: MPC for the LPV case

Before moving onto the MPQP implementation, it
is next necessary to derive a robust MPC (RMPC)
algorithm deploying just an QP optimisation. For
ease of presentation, we summarise the result first
and the remainder of this section gives more detail
which the reader could choose to skip.

2.2.1. The key result An RMPC algorithm can
be summarised by the optimisation:
RMPC algorithm: At each sampling instant,
minimise the performance index:

min
C

J = CT WDC s.t. Mrxk + NrC ≤ dr (9)

where only the first block element of C is imple-
mented.

It has been argued (Pluymers et al., 2004) that
one can define inequalities such that the control
law implied in (9) has:

(1) Recursive feasibility for system (1).
(2) Guaranteed stability and convergence for all

initial points inside Sr (which is the MCAS
for RMPC),

Sr = {x : ∃C s.t. Mrxk + NrC ≤ dr}. (10)

For completeness define the associated MAS as
Sv, that is

Sv = {x : Mrx ≤ dr} (11)

Remark 2.1. RMPC of (9) differs from MPC of
(8) only in the inequalities that need to be satis-
fied, or in other words the replacement of S0 by
Sv and Sc by Sr. The key to the success of RMPC
therefore is in the definition of these terms, that
is, Mr, Nr, dr.

2.2.2. Outline of algorithm development Next
we give a brief overview of why algorithm (9) is
robustly stabilising in the presence of constraints
(5); for more details see (Pluymers et al., 2004).

Performance index: This is based on nominal per-
formance but in particular is phrased in terms
of perturbations to the nominal control law. If
one knows that the nominal feedback is stabilis-
ing for the LPV system (1), then one can prove
convergence by establishing that the perturbation

term C is decreasing. Given recursive feasibility,
this can be determined from standard Lyapunov
arguments.

Recursive feasibility: The key to (9) is the require-
ment that

xk ∈ Sr ⇒ xk+1 ∈ Sr (12)

and in fact to be more precise, one requires that an
augmented state including the tail of C remains
feasible, that is:

[Mr, Nr]
[

xk

Ck

]
≤ dr ⇒ [Mr, Nr]

[
xk+1

Ctail|k

]
≤ dr

(13)
where Ctail|k = [cT

k+1|k, ..., ck+nc−1|k, 0]T . Such a
guarantee can be established by defining Mr, Nr, dr

as the combination of several constraints:

(1) constraint matrices that ensure constraint
satisfaction for all possible state trajectories
over nc steps.

(2) a constraint that ensures all possible nc step
ahead predictions enter the MAS Sv.

The precise details of how to compute these ma-
trices are omitted to save space and are available
in (Pluymers et al., 2004).

3. THE MPQP IMPLEMENTATION

3.1 The structure of an MPQP algorthm

MPQP (Bemporad et al., 2002) gives a parame-
terisation of the solution to a QP in terms of the
variables which affect the cost and constraints but
are not degrees of freedom. In the case of (8,9)
this parameter is the state x. It is known that
the optimum solution (in this case for C) has a
piecewise affine (PWA) dependence on the state.
So for instance, specific solutions in a given region
take the form:

x ∈ Si ⇒ C = −Kix+pi; Si = {x : Mix ≤ di}
(14)

and the overal solution is defined over the union of
all the regions Si (which do not overlap). Moreover
it can be shown that this union is equivalent to the
MCAS Sr, that is:

Sr =
⋃
i

Si (15)

Remark 3.1. One of the regions will be the MAS
(Sv); for this region Ki = pi = 0.

Remark 3.2. The definitions of Mi, di, Ki, pi

depend in a non-simple way upon the parameters
of (8,9) the original optimisation (for instance
WD, Mr, Nr, dr). As such one may find a
relatively small change in the inequalities gives
substantial changes to the shape and number of
regions Si as well as the corresponding Ki, pi.



3.2 Differences between the nominal and robust
algorithms

A quick glance is sufficient to note that optimi-
sations (8) and (9) are of the same structure but
differ in the inequalities. It is therefore expected
that the solutions may look quite different. This
in itself is very insightful because a simple plot
can be used to demonstrate how the control law
changes, with the state position, to accomodate
the model uncertainty. Such plots are given in the
next section.

Another interesting issue is complexity. The ‘nom-
inal’ inequalities used in (8,9) are very different in
dimension (no. or rows) due to the combinatorial
nature of the predictions for the robust case. Al-
though some simplification maybe possible offline
by removing redundant rows, it would still be
unsurprising if the robust algorithm did not have
many more rows and hence could potentially 2

require significantly longer solution times for the
online implementation. The hope, however, might
be that the MPQP solution may not be substan-
tially more complex. In this case one would be
able to handle the robust problem with little more
effort than the nominal case and that would be a
significant benefit.

4. NUMERICAL ILLUSTRATIONS

The purpose of this section is simply to compute
the MPQP (Kvasnica et al., 2003) solution for
the robust MPC algorithm, as this in itself is
novel and then to compare it to the nominal
MPC algorithm. It is perhaps self evident that
RMPC will be more robust, although this is also
illustrated, so our prime interest is to contrast
the complexity of the two solutions so that some
comment can be made about the potential of
MPQP solutions to RMPC.

For simplicity of illustration and to aid compari-
son with other publications, we use the two state,
double integrator example used by many other
authors. The model takes the form of (1) where

A1 =
[

1 0.1
0 1

]
, B1 =

[
0
1

]
, (16)

A2 =
[

1 0.2
0 1

]
, B2 =

[
0

1.5

]
, (17)

and A(k) = (1 − λ(k))A1 + λ(k)A2, B(k) =
(1 − λ(k))B1 + λ(k)B2, 0 ≤ λ(k) ≤ 1. For the
purposes of this section to ensure consistency of
comparisons, λ(k) is time-varying but defined to
be the same sequence for all simulations. The
nominal model is chosen as A = 0.5(A1+A2), B =
0.5(B1 + B2). Constraints are taken as

u = 1; u = −0.5; x = −x = [10, 10]T . (18)

2 Although one could argue that in general the number of
rows is less significant a factor than the number of d.o.f..

The unconstrained feedback controller K =
[0.4558 0.3698]T is the LQR-optimal for Q =
diag(1, 0.01), R = 3.

4.1 Number of constraints vs number of d.o.f.

We first illustrate how the complexity of the un-
derlying optimisations (8) and (9) differ by pre-
senting, in table 1, the number of inequalities
required to define Sc, Sr for various nc. Unsur-
prisingly, RMPC requires significantly more in-
equalities, because it is capturing all possible pre-
dictions, not just the nominal. This could cause a
marked slow down in online implementation times
of the associated QP optimisation.

Number of inequalities
nc MPC RMPC
1 13 17
2 15 31
3 19 56
4 21 102
5 24 194

Table 1. Comparison of inequalities

4.2 MPQP complexity comparisons

Next we consider, in table 2, the complexity of the
MPQP solutions, that is how many regions are
required to cover the MCAS. It is clear that the
complexity of the MPC solution is less than for
RMPC and moreover there seems to be a trend
that the the number of regions for RMPC in-
creases more rapidly with nc. Nevertheless, when
compared to the number of inequalities (table 1)
the MPQP solution of RMPC relative to MPC
could still be argued to be more favourable than
the QP comparison; for instance at nc = 5 the
relative number of regions is approximately 3
whereas the relative number of inequalities is ap-
proximately 7.5.

Number of regions
nc MPC RMPC
1 14 16
2 42 68
3 73 124
4 102 204
5 131 313

Table 2. Numbers of regions

4.3 Feasible region comparisons

For completeness, although not directly aligned
to MPQP, it is important to compare the feasible
regions (or MCAS). Hence Figures 1a,b,c over-
lay the MCAS for MPC (solid line) with RMPC
(shaded) for nc = 0, 2, 5 respectively. Unsurpris-
ingly, the robust algorithm has more restricted



−5 0 5 10

−10

−5

0

5

x
1

x 2

n
c
=2

−5 0 5 10

−10

−5

0

5

x
1

x 2

n
c
=5

−4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

x
1

x 2

n
c
=0

Fig. 1. Feasible regions with nc = 0, 2, 5.

−5 −4.5 −4 −3.5 −3
3

3.5

4

4.5

5

23

x
1

x 2

MPQP for MPC

−5 −4.5 −4 −3.5 −3
3

3.5

4

4.5

5

117

x
1

x 2

MPQP for RMPC

−5 −4.5 −4 −3.5 −3
3

3.5

4

4.5

5

x
1

x 2

−5 −4.5 −4 −3.5 −3
3

3.5

4

4.5

5

x
1

x 2

Fig. 2. MPQP regions and closed-loop predictions.

feasibility to account for all possible state evolu-
tions, or in other words the nominal algorithm is
in danger of suggesting solutions which lead to
infeasibility (are outside Sr) and hence could fail.

4.3.1. Behaviour comparisons Next, we explore
in more detail how the control strategy changes
for a given region. To this end, we display in
figure 2a,b and for nc = 3, the MPQP regions
for a specific part of the state space. The state
x = [−4.56, 4.48]T (marked with a ’o’) is in region
117 for RMPC and region 23 for MPC (regions
are shaded). The corresponding control laws use:

RMPC c0 = [1.35 − 0.319]x + 6.66
MPC c0 = [0.146 − 0.114]x + 1.09 (19)

which are clearly very different. We then overlay
on the figure 2c,d the cone of one step ahead
trajectories (marked by a dashed line and ’+’)
that would arise for one-step ahead prediction.
It is clear that these are very different for the
two control laws with the MPC predictions (figure
2c) exiting the feasible region Sr whereas the
RMPC predictions (figure 2d) remain inside and
are obviously directed towards Sv.
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Fig. 3. RMPC closed-loop trajectories.
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Fig. 4. RMPC and MPC closed-loop trajectories.

4.4 Closed-loop simulations

Finally, for completeness, we illustrate the behav-
iour of the MPQP solution to RMPC over the
whole state space. Figure 3 presents the closed-
loop trajectories for a number of initial conditions
on the boundary of Sr (λ(k) is the same for all
these simulations but unknown and time-varying
and the shaded area is Sv). What is clear is that
all these trajectories remain within the feasible
region Sr.

The corresponding simulations for MPC do not all
remain within the feasible region. This is demon-
strated in figure 4 (again with Sr, Sv shaded)
where MPC is the dashed lines and RMPC is
dotted; clearly the MPC trajectories move in a
very different direction and notably some of these
exit the feasible region.

5. CONCLUSIONS

This paper has demonstrated that MPQP solu-
tions of reasonable complexity can be applied to
robust MPC and in particular give a guarantee
of convergence and recursive feasibility for a LPV
system. We believe this is the first paper giving
such results.



Some points of particular interest are:
(1) MPQP gives a explicit view of how the solution
changes to take account of the model uncertainty.
Such a view may be very insightful (for instance
see figures 2,4).
(2) The single example here seems to show a more
rapid increase in the complexity of the MPQP
solution with the number of d.o.f. than for the
nominal case (table 2). We intend to investigate
whether this appears to be generic or specific to
the given example.
(3) Robust MPC is often considered an intractable
or very complex problem due to the combina-
tion of constraint handling with the combinatorial
explosion in the number of possible predictions.
However, it has been shown here that, in some
cases, the MPQP solution is only a little more
complex than for an equivalent linear problem and
hence is an avenue worth further investigation.

It is also worth reiterating that the results given
here are for non-symmetric constraints. Hence
the increase in the volume of the feasible region
beyond that which ellipsoidal based methods can
achieve is very significant.
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