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Abstract: The majority of recent works on robust MPC either require very
burdensome online computations or are restricted to relatively small feasible
regions. This paper builds on a recent work which demonstrated that one could
compute the maximal admissible set for a linear parameter varying system and
shows how this set can be used as the terminal region and hence allows the
definition of an MPC algorithm requiring only quadratic programming, but with
a maximal region of attraction and guaranteed convergence for the robust case.
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1. INTRODUCTION

Linear model predictive control (MPC) is, by now,
well understood (Mayne et al., 2000; Rossiter,
2003) and the remaining issues are more to do
with implementation than the underlying algo-
rithm, that is how can we speed up, simplify or
other the online implementation. Robust MPC
however still attracts a great deal of attention in
the literature. Partially this is due to the large
number of possible scenarios: for instance how to
classify parameter uncertainty, or disturbance un-
certainty. However of more significance is the com-
putational complexity that arises from a desire to
give guarantees of feasibility and convergence; this
is evident even from the seminal paper (Kothare
et al., 1996). Some authors have sought to re-
duce the complexity of the online computations
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(Kouvaritakis et al., 2000; Kothare et al., 2003) by
performing more offline analysis, however with a
significant restriction to the volume of the feasible
region, as one needs to fall back to ellipsoidal in-
variant regions; it is known, at least for the certain
case, that the maximal volume feasible region is
polyhedral in general. To the authors’ knowledge
no-one has yet proposed the computation and use
of the maximal admissible set (MAS) (Gilbert et
al., 1991) for the uncertain case, perhaps because
a simplistic extension of the original algorithm in
(Gilbert et al., 1991) is intractable in general.

This situation is now changing. For instance the
work of (Kerrigan, 2000) and co-workers has
demonstrated that one can compute invariant
polyhedral sets for the case of linear parame-
ter varying (LPV) systems with disturbances, al-
though the focus there was very general. More
recently (Pluymers et al., 2005) it was shown
that for the specific case of a fixed control law,
which is usually assumed for the terminal region
in MPC (Scokaert et al., 1998), one can compute
the MAS for an LPV system efficiently. The main
contribution here, therefore, is show how these



robust invariant sets can be used to formulate a
robust MPC algorithm. Of particular note is that
the proposed algorithm requires only a quadratic
program (QP) online, and therefore is far simpler
than the typical offerings in the literature.

It should be emphasised that the algorithm pro-
posed here gives a guarantee of feasibility and
convergence for the uncertain system and notably
for the largest volume feasible region possible,
assuming a given terminal control law. This we
believe has not appeared in the literature before
where the online algorithm makes use only of a QP
optimisation. Moreover, it should be emphasised
that the algorithm of this paper can cater for non-
symmetric constraints which ellipsoidal (Kothare
et al., 1996) and low complexity polyhedral meth-
ods (Cannon et al., 2002) cannot.

The paper is organised as follows. Section 2 gives
some background to MPC and invariant sets.
Section 3 presents the proposed algorithm and
its properties and section 4 gives some numerical
illustrations.

2. BACKGROUND

2.1 Notation, prediction, cost and control

This paper will assume discrete state space models
and state feedbacks of the form

xk+1 = Axk + Buk; uk = −Kxk (1)

Performance, either predicted or actual, will be
assessed by the cost

J =
∞∑

k=0

xT
k Qxk + uT

k Ruk (2)

More generally, let the ‘predicted’ control law
(Rossiter et al., 1998; Scokaert et al., 1998) be:

uk = −Kxk + ck k = 0, ..., nc − 1
uk = −Kxk k ≥ nc

(3)

where ck are d.o.f. available for constraint han-
dling. Substituting (1,3) into (2) one can show, for
K the optimal ((Rossiter, 2003) chap. 6,7), that
J takes the form

J =
i−1∑
j=0

cT
j Wcj + p; p = xT V x (4)

and W = BT ΣB + R, Σ−ΦT ΣΦ = Q + KT RK;
as p is not dependent on the d.o.f., it is convenient
to omit it and rephrase the objective function as:

J = CT WDC; C = [cT
0 , ..., cT

nc−1]
T (5)

WD =diag(W, ..., W ).

2.1.1. Constraints and MAS Assume that the
process is subject to constraints:

u ≤ uk ≤ u; x ≤ xk ≤ x, k = 1, . . . ,∞ (6)

The MAS (Gilbert et al., 1991) is defined as the
region within which the state and control evolu-
tions (in this case from the closed-loop system

xk+1 = [A − BK]xk) satisfies constraints (6). Let
the MAS be defined as

S0 = {x : M0x ≤ d0} (7)

The maximal control admissible set (MCAS) is
the region within which the d.o.f. C (from (3)) are
sufficient to ensure constraint satisfaction of the
predictions 1 . One can show (if S0 has sufficient
redundant rows) that the MCAS takes the form:

Sc = {x : ∃C s.t. M0x + N0C ≤ d0} (8)

2.1.2. MPC for the nominal case A typical
paradigm for MPC minimises the cost of (5)
subject to the transient and terminal constraints
which are implicit in (8).

Algorithm 2.1. Nominal MPC: At each sam-
pling instant, perform the optimisation:

min
C

J = CT WDC s.t. M0x + N0C ≤ d0 (9)

Use the first block element of C in control law (3).

Remark 2.1. This algorithm (Scokaert et al., 1998)
has a guarantee of recursive feasibility and conver-
gence, for the nominal case. It can also be shown
that for nc large enough and K the optimal con-
trol law, the solution is the same as the optimum
constrained control law.

2.2 MPC for the uncertain case

This paper extends MPC to deal with parameter
uncertainty (extensions to deal with disturbances
form ongoing work). In particular we will consider
the case of LPV systems, that is

xk+1 = A(k)xk + B(k)uk;
(A(k), B(k)) ∈ Co{(A1, B1), ..., (Am, Bm)}

(10)

Typical MPC algorithms which deal with this
case suffer a number of limitations. MPC is based
on predictions, but authors have generally as-
sumed that one cannot form the entire class of
predictions due to the combinatorial explosion in
the required number of terms (Schuurmanns et
al., 2000). This limitation also meant that people
were unsure how to formulate the MAS for this
system and hence an MPC algorithm such as 2.1
could not be constructed.

As a consequence the vast majority of work has
made use of low complexity invariant sets, in
particular ellipsoidal sets (Kothare et al., 1996) or
very simple polyhedral sets (Cannon et al., 2002).
In this case one can form conditions which apply
to the LPV system, but the restriction to low
complexity invariant sets implies a corresponding
restriction to the applicability of the associated
algorithms, that is to the feasible region.

1 Use C to satisfy constraints over the first nc steps and
to ensure that xk+nc ∈ S0.



Some authors have tackled this limitation by
augmenting the state dimension (Kouvaritakis et
al., 2000; Imsland et al., 2004) and in effect
allowing a time varying control strategy. However,
the restriction to ellipsoidal sets remains in those
works. Other examples of algorithms using time-
varying terminal ellipsoidal regions are (Pluymers
et al., 2004; Park et al., 1999; Kothare et al.,
2003), but also in these algorithms the need for
SDP directly induces a significantly larger online
computational burden than QP-based methods.

2.3 Polyhedral invariant sets for LPV systems

This paper proposes to make use of a recent de-
velopment (Pluymers et al., 2005) which demon-
strates how, in some cases, one can indeed formu-
late the MAS for an LPV system. The key idea
used is not dissimilar to the one-step sets popu-
larised in (Kerrigan, 2000), that is to use back-
wards prediction rather than forwards prediction.
This simple change eliminates the combinatorial
explosion in the possible number of prediction
terms and hence creates a tractable problem.

A brief summary of the key results is given next
without details, for which the reader is referred
to (Pluymers et al., 2005). First define the closed-
loop system matrices

Φi = Ai − BiK, i = 1, . . . , m. (11)

The MAS for the uncertain system (10), con-
straints (6) and control law u = −Kx is:

Su = {x : Mux ≤ du}. (12)

By definition Su is invariant so x ∈ Su ⇒
Φix ∈ Su, i = 1, . . . , m. This can be shown to
be equivalent with Su ⊂ S−

u , with the −-operator
defined as S− = {x : Φix ∈ S, i = 1, . . . , m}.
The following algorithm starts with the initial
set S = {x : x ≤ x ≤ x, u ≤ −Kx ≤ u}
and iteratively adds constraints from S− until
S ⊂ S−. The resulting set is the MAS.

Algorithm 2.2. Robust Invariant Set

(1) Set Mu := [IT − IT − KT KT]T, du =
[xT xT uT uT] and i := 1.

(2) Select row i from (Mu, du) and check ∀j
whether Mu,iΦjx ≤ du,i is redundant with
respect to the constraint defined by (Mu, du).
Add the non-redundant constraints to (Mu, du)
by assigning Mu := [MT

u (Mu,iΦj)T]T and
du := [dT

u dT
u,i]

T for all relevant j.
(3) Set i := i + 1. If i is strictly larger than the

number of rows in (Mu, du) then terminate,
otherwise continue with step 2).

The resulting set Su = {x : Mux ≤ du} is
the MAS for the given system, constraints, and
feedback controller. The algorithm is guaranteed
to terminate in a finite number of iterations if the
closed-loop system is quadratically stable :

∃V > 0 s.t. ΦT
i V Φi ≤ V, ∀i (13)

Remark 2.2. Constraints added in later iterations
of the algorithm can render constraints added in
earlier iterations redundant. Therefore it is advis-
able to check for redundant constraints regularly
during the execution of the algorithm; this can
decrease execution time considerably.

3. ROBUST MPC FOR LPV SYSTEMS

This section shows how to make use of the robust
MAS (12) to develop an algorithm very similar
to the conventional algorithm 2.1 but applicable
to a LPV system. That is, one which minimises
nominal predicted performance but subject to
constraint satisfaction by the whole class of pos-
sible predictions during transients and moreover
with the condition that all possible nc-step ahead
predictions are within the terminal set (12). Some
lemmata and proofs demonstrate the properties of
recursive feasibility and convergence.

3.1 Robust predictions and constraint handling

Define a nominal model (A, B) and use this to
form the nominal predictions over nc steps. These
predictions are used solely to give the expected
value (5) of the cost function J which will be the
target Lyapunov function for stability analysis.
Nominal predictions used to formulate the MCAS
in algorithm 2.1 are

xk+n = Φnxk +
n−1∑
j=0

Φn−j−1Bcj (14)

For robust constraint handling, one needs to
ensure that all possible predictions satisfy con-
straints and therefore one must formulate all pos-
sible predictions for the model (10). The n-step
ahead prediction is given as

xk+n =
n−1∏
i=0

Φ(i)xk +
n−1∑
j=0

{
n−j−2∏

l=0

Φ(n − l)}Bcj

(15)
where Φ(i) ∈ Co{Φ1, ..., Φm}. Clearly one must
allow for all possible combinations of Φ(i) to
capture all the predictions; this procedure is only
tractable for small n, as the number of possible
vertices for xk+n grows at approximately mn.

3.1.1. Transient constraints The constraint equa-
tions (6) must also be applied to all possible
xk+i, i = 0, ..., nc − 1 (note these constitute only
the transient constraints). Omitting the algebra
as tedious, but straightfoward, these constraints
are satisfied, for all possible predictions (15), if
the following inequalities are satisfied:

Mtxk + NtC ≤ dt (16)



3.1.2. Terminal constraints One requires all
possible nc-step ahead predictions to lie within the
terminal region Su of (12), therefore each possible
prediction must satisfy Muxk+nc ≤ du. These
constraints can be represented by:

Mvxk + NvC ≤ dv; (17)

Hence combining constraints (16,17) the overall
feasible region is given by:

Sr = {x : ∃C s.t. Mrxk + NrC ≤ dr};
Mr =

[
Mt

Mv

]
; Nr =

[
Nt

Nv

]
; dr =

[
dt

dv

]
(18)

Remark 3.1. The reader may assume that the
number of constraint equations implied here is
rather large and this would lead to an intractable
QP. However, many of these constraints would
be redundant and could be removed offline. We
are investigating equivalent procedures to that
deployed in (Pluymers et al., 2005) to compute
the sets more efficiently but omit this due to lack
of space.

3.2 The algorithm and its properties

This section now defines the QP optimisation
defining the online algorithm and gives some dis-
cussion to its properties.

Algorithm 3.1. Robust MPC

At each sampling instant, minimise the perfor-
mance index:

min
C

J = CT WDC s.t. Mrxk + NrC ≤ dr (19)

Use the first block element of C in control law (3).

Lemma 3.1. Algorithm 3.1 has a guarantee of
recursive feasibility within the set Sr of (18).

Proof: Recursive feasibility requires that

xk ∈ Sr ⇒ xk+1 ∈ Sr (20)

Now the definition of (16,17) and hence (18)
allowed for all possible predictions deploying nc

control perturbations ci, so the one step ahead
predictions implicit in this must lie in a region
for which all possible predictions deploying nc −
1 perturbations are feasible; this by necessity
therefore must be a subset of Sr. 	


Lemma 3.2. The cost J is continuous for all
points outside the terminal region and inside Sr,
it is piecewise quadratic with minimum on the
boundary on Su and therefore can be deployed
as a potential lyapunov function.

Proof: By definition (17), the unconstrained con-
trol law is feasible and gives convergence to the
origin, that is, the choice C = 0 (which implies
J = 0) is feasible within Su. As algorithm 3.1 is
a QP, the piecewise quadratic nature of J outside
Su is well known (Bemporad et al., 2002). 	


Lemma 3.3. The cost J reduces each sample until
the state enters Su and hence is Lyapunov.

Proof: This proof follows a well accepted route of
showing that the tail of the optimum from sam-
pling instant k is a valid choice at sampling instant
k + 1; as this choice implies a reduction in J , the
new optimum also gives a reduction in J . The
cost function is specified in terms of the control
perturbations as Jk =

∑i−1
j=0 cT

j|kWcj|k. A possible
choice at the next sampling instant is cj|k+1 = cj|k
and hence Jk+1 ≤ Jk − cT

0|kWc0|k. Hence J is
a lyapunov function because one can only have
that Jk+1 = Jk, ∀k if ck = 0, ∀k which implies
that the state is already inside the terminal region
and hence J = 0. Because J is Lyapunov, the
perturbation terms c must converge to zero which
implies the state has entered Su. 	

Theorem 3.1. Algorithm 3.1 has a guarantee of
convergence for all initial points inside the feasible
region Sf .

Proof: The proof needs three key threads; (i)
a guarantee of recursive feasibility (established
in lemma 3.1); (ii) a proof that once inside the
terminal region Su the state converges (implicit
in (12)) and (iii) a proof that states outside the
terminal region converge to the terminal region
(established in lemma 3.3). 	


4. NUMERICAL ILLUSTRATIONS

It is perhaps obvious how the proposed algorithm
improves upon those algorithms already in the
literature, however for completeness we present
some numerical illustrations to demonstrate the
efficacy. For simplicity we will illustrate with a
single example whose model and constraints are:

A1 =
[

1 0.1
0 1

]
, B1 =

[
0
1

]
, (21)

A2 =
[

1 0.2
0 1

]
, B2 =

[
0

1.5

]
, (22)

u = −u = 1, x = −x = [10, 10]T. (23)
The nominal model is chosen as A = 0.5(A1 +
A2), B = 0.5(B1 + B2). The feedback controller
K = [0.4558 0.3698]T is the LQ-optimal for Q =
diag(1, 0.01), R = 3.

4.1 Improved volume for terminal region

The common alternative to a polyhedral set is an
ellipsoidal set. Hence here we overlay, in figure
1, the maximum volume invariant ellipsiodal set
(dotted line) and the robust MAS (solid line). The
enlargement of the target region is obvious.

For completeness it is also worth demonstrating
the impact of non-symmetric constraints, e.g.:

u = 1; u = −0.5; x = −x = [10, 10]T . (24)
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Fig. 1. Ellipsoidal and polyhedral terminal invari-
ant sets with symmetric constraints (23).

We overlay, in figure 2, the maximum volume
invariant ellipsiodal set and the robust MAS. The
enlargement of the target region is unsurprisingly
very significant in this case.

4.2 Improved region of attraction

The region of attraction once degrees of free-
dom have been added, is Sr as defined in (18).
However, in the case of ellipsiodal target sets,
the corresponding calculations are either hard to
do because they do not involve LP or QP, but
rather require SDP (Cannon et al., 2001) (and
hence would not form a fair comparison due to
the excessive online computation implied) or use
simplifications as in (Kouvaritakis et al., 2000) but
are therefore still restricted to ellipsoids, with the
obvious limitations illustrated in figures 1 and 2.
So here we simply demonstrate in figure 3 that
the feasible region for algorithm 3.1, increases in
volume as more d.o.f. are added.

4.3 Closed-loop performance and robustness

The motivation for this algorithm was to give
a guarantee of stability and convergence for the
uncertain case. To demonstrate how the proposed
algorithm performs, we take a number of initial
points near the boundary of the feasible region
and allow the model to be arbitrarily time-varying
within the allowable sets of parameters (see (10)).
Some of the resulting trajectories are plotted in
figure 4. They all converge to the origin!

4.4 Improved robustness

What perhaps is of equal interest is a comparison
between the robust algorithm and the nominal
algorithm 2.1. Both have equivalent behaviour
within Su, the terminal region, but this is not true
outside Su where different choices of C are implied
by the differing constraints in the optimisations.

Case 1: One can conjecture a value x such that
x ∈ S0 but x �∈ Su. In this case algorithm 2.1
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Fig. 2. Ellipsoidal and polyhedral terminal invari-
ant sets with non-symmetric constraints (24).

will suggest C = 0 whereas algorithm 3.1 would
give C �= 0 and so one could clearly demonstrate
that J is Lyapunov for algorithm 3.1 but not so
for algorithm 2.1 (due to the model uncertainty
the state may subsequently move outside S0).
Without this Lyapunov property the proof of
convergence is invalid. For instance take the initial
state [−4.0285 3.5259]T situated on the boundary
of S0, then it suffices only to show that there exists
(A(k), B(k)) such that maxi(eT

i [M0x − d0]) = 0
implies that maxi(eT

i [M0Φ(k)x− d0]) > 0. This is
the case for both (A1, B1) as (A2, B2).

Case 2: An even worse scenario could be where al-
gorithm 2.1 selects a move that leads to infeasibil-
ity; in some cases this can lead to unavoidable in-
stability and at best an undefined control strategy.
An illustration of this would be points near the
boundary of Sr; for points outside this we know
there must exist a set of parameter variations such
that one may not be able to ensure convergence
and constraint satisfaction. Hence it is sufficient
to show, that the Algorithm 2.1 may select an op-
timum C such that maxi(eT

i [Mx−d]) = 0 implies
that maxi(eT

i [M{Φ(k)x + B(k)c} − d]) > 0. One
example is the initial state [6.9992 −8.3825], lying
on the boundary of Sr and leading to c = 0.1602
for Algorithm 2.1. This results for both (A1 B1)
and (A2 B2) in a next state outside of Sr, leading
to infeasibilities in future iterations for at least
some possible uncertainty realisations.

4.5 Computational load

A key contribution of this paper is to develop an
algorithm that makes use only of a QP optimiser.
In fact algorithms 2.1 and 3.1, are identical apart
from the implied inequalities. Hence, one compar-
ison of importance is the number of inequalities
implied in each algorithm; this section summarises
such a comparison for the model of (21).

Table 1 shows that up to nc = 3 the number
of constraints for both the nominal and robust
algorithm isn’t prohibitively large. Theoretically,
the number of constraints for algorithm 3.1 is
expected to at least double for each increment of
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Fig. 3. Target region (dashed) and feasible regions
for nc = 1, 2, 3 degrees of freedom (solid) in
the non-symmetric case.

Number of inequalities
nc Alg. 2.1 Alg. 3.1
1 13 17
2 15 31
3 19 56

Table 1. Comparison of the number of
inequalities for both algorithms.

nc, but due to the off-line elimination of redun-
dant constraints, the increase actually is less than
twofold for each increment.

5. CONCLUSIONS

This paper has made one major contribution, that
is to develop a robust MPC algorithm for LPV
systems that requires only a QP optimiser on
line but nevertheless is guaranteed feasible and
convergent in the largest possible region for a
given number of free control moves and fixed ter-
minal control law. This paper relies on the recent
advance of (Pluymers et al., 2005). It has been
shown through numerical illustrations and argu-
ment that: (i) the algorithm outperforms nominal
MPC algorithms due to improved robustness and
(ii) outperformns other robust algorithms due to
the increased volume of the feasible region.
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