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Abstract: This paper considers the identification problem of continuous-time
systems with unknown time delays from sampled input-output data. An iterative
global separable nonlinear least-squares (GSEPNLS) method which estimates
the time delays and transfer function parameters separably is derived, by using
stochastic global-optimization technique to avoid convergence to a local minimum.
Futhermore, the GSEPNLS method is modified to a novel global separable
nonlinear instrumental variable (GSEPNIV) method to yield consistent estimates
if the algorithm converges to the global minimum. Simulation results show that
the proposed method works quite well. Copyright c©2005 IFAC
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1. INTRODUCTION

In the discrete-time models with time delay, the
sampling period is usually required to be very
small such that the time delay is an integral multi-
ple of the sampling period, whereas if the sampling
period is too small, the identification problem
may become numerically difficult. Moreover, the
parameters in the discrete-time models usually
do not correspond to the physical parameters.
Therefore, the importance of identification based
on the continuous-time model has been recognized
in recent years.

There have been some typical approaches to
identification of continuous-time models with un-
known delay. One approach is based on the nonlin-
ear estimation method like nonlinear least-squares
(LS) method that searches for the minimum by

using a gradient-following technique (Gawthrop
et al., 1989; Tuch et al, 1994). A major problem
of nonlinear estimation methods is that the es-
timates by such methods may be stuck at local
minima. Therefore, the results may be sensitive to
the initial values. The problem is much more diffi-
cult for multi-input single-output (MISO) systems
with multiple time delays, In our previous study,
we proposed an iterative GSEPNLS method by
using of stochastic global-optimization techniques
(Iemura et al., 2004). In this further work, we
propose a novel GSEPNIV method that yields
consistent estimates in the presence of high mea-
surement noise if the algorithm converges to the
global minimum.



2. STATEMENT OF THE PROBLEM

Consider the strictly stable MISO continuous-
time system with unknown time delays:

n∑
i=0

aip
n−ix(t) =

r∑
j=1

mj∑
i=1

bjip
mj−iuj(t − τj)

(a0 = 1, bj1 �= 0)

(1)

where p is a differential operator, uj(t) is the jth
input with time delay τj , x(t) is the real input and
output. n and mj are assumed to be known (n ≥
mj).

It is assumed that a zero-order hold is utilized
such that

uj(t) = ūj(k) (k − 1)T ≤ t < kT (2)

where T is the sampling period.

Practically the discrete-time measurement of the
output variable is corrupted by a stochastic mea-
surement noise:.

y(k) = x(k) + v(k) (3)

where y(k), x(k), v(k) denote y(kT ), x(kT ), v(kT )
respectively. It is assumed that each zero-order
hold input ūj is a quasi-stationary deterministic
or random signal and the noise v(k) is a quasi-
stationary zero-mean random signal uncorrelated
with each input such that

lim
N→∞

1
N

N∑
k=1

ūj(k)v(k) = 0

3. APPROXIMATED DISCRETE-TIME
ESTIMATION MODEL

To avoid direct signal derivatives, we introduce a
low-pass pre-filter Q(p) as

Q(p) =
1

(αp + 1)n (4)

where α is the time constant which determines the
pass-band of Q(p).

Multipling both sides of (1) by Q(p) and using
the bilinear transformation based on the block-
pulse functions, we can obtain the following ap-
proximated discrete-time estimation model of the
original system (Yang et al., 1997) :

ξ0ȳ(k) +

n∑
i=1

aiξiȳ(k) =

r∑
j=1

mj∑
i=1

bjiξ(n−mj+i)ūj
(k − τ̃j) + r(k)

(5)

where

r(k) =

n∑
i=0

aiξiv̄(k) (6)

and
ξiūj

(k) = Fi(z
−1)ūj(k)

ξiȳ(k) = Fi(z
−1)ȳ(k)

ξiv̄(k) = Fi(z
−1)v̄(k)

(7)

Fi(z
−1) =

(
T

2

)i

(1 + z−1)i(1 − z−1)n−i[
α(1 − z−1) +

T

2
(1 + z−1)

]n (8)

where z−1 is the backward shift operator, v̄(k) =
(1 + z−1)v(k)/2 and ȳ(k) = (1 + z−1)y(k)/2.

τ̃j in (5) is given by

τ̃j = τj/T = l + ∆/T (9)

where 0 ≤ ∆ < T and l is a non-negative integer.

Remark 1: Our approximated discrete-time es-
timation model does not require that the time-
delay τj is an integral multiple of the sampling
period. In the case of ∆ �= 0, we can get
ξ(n−mj+i)ūj

(k − τ̃j) by linear interpolation be-
tween ξ(n−mj+i)ūj

(k−l) and ξ(n−mj+i)ūj
(k−l−1).

(5) can be written in vector form:

ξ0ȳ(k) = �T (k, � )� + r(k)

�T (k, � ) = [−�T
ȳ (k),�T

ū1
(k − τ̃1), · · · ,�T

ūr
(k − τ̃r)]

�T
ȳ (k) = [ξ1ȳ(k), · · · , ξnȳ(k)]

�T
ūj

(k − τ̃j) = [ξ(n−mj+1)ūj
(k − τ̃j), · · · , ξnūj (k − τ̃j)]

�T = [�T , �T
1 , · · · , �T

r ]

�T = [τ1, · · · , τr ]

�T = [a1, · · · , an]

�T
j = [bj1, · · · , bjmj

]

(10)

4. SEPNLS METHOD

Given a fixed set of filtered input-output data
{ξ0ȳ(k),ϕT

ȳ (k),ϕT
ū1

(k), · · · ,ϕT
ūr

(k)}N
ks+1, the off-

line parameter estimates are defined as the mini-
mizing arguments of the following LS criterion

VN (�, � ) =
1

N − ks

N∑
k=ks+1

1

2
ε2(k,�, � )

ε(k, �, � ) = ξ0ȳ(k) − �T (k,� )�

(11)

such that [
�̂

T

N , �̂
T
N

]T

= arg min
�,�

VN (�, � ) (12)

The SEPNLS method estimates the time delay
vector τ and the linear parameter vector θ in
a separable manner. When the time delays are
known, the linear parameters can be estimated by
the linear LS method as

�̂N (� ) = �−1(N, � )�(N, � )

�(N, � ) =
1

N − ks

N∑
k=ks+1

�(k, � )�T (k, � )

�(N, � ) =
1

N − ks

N∑
k=ks+1

�(k, � )ξ0ȳ(k)

(13)

Then the LS criterion VN (θ, τ ) becomes

V̆N (� ) =
1

N − ks

N∑
k=ks+1

1

2
ε̆2(k, � ) (14)

where



ε̆(k, τ ) = ξ0ȳ(k) −ϕT (k, τ )R−1(N, τ )f(N, τ )(15)

The time delay vector τ and the linear parameter
vector θ can be estimated separably according
to the following theorem. See Ruhe & Wedin
(1980), Ngia (2001) for proof and more detailed
explanations.

Theorem 1. Let θ = θ̂N (τ ) = R−1(N, τ )f(N, τ )
denotes one solution of the LS criterion (11).
Then[
θ̂

T

N , τ̂
T
N

]T

= argmin
θ,τ

VN (θ, τ ) = argmin
τ

V̆N (τ )

(16)

Therefore, the estimate of time delays can be
obtained as

�̂N = argmin
�

V̆N (� ) (17)

through the following iterative search algorithm.

�̂
(j+1)
N = �̂

(j)
N − µ(j)

[
�̆N

(
�̂

(j)
N

)]−1

�̆
′
N

(
�̂

(j)
N

)
(18)

where µ(j) is the step-size which assures that
V̆N (τ ) decreases and that τ̂N stays in a preas-
signed interval, i.e., for i = 1, · · · , r,

τ̂
(j+1)
Ni ∈ Ωτi =

{
τ̂

(j+1)
Ni

∣∣∣0 ≤ τ̂
(j+1)
Ni ≤ τ̄i

}
V̆

′
N (τ ) and R̆N (τ ) are respectively the gradient

and the estimate of the Hessian of the LS criterion:

�̆
′
N (� ) = − 1

N − ks

N∑
k=ks+1

�(k, � )ε̆(k, � )

�̆N (� ) =
1

N − ks

N∑
k=ks+1

�(k, � )�T (k, � )

(19)

ψ(k, τ ) = [ψ1(k, τ ), · · · , ψr(k, τ )]T can be ob-
tained through tedious but straightforward calcu-
lations as follows, for j = 1, · · · , r.
�j(k, �) = − ∂ε̆(k, �)

∂τj

= �
T
τj

(k, �)�
−1

(N, �)�(N, �) +�
T

(k, �)�
−1

(N, �)�τj
(N, �)

−�T
(k, �)�

−1
(N, �)

[
�τj

(N, �) +�
T
τj

(N, �)
]
�

−1
(N, �)�(N, �)

(20)

where

Rτj
(N, τ) =

1

N − ks

N∑
k=ks+1

ϕτj
(k, τ)ϕT (k, τ)

fτj
(N, τ) =

1

N − ks

N∑
k=ks+1

ϕτj
(k, τ)ξ0ȳ(k)

ϕτj
(k, τ) =

∂ϕ(k, τ )

∂τj

=
[
01×n, 01×m1 , · · · , 01×mj−1 ,

ϕT
τj

(k − τ̃j), 01×mj+1 , · · · , 01×mr

]T

ϕ
T
τj

(k − τ̃j) = [−ξ(n−mj)ūj
(k − τ̃j),−ξ(n−mj+1)ūj

(k − τ̃j),

· · · ,−ξ(n−1)ūj
(k − τ̃j)]

(21)

Finally, by substituting τ̂N into (13), the linear
parameter vector θ can be estimated by the linear
LS method (13).

5. GSEPNLS METHOD

Stochastic approximation with convolution smooth-
ing (SAS) is a global-optimization algorithm for
minimizing a nonconvex function

argmin
�∈Ωr

V̆N (� ) (22)

The smoothing process represents the convolu-
tion of V̆N (τ ) with a smoothing function ȟ(η, β),
where η ∈ Rr is a random vector used to per-
turb τ , and β controls the degree of smoothing.
This smoothed functional described in Rubinstein
(1981) is given by

ˇ̆
V N (τ , β) =

∫ ∞

−∞
ȟ(η, β)V̆N (τ − η)dη

=
∫ ∞

−∞
ȟ(τ − η, β)V̆N (η)dη (23)

which represents an averaged version of V̆N (τ )
weighted by ȟ(·, β). To yield a properly-smoothed
functional ˇ̆

V N (τ , β), the kernel functional ȟ(η, β)
must have the following properties (Rubinstein,
1981):

(1) ȟ(η, β) = (1/βr)h(η/β) is piecewise differen-
ciable with respect to β;

(2) limβ→0 ȟ(η, β) = δ(η) ; (δ(η) is the Dirac
delta function);

(3) limβ→0
ˇ̆
V N (τ , β) = V̆N (τ );

(4) ȟ(η, β) is a probability density function
(pdf).

One of the possible choices for h(η) is a Gaussian
pdf (Rubinstein, 1981), which leads to the follow-
ing expression for ȟ(η, β):

ȟ(	, β) =
1

(2π)(r/2)βr
exp

[
−1

2

r∑
i=1

(
ηi

β

)2

]
(24)

Under these conditions, we can rewrite (23) as the
expectation with respect to η

ˇ̆
V N (� , β) = E[V̆N (� − 	)] (25)

In our case, ȟ(η, β) will be the sampled values
of its pdf, which is convolved with the original
objective function for smoothing.

The value of β plays a dominant role in the
smoothing process by controlling the variance
of ȟ(η, β); see properties 2 and 3. Furthemore,
property 3 states that to avoid convergence to
a local minimum, β has to be large at the start
of the optimization process and is then reduced
to approximately zero as the global minimum is
reached.



The application of this technique to the SEPNLS
method requires a gradient operation on the func-

tional ˇ̆
V N(τ , β), i.e., ˇ̆

V
′
N (τ , β). As described in

(Styblinski & Tang, 1990; Rubinstein 1981), if
ȟ(η, β) is a Gaussian distribution, then the unbi-
ased gradient estimate of the smoothed functional
can be expressed as

ˇ̆
V

′
N(τ , β) =

1
M

M∑
i=1

V̆
′
N (τ − βηi) (26)

In (26) M points ηi are sampled with the pdf
h(η). Substituting M = 1 in (26) one obtains the
one-sample gradient estimator usually used in the
stochastic approximation algorithms (Styblinski
& Tang, 1990).

ˇ̆
V

′
N (τ , β) = V̆

′
N (τ − βη) (27)

In Styblinski & Tang. (1990), using V̆
′
N (τ −

βη) in (26), SAS is applied to the normalized
steepest descent method. Edmonson et al. (1998)
proposed a simplification that involves expressing
the gradient τ − βη as a Taylor series around the
operating point:

V̆
′
N (τ − βη) = V̆

′
N (τ ) − βV̆

′′
N (τ )η + · · · (28)

Additonally, V̆
′′
N (τ ) in the above equation is

approximated as an identity matrix and only the
first two terms of the Taylor series are kept such
that

V̆
′
N (τ − βη) ≈ V̆ ′

N (τ ) − βη (29)

Then V̆
′
N (τ−βη) is used to modify the least mean

square (LMS) algorithm.

In this study, we extend the idea in Edmonson
et al. (1998) to our SEPNLS method. Replacing
V̆

′
N (τ ) in (18) by V̆

′
N (τ − βη), we obtain the

following result.

τ̂
(j+1)
N = τ̂

(j)
N − µ(j)

[
R̆N

(
τ̂

(j)
N

)]−1 (
V̆

′
N

(
τ̂

(j)
N

)
− β(j)η

)
(30)

This is our GSEPNLS method which modifies the
SEPNLS method with an addition of a stochastic
perturbation term.

Remark 2: As suggested in Styblinski & Tang
(1990), β has to be chosen large at the start of the
iterations and is then decreased to approximately
zero as the global minimum is reached. And in
Edmonson et al. (1998), the sequence of β(j) is
chosen as a discrete exponentially decaying func-
tion of iteration number j. However, in both works
β are chosen by trial and errors. And we have not
found in the literature any reliable policy telling
us how to determine reliable and efficient values
of β. In this paper, however, based on empiri-
cal studies, we recommend the following choice:
β(j) = β0V̆N

(
τ̂

(j)
N

)
, where β0 is a sufficiently large

positive constant. It can be understood that if

V̆N

(
τ̂

(j)
N

)
is far from the global minimum, β(j) is

large, and if it becomes near the global minimum,
β(j) becomes small. Finally,it should be mentioned
here that the results are not sensitive to the con-
stant β0.

The algorithm of the GSEPNLS method can be
summarized as follows.

(1) Let j = 0. Set β0, the initial estimate τ̂ (0)
N

and the considerable upper bound of time
delays τ̄ .

(2) Set β(j) = β0V̆N

(
τ̂

(j)
N

)
.

(3) Perform the following.
(a) Compute

∆�̂
(j+1)
N = −�̆−1

N

(
�̂

(j)
N

)(
�̆

′
N

(
�̂

(j)
N

)
− β(j)	

)
(b) Compute

τ̂
(j+1)
N = τ̂

(j)
N + ∆τ̂ (j+1)

N

(c) Check if 0 ≤ τ̂
(j+1)
Ni ≤ τ i(i = 1, · · · , r).

If not, let ∆τ̂ (j+1)
N = 0.5∆τ̂ (j+1)

N and go
back to (b).

(d) Check if V̆N

(
τ̂

(j+1)
N

)
≤ V̆N

(
τ̂

(j)
N

)
. If

not, let ∆τ̂ (j+1)
N = 0.5∆τ̂ (j+1)

N and go
back to (b).

(4) Terminate the algorithm if the stopping con-
dition is satisfied. Otherwise, let j = j + 1
and go back to step 2.

Finally, by substituting τ̂N into (13), the linear
parameter vector θ can be estimated by the linear
LS method (13).

6. GSEPNIV METHOD

Although the GSEPNLS is able to converge to
the global minimum, the estimetes are acceptable
only in the case of low measurement noise. To
achieve consistent estimates in the case of high
measurement noise, we modify the GSEPNLS
method to the GSEPNIV method.

We first introduce the following IV vector by using
the input signals ūj(k) and sampled noise-free
output x(k):


T (k, � ) = [−�T
x̄ (k),�T

ū1
(k − τ̃1), · · · ,�T

ūr
(k − τ̃r)]

�T
x̄ (k) = [ξ1x̄(k), · · · , ξnx̄(k)]

(31)

where

ξix̄(k) =

(
T

2

)i

(1 + z−1)i(1 − z−1)n−i[
α(1 − z−1) +

T

2
(1 + z−1)

]n x̄(k)

(32)

and x̄(k) = (1 + z−1)x(k)/2.

Remark 3: In practice, however, the noise-free
output is never known. Therefore, a boot-strap
scheme is usually used to generate the instru-
mental variables (Young & Jakeman, 1979). The



estimated noise-free output ˆ̄x(k) is obtained by
discretizing the estimated system model by the
bilinear transformation.

By using the IV vector, we can estimate the
linear transfer function parameters by the linear
IV method as

�̂IV N (� ) = �−1
IV

(N, � )�IV (N, � )

�IV (N, � ) =
1

N − ks

N∑
k=ks+1


(k, � )�T (k, � )

�IV (N, � ) =
1

N − ks

N∑
k=ks+1


(k, � )ξ0ȳ(k)

(33)

In this case, the residual is given as

ε̆IV (k, � ) = ξ0ȳ(k) −�T (k, � )�−1
IV (N, � )�IV (N, � )

(34)

Then SEPNLS method (17) is modified to the
following SEPNIV method:

τ̂
(j+1)
IV N = τ̂

(j)
IV N − µ(j)

[
R̆IV N

(
τ̂

(j)
IV N

)]−1

V̆
′
IV N

(
τ̂

(j)
IV N

)
(35)

where

V̆
′
IV N (τ ) = − 1

N − ks

N∑
k=ks+1

ψIV (k, τ )ε̆IV (k, τ )

R̆IV N (τ ) =
1

N − ks

N∑
k=ks+1

ψIV (k, τ)ψT
m(k, τ )

(36)

ψm(k, τ ) = [ψm1(k, τ ), · · · , ψmr(k, τ )]T is a
slight modification of ψ(k, τ ) given in (20):

ψmj(k, τ) = ϕ
T
τj

(k, τ)R
−1
IV (N, τ)fIV (N, τ )

+ϕT (k, τ)R−1
IV (N, τ)fτj

(N, τ )

−ϕT (k, τ)R−1
IV (N, τ)Rτj

(N, τ)R−1
IV (N, τ )fIV (N, τ )

−ϕT
(k, τ)R

−1
IV (N, τ)R

T
τj

(N, τ)R
−1
IV (N, τ )fIV (N, τ )

(37)

and ψIV (k, τ ) = [ψIV 1(k, τ ), · · · , ψIV r(k, τ )]T is
the IV vector to make V̆ ′

IV N (τ ) and R̆IV N (τ )
unbiased:
ψIV j(k, τ) = ϕT

τj
(k, τ )R−1

IV (N, τ )fIV (N, τ)

+mT (k, τ )R−1
IV (N, τ)fτj

(N, τ)

−mT (k, τ )R−1
IV (N, τ)Rτj

(N, τ)R−1
IV (N, τ)fIV (N, τ )

−mT (k, τ )R−1
IV (N, τ)RT

τj
(N, τ)R−1

IV (N, τ)fIV (N, τ )

(38)

It can be shown through correlation analysis that
the solution by the SEPNIV method is is equiv-
alent to the noise-free solution by the SEPNLS
method, i.e., the estimate is consistent if the algo-
rithm converges to the global minimum. Detailed
analysis is omitted here due to the limit of the
paper length.

We should notice that the SEPNIV estimate does
not minimize the LS criterion. However if the

estimate is consistent, it should minimize the
mean squares of the output error:

VIV (θIV , τ IV ) =
1

N − ks

N∑
k=ks+1

(
ȳ(k) − ˆ̄x(k)

)2

(39)

The GSEPNLS method (30) is therefore modified
to the following GSEPNIV method:

τ̂
(j+1)
IV N = τ̂

(j)
IV N

−µ(j)
[
R̆IV N

(
τ̂

(j)
IV N

)]−1 (
V̆

′
IV N

(
τ̂

(j)
IV N

)
− β(j)η

)
(40)

The algorithm of the GSEPNIV method is sum-
marized as follows.

(1) Let j = 0. Set β0, the initial estimate θ̂
(0)

IV N

and τ̂ (0)
IV N , and the considerable upper bound

of time delays τ̄ . Generate the estimated

noise-free output by using θ̂
(0)

IV N and τ̂ (0)
IV N .

(2) Set β(j) = β0VIV

(
θ̂

(j)

IV N , τ̂
(j)
IV N

)
(3) Perform the following.

(a) Compute
∆�̂

(j+1)
IV N = −�̆−1

IV N

(
�̂

(j)
IV N

)(
�̆

′
IV N

(
�̂

(j)
IV N

)
− β(j)	

)
(b) Compute

τ̂
(j+1)
IV N = τ̂

(j)
IV N + ∆τ̂ (j+1)

IV N

(c) Check if 0 ≤ τ̂
(j+1)
IV Ni ≤ τ i(i = 1, · · · , r).

If not, let ∆τ̂ (j+1)
IV N = 0.5∆τ̂ (j+1)

IV N and go
back to (b).

(d) Compute
�̂

(j+1)

IV N = �−1
IV

(
N, �̂

(j+1)
IV N

)
�IV

(
N, �̂

(j+1)
IV N

)
.

(e) Check if the estimated system model
that generates the estimated noise-free

output is stable. If not, let θ̂
(j+1)

IV N =

θ̂
(j)

IV N .
(f) Generate the estimated noise-free output

by using θ̂
(j+1)

IV N and τ̂ (j+1)
IV N .

(g) Check if

VIV

(
θ̂

(j+1)

IV N , τ̂
(j+1)
IV N

)
≤ VIV

(
θ̂

(j)

IV N , τ̂
(j)
IV N

)
.

If not, let ∆τ̂ (j+1)
IV N = 0.5∆τ̂ (j+1)

IV N and go
back to (b).

(4) Terminate the algorithm if the stopping con-
dition is satisfied. Otherwise, let j = j + 1
and go back to step 2.

7. NUMERICAL RESULTS AND
CONCLUSIONS

Consider the following MISO continuous-time sys-
tem:

ẍ(t) + a1ẋ(t) + a2x(t) = b11u1(t − τ1) + b21u2(t − τ2)

a1 = 3.0, a2 = 4.0, b11 = 2.0, b21 = 1.0,

τ1 = 9.130, τ2 = 2.570

(41)



Each input signal is a filtered white signal. The
sampling period taken as T = 0.05, and α in
the low-pass pre-filter Q(p) is 0.4. β0 is chosen
as 105, as suggested in remark 2. The algorithms
are terminated after 200 iterations.

We have found the proposed global search algo-
rithms converge to the global minimum almostly
in all the cases of various combinations of the
initial estimates, input signals and measurement
noise. On the other hand, the conventional local
search algorithms failed in most cases.

For one fixed realization of η, the algorithms were
implemented for 20 realizations of the measure-
ment noise whose NSR (noise to signal ratio)
is 30% with a data length of 4000. The initial
estimates were set as τ̂ (0)

N = τ̂
(0)
IV N = [1, 1]T .

The results are shown in a Table 1, where A
and B denote respectively GSEPNLS and GSEP-
NIV methods. The table includes the mean and
standard deviation of the estimates. It can be
seen that the biases by the GSEPNLS method
are significant, whereas the GSEPNIV method
yields consistent estimates. An example of the
convergency behaviour of the estimates of the
time delays is shown in Fig. 1. And the locus of the
time delay estimates on the contour of the output
error criterion (39) is shown in Fig. 2.

Table 1. Estimates of GSEPNLS and
GSEPNIV methods.

â1(3.0) â2(4.0) b̂11(2.0) b̂21(1.0)

A
2.6078

±0.0414
3.5944

±0.0458
1.7678

±0.0269
0.8863

±0.0186

B
3.0042

±0.0625
4.0083

±0.0772
2.0065

±0.0417
1.0014

±0.0252

τ̂1(9.13) τ̂2(2.57)

A
9.1032

±0.0041
2.5463

±0.0064

B
9.1297

±0.0057
2.5689

±0.0072
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Fig. 1. Convergency behaviour of the time delay estimates
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