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Abstract: The LQG controllers significantly improve antenna tracking precision, but their 
tuning is a trial-and-error process. A control engineer has two tools to tune an LQG controller: 
the choice of coordinate system of the controller, and the selection of weights of the LQG 
performance index. The paper selects the coordinates of the open-loop model that simplify the 
shaping of the closed-loop performance, and analyzes the impact of the weights on the 
antenna closed-loop bandwidth, disturbance rejection properties, and antenna acceleration. 
Finally, it presents the LQG controller tuning procedure that rationally shapes the closed-loop 
performance. Copyright © 2005 IFAC 
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1. PROBLEM STATEMENT 

The pointing and tracking requirements are increasingly 
stringent for new and existing antennas and 
radiotelescopes. For example, the Ka-band (34 GHz) 
communication of the NASA Deep Space Network 
(DSN) antennas requires pointing accuracy of 1 mdeg 
(rms) (Gawronski et al. 1995; Gawronski 2001); the 
Large Millimeter Telescope built at Cerro La Negra 
(Mexico) by the University of Massachusetts and 
Instituto Nacional de Astrofisica, Optica y Electronica 
requires pointing of 0.3 mdeg, see (Gawronski and 
Souccar 2004). These requirements forced the 
implementation of LQG controllers. The control system 
of the 34-meter DSN antenna shown in Fig.1 includes 
the LQG algorithm. It meets the Ka-band requirements 
and is used to track the Cassini spacecraft on its journey 
to Saturn. This paper presents principles of the LQG 
controller design, allowing for shaping the tracking and 
disturbance rejection properties of antennas or 
radiotelescopes. 
 
The tuning of LQG controllers for the antenna tracking 
purposes is a tricky process. The controller shall address 
the antenna tracking requirements (such as minimization 

of the antenna servo error in wind gusts, and fast 
responding to commands) and antenna limitations (such 
as acceleration limits).  The LQG closed loop properties, 
defined through the LQG performance index, are shaped 
by LQG weights. The requirements are not directly 
reflected in the LQG weights. Thus, the relationship 
between LQG weights and antenna requirements needs 
to be established. This paper answers this question 
indirectly. It explains the properties of a simple (PI) 
controller and a simple (rigid) antenna, and next, by 
analogy, extends these properties to a real antenna with 
an LQG controller. This connection leads to the 
development of a controller tuning method that 
addresses the antenna tracking performance criteria.  
 
The antenna controller tuning procedure introduced in 
this paper is developed in three steps: the adjustment of 
the open-loop model (through selection of the coordinate 
system and auxiliary components), the analysis of a 
simple (rigid) antenna and simple (PI) controller (to 
derive basic properties of the closed-loop system), and 
finally, the extension of the properties of a simple 
system to the real (flexible) antenna and a complex 
(LQG) controller.  
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Fig.1. The 34-meter NASA/JPL Deep Space Network 
antenna, at Goldstone, California. 

 
 

2. OPEN-LOOP MODEL 
Antenna control system monitors azimuth and 
elevation axes. Since motions in both axes are 
uncoupled, in the following only a single axis is 
analyzed. The antenna control system is shown in 
Fig.2. It consists of the antenna open-loop system, 
position controller, and rate and acceleration limiters. 
The controller output u represents the commanded 
rate, and its derivative is the commanded 
acceleration, a. An antenna open-loop system 
consists of antenna structure, motors, gears, 
amplifiers, and the rate loop feedback. The antenna 
position (measured at the encoder) is the output of 
the open-loop system. The rate command is its input. 
is the state-space triple.  
 
The antenna open-loop model (A,B,C), is obtained 
from field tests and the system identification. It is 
transformed into modal coordinates, for details see 
(Gawronski 2004). The weak coupling of modal 
states allows adjusting each modal state 
independently that simplifies the controller tuning 
process. 
 
The modal model is transformed further, to obtain 
antenna position y as its first state; the new state is 

{ }T
p

T
px y x= , where fx  are the remaining 

(unchanged) states. The new state-space 
representation ( , , )p p pA B C  is obtained using the 

transformation p mx Px= , where 1 2

0
m mC C

P
I

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
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Note that , where . m my C x= 1 2[ ]m m mC C C=
 
Next, the model is augmented with an integrator, see 
(Johnson 1968; Athans 1971), to eliminate the steady 
state errors in a constant-rate tracking. The new state 
is  

T
ox = { }T

i py x  { }T
iy y x= f

p

.              (1) 

The state  satisfies the following equation iy

i py y C x= =  so that the new representation 
( , , )o o oA B C  is 
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Fig. 2. Antenna control system: G – open-loop system, K – 
controller, r – command, y – antenna position, u – 
limited rate command, uo – unlimited rate command, w 
– disturbance, a – acceleration    

  
The state ox  is the desired state vector of the antenna 
open-loop system. It consists of the integral of the 
position, the position, and the flexible deformations 
in modal coordinates. 
 
The open-loop system is designed such that it 
represents an integrator at low frequencies. The 
magnitude of the transfer function of a perfect 
integrator is shown in Fig.3, dashed line as a straight 
line sloping at –20 dB/dec. The magnitude of the 
transfer function of the 34-meter antenna is shown in 
Fig.3, solid line, as a straight line sloping at –20 
dB/dec for low frequencies (up to 1 Hz), and 
showing flexible deformations (resonances) at higher 
frequencies. 

Fig. 3. Magnitudes of the transfer function of the open-loop 
model of the 34-meter antenna (solid line), and a rigid 
antenna (dashed line). 

 
 

3. PI CONTROLLER AND  RIGID ANTENNA 
In the closed-loop system shown in Fig.2 K denotes 
the controller transfer function, and G is the antenna 
transfer function. A rigid antenna is a pure integrator, 
and the controller is assumed a proportional-and 
integral (PI) controller thus  

i
p

k
K k

s
= +       and      

1G
s

= ,              (3) 



where p  is the proportional gain, and  is the 
integral gain.  

k ik

 
3.1. Closed-loop transfer functions 
 
Consider the following transfer functions: Try (from 
command to encoder); Twy (from disturbance to 
encoder); Tra (from command to acceleration); and 
Twa (from disturbance to acceleration). From the 
block diagram in Fig.2 we obtain , 

, ra , wa , where 
/ryT GK H=

/wyT G H= /T sK H= T sGK H= − /
1H GK= + and introducing (3) to the latter 

equations we get  
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3.2. The proportional gain analysis 
 
The controller tuning starts with the selection of the 
proportional gain, thus we assume  in the 
above transfer functions, obtaining  
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The magnitudes of the above transfer function are 
shown in Fig.4. showing that the increase of the 
proportional gain:  
1. increases the bandwidth of the transfer function 

ry  (from the command to the antenna position), 
see Fig.4.a,  
T

2. improves the disturbance rejection properties of 
the antenna by lowering the magnitude of the 
disturbance rejection transfer function , see 
Fig.4.b,  

wyT

3. increases the impact of the command on the 
antenna acceleration (increases the magnitude 
and the bandwidth of the acceleration transfer 
function T ), see Fig.4.c,  ra

4. increases the impact of disturbances on the 
antenna acceleration (increases the magnitude 
and the bandwidth of the acceleration transfer 
function ), see Fig.4.d. waT

 
The first two transfer functions show the 
improvement of the antenna performance with the 
increase of the proportional gain. However the last 
two show a potential problem: antenna acceleration 
increases at high frequencies, both due to command 
and due to disturbances. The increased acceleration 
indicates that the antenna can hit the acceleration 
limit, and enter a nonlinear regime; consequently its 
performance will deteriorate, leading even to 
instability. Thus, the proportional gain increase is 
limited by the acceleration limits imposed at the 
antenna drives. 
 

3.3 The integral gain analysis 
 
First, we introduce two critical values: the critical 
integral gain, and the critical frequency. 
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Fig. 4. Magnitude of transfer functions of the proportional 

controller for kp=1 (solid line), kp=4 (dashed line), and 
kp=16 (dotted line):  (a) Try , (b) Twy, (c) Tra ,  and (d) 
Twa. 

 

Critical integral gain. Large integral gain causes 
oscillations of the closed-loop system. The poles of 
the closed-loop system are the roots of 2

p is k s k+ + : 

( )2
1,2 0.5 4p p is k k k= − ± − . The system is non-

oscillatory if poles are real, i.e., for ; 20.25i pk k≤

20.25ic pk = k                             (6) 

is the upper limit of the integral gain, called the 
critical integral gain. 
 
Critical frequency. For the critical integral gain the 
denominator of the transfer functions is: 

p
2( 0.5 )s k+ k. At frequency o p0.5ω = i  the 

slope of the transfer function drops by –40 dB/dec. 
This is the critical frequency of the closed loop 
system that determines the antenna bandwidth. In the 
following, the frequencies significantly smaller than 

o

k=

ω  are called low frequencies; frequencies 
significantly larger than  oω  are called high 
frequencies; and frequencies in the neighborhood of 

oω  are medium frequencies. 
 
The following analysis shows how the transfer 
functions depend on the integral gain, by considering 
low, medium, and high frequencies in Eqs.(4). Note 
first that for medium frequencies the variations of all 
four transfer functions are minimal (see Fig.5) since 
the integral gain is smaller than the critical integral 
gain. For low and high frequencies the transfer 
functions behave as follows: (1)  does not depend 
on i , since for low frequencies ryT  and for high 
frequencies ra pT k

ryT
k 1≅

s/≅ , see Fig.5a; (2) wyT  is inverse 
proportional to i  for low frequencies, wyTk / is k≅ ; 
and for high frequencies it does not depend on k , 

wy

i
1/T s≅ , see Fig.5b; (3) raT  does not depend on ik , 

since for low frequencies ra , and for high 
frequencies ra p

2T s≅
sT k≅ , see Fig.5c; (4) waT  does not 

depend on i , since for low frequencies waT sk ≅ − , 
and for high frequencies  see Fig.5d. wa pT ≅ −k
 
The above analysis showed that the integral gain 
impacts the disturbance rejection transfer function 

 only, at low frequencies.  wyT



3.4.  PI controller tuning procedure 
 
The PI  controller tuning procedure involves: 
1. Tuning the proportional gain. Increase the gain 

until antenna hits acceleration limits at typical 
commands and at expected disturbances.  

2. Tuning the integral gain. Increase the gain until 
oscillations or undershoot appear. It should be 
smaller than the critical integral gain. 

 
The proportional gain shapes the bandwidth of the 
transfer function ryT : it widens the bandwidth. The 
proportional gain limit is set by the antenna 
acceleration limits, since the increase of proportional 
gain increases antenna acceleration, see Fig.4c,d.  
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Fig. 5. Magnitude of transfer functions of the PI controller: 

kp=16, and ki=1 (solid line), kp=16, and ki=4 (dashed 
line), kp=16, and ki=16 (dotted line), and kp=16,: (a) Try, 
(b) Twy, (c) Tra ,  and (d) Twa. 

 
The integral gain improves the disturbance rejection 
properties. But there is a limit to the increase: the 
integral gain should be smaller than the critical 
integral gain, to prevent antenna oscillations. 
 
 

4. LQG CONTROLLER AND FLEXIBLE 
ANTENNA 

The closed-loop system with the LQG controller has 
the same structure as in Fig.2; the controller has the 
structure as in Fig.6.  
 
4.1. LQG controller description 

The controller gains are obtained by minimizing the 
performance index J,  

J2= , ( )0
( )T T

o o o oE x Qx u Ru dt
∞

+∫
where Q is a positive semidefinite weight matrix and 
R is a positive scalar. We assume R=1 which is 
equivalent to R≠1 with the scaled weight matrix Q/R. 
The minimum of J is obtained for  

ˆo cu K xo= − ,                        (7) 

with the gain c r c ,TK B S=  and c  is the solution of 
the controller algebraic Riccati equation 

S

 
0.T T

o c c o c o o  cA S + S A S B B S +Q =−  

We see that the controller gain c  depends solely on 
the weight matrix Q (

K
oA  and  are fixed). oB

 
Similarly to the antenna state xo, the controller gain is 
divided into the proportional gain pk , integral gain 

, and flexible mode gain ik fK , i.e.,  
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Fig. 6. LQG controller: pk  – proportional gain,  i  – 

integral gain, f

k
K  – flexible mode gain, e  – 

estimator gain, r – command, y – antenna position, e – 
servo error, i  – integral of the servo error, u

K

e o – rate 
command,  – estimated position, e   – estimation 
error, and 

ŷ ˆ
ˆ fx  – estimated flexible mode states. 

 
 

c i p fK k k K⎡ ⎤= ⎣ ⎦             (8) 

Introducing  (1) and (8) to (7) one obtains 

ˆo i i p fu k e k e K xf= − − − .            (9) 

The missing part of the controller is the estimated 
state ˆox . It is obtained from  

ˆ ˆ ˆ(o o o o o e o o ).x A x B u K y C x= + + −           (10) 

where e e o ,TK S C= and e  is the solution of the 
estimator algebraic Riccati equation  

S

 
0.T T

o e e o e o o eA S + S A S C C S +V =−               (11) 

For antenna controller tuning purposes we assume 
V Q=  to obtain the balanced gains of the controller 
and the estimator  (Gawronski 2004). 
  
 
4.2 LQG weights in modal coordinates  
 
The LQG weight matrix is selected as a diagonal 
matrix (due to independence of states in modal 
coordinates), Q= i p f , where i  is the 
integral weight, p  is the proportional weight, and 

f  is a vector of flexible mode weights. Just, it is 
convenient to present the LQG weights in the vector 
form as the LQG weight vector q  

( , , )diag q q q q
q

q

{ }T
i p fq q q q= T .             (12) 
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For the antenna model the modal states are weakly 
coupled. They are also almost independent from the 
antenna position and integral of the position. Thus 
the corresponding weights act independently on each 
flexible mode, and almost-independently on position, 
and on the integral of the position states. This adds to 
the flexibility to the controller tuning.  
 
4.3 Resemblance of LQG and PI controllers  
 
Notice that for the rigid antenna the increase of the 
proportional gain improves antenna bandwidth and 
the disturbance rejection properties. However, an 
increase of proportional gain, when applied to a 
flexible antenna, is drastically limited: even a 
moderate gain can excite structural vibrations and 
cause instability, (Gawronski et al. 1995). However, 
the LQG controller includes the flexible mode part, 
which is able to restrain antenna vibrations. In this 
way, the increased proportional gain does not excite 
vibrations: a flexible antenna behaves approximately 
as a rigid one. Therefore the controller tuning 
approach used for rigid antenna with PI controller 
can be also used for tuning the LQG controller of a 
flexible antenna. The limitations are formulated as 
follows: the flexible mode gains should not be 
excessive – they should be large enough to assure 
vibration suppression, but not larger. Such controller  
a low authority LQG controller, (Gawronski 2004). 
 
Consider the 34-meter antenna open-loop model with 
transfer function shown in Fig.3, solid line. At lower 
frequencies the transfer function is identical with the 
transfer function of an integrator, and at higher 
frequencies it shows flexible mode resonances. To 
this antenna we apply an LQG controller as follows. 
First, we select its weights of three LQG controllers, 
such that their integral gain is zero, and proportional 
gains are 1, 4 and 16, respectively. For these cases 
the plots of magnitudes of the transfer functions Try, 
Twy, Tra, and Twa are shown in Fig.7. Comparing Fig.7 
and Fig.4 we see similarities between the rigid 
antenna with PI controller and flexible antenna with 
LQG controller. The plots of Try show the expanding 
bandwidth with the increase of the proportional gain. 
The plots of Twy show the decreasing antenna 
response to disturbances with the increase of the 
proportional gain. The plots of Tra and Twa show 
increased acceleration response at high frequencies. 
Fig.7. Magnitude of transfer functions of the LQG 

controller for kp=1 and ki=0 (blue line), kp=4 and ki=0 
(green line),and kp=16 and ki=0 (red line): (a) Try, (b) 
Twy, (c) Tra ,  and (d) Twa. 

Next, we select the weights of the LQG controller to 
obtain a fixed proportional gain, p  and to 
obtain the integral gains 1, 4, and 16, respectively. 
Note from (6) that the critical integral gain is 64 in 
this case. The plots T

16

ry, Twy, Tra, and Twa for the above 
three cases are shown in Fig.8. Comparing Fig.8 and 
Fig.5 we see similarities between the rigid antenna 
with PI controller and flexible antenna with LQG 
controller. The integral gain impacts significantly the 
disturbance rejection properties (Twy) only, and there 
is no significant impact on the closed loop bandwidth 
(see Try plot) and on the system acceleration, see the 
plots of Tra and Twa. 
 
Finally, we analyze the impact of flexible mode 
weights on antenna dynamics. Figure 9 presents the 
magnitudes of the transfer functions Try, Twy, Tra, and 
Twa for fixed proportional and integral gains 
( p 9.5=  and i 6.3k = ) and for small flexible mode 
weights (blue lines) and for large flexible mode 
weights (green lines). The plots show that the 
excessive flexible mode weights reduce the closed 
loop bandwidth (Fig.9a), and deteriorate the 
disturbance rejection properties (Fig.9b). 
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Fig.8. Magnitude of transfer functions of the LQG 

controller for kp=16 and ki=1 (blue line), kp=16 and 
ki=4 (green line), and  kp=16 and ki=16 (red line): (a) 
Try, (b) Twy, (c) Tra ,  and (d) Twa. 
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Fig. 9. Magnitude of transfer functions of the LQG 

controller for kp=9.5 and ki=6.3:  flexible weights small 
(blue line), and large – overdamped modes (green 
line): (a) Try, (b) Twy, (c) Tra ,  and (d) Twa. 

 

 



4.4. Properties of the LQG weights 
 
The above comparison shows that the LQG weights 
have similar impact on a flexible antenna 
performance as PI gains on a rigid antenna 
performance. The following list summarizes the 
properties of the LQG weights:  
1. The increase of the flexible mode weights causes 

antenna vibration suppression. A single mode 
weight impacts only states corresponding to this 
particular mode (the flexible mode coordinates 
are weekly coupled); 

2. The increase of the proportional weight increases 
the closed-loop bandwidth and improves the 
disturbance rejection properties;  

3. The increase of the integral weight improves the 
disturbance rejection properties, but does not 
impact the bandwidth.  

 
4.5 Limits of the LQG weights 
 
The proportional, integral, and flexible mode gains 
have their limits:  
1. Large flexible mode weights lead to the 

overdamped dynamics, (reduced bandwidth, 
depreciated disturbance rejection properties).  

2. Large position weight causes excessive antenna 
acceleration that leads to non-linear dynamics and 
deterioration of the performance.  

3. Integral weight should not exceed the critical 
weight in order to prevent low frequency 
oscillations. 

 
4.6 LQG controller tuning procedure 
 
Based on the above analysis the following sequence 
of the LQG controller tuning is recommended:  
1. Tuning the flexible mode weights. Apply small 

weights of the integral of the position and 
position (which result in small PI gains), and also 
apply small flexible mode weights. Check the 
closed-loop transfer function for the appearance 
of flexible mode resonances. If they are 
excessive, increase the corresponding flexible 
mode weights.  

2. Tuning the proportional weight. Increase the 
position weight: the proportional gain increases 
accordingly. The increase of the position gain 
causes the expansion of the closed-loop 
bandwidth. Increase the weight till bandwidth 
reaches the antenna fundamental frequency.  

3. Tuning the integral weight. Increase the integral 
of the position weight, causing the increase of the 
integral gain. The weight should increase until 
oscillations appear. The integral gain should 
satisfy the condition (6).  

4. Correct the flexible mode weights. Check the 
flexile mode dynamics. If resonances resurface 
after tuning the proportional and integral parts, 
increase the corresponding flexible mode 
weights. 

 
The procedure described above lead to the 
development of the LQG controller tuning tool as a 
Matlab graphical user interface (GUI), (Maneri and 
Gawronski 2000).  
 
 

5. CONCLUSIONS 
 

The paper shows how to select the coordinates of the 
controller for simple tuning of the PI and LQG 

controllers. Also, it shows how the controller gains 
of the PI controller and the controller weights of the 
LQG controller impact the antenna closed-loop 
performance. Finally, it shows the limits of the LQG 
weights. These features allow to improve antenna 
performance in wind disturbances. 
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