
A HYPERBOLIC, EXTENDED JACOBIAN INVERSE
KINEMATICS ALGORITHM FOR MOBILE

MANIPULATORS
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Abstract: A contribution of this paper consists in deriving a repeatable, extended Jacobian
inverse kinematics algorithm for mobile manipulators. The endogenous configuration
space approach has been assumed as a guideline. An endogenous configuration of a
mobile manipulator includes controls of the platform and joint positions of the onboard
manipulator. After a suitable truncation of Fourier series representing platform controls a
band-limited version of this algorithm is obtained. By reference to the shape of the invari-
ant manifold in the band-limited situation the algorithm is called hyperbolic. Performance
of this algorithm is illustrated with computer simulations involving a kinematic car-type
mobile platform endowed with an RTR manipulator. Copyright c©2005 IFAC
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1. INTRODUCTION

In this paper by a mobile manipulator we shall un-
derstand a robotic system composed of a nonholo-
nomic mobile platform and a holonomic manipulator
fixed to the platform. The field of mobile manipulators
presents a challenge from the viewpoint of model-
ing, motion planning and control algorithms. On the
other hand, due to their enhanced mobility and ma-
nipulability properties mobile manipulators are indis-
pensable tools for space and service robotics. There
exists a rich literature devoted to mobile manipula-
tors, pioneered by an application in space robotics
(Papadopoulos and Dubowsky, 1991). A thorough re-
view of this literature up to 2002 has been made in
(Tchoń and Jakubiak, 2003), and for the sake of space
it will not be repeated here. This being so, we re-
strict only to mentioning papers that have appeared
recently. In (Bayle et al., 2003) manipulability mea-
sures for mobile manipulators are defined and applied
to the motion planning problem. The paper (Duleba

and Sasiadek, 2003) proposes a solution to the motion
planning problem for mobile manipulators by means
of the Newton algorithm with control energy opti-
mization. In (Galicki, 2003) an optimization theory
based inverse kinematics algorithm for mobile manip-
ulators has been set forth, capable of avoiding singu-
larities and obstacles in the taskspace. The publication
(Mazur, 2004) proposes an adaptive taskspace path
following algorithm accounting for the kinematics and
the dynamics of a mobile manipulator.

In (Tchoń and Muszyński, 2000; Tchoń and Jaku-
biak, 2003) we have developed a new approach to
mobile manipulators, referred to as the endogenous
configuration space approach. A fundamental concept
underlying this approach is the endogenous configura-
tion that consists of control functions of the platform
and joint positions of the aboard manipulator. In par-
ticular, the endogenous configuration space approach
provides a natural definition of repeatability for mo-
bile manipulators (Tchoń, 2002). In order to explain



this concept in some details, let us consider a Jacobian
inverse kinematics algorithm for mobile manipulators
(Tchoń et al., 2003; Tchoń and Jakubiak, 2003). Such
an algorithm has the form of a taskspace error driven
dynamic system, operating on the endogenous config-
uration space in such a way that to every desirable
point in the taskspace the algorithm assigns an en-
dogenous configuration in which the mobile manip-
ulator reaches this point. When processing a sequence
of inverse kinematic problems the algorithm uses the
solution of a given problem as an initial condition for
the next problem. Suppose that a certain problem re-
peats in the sequence several times. The algorithm that
each time returns the same solution of this problem,
irrespective of the initial conditions, is referred to as
repeatable. Repeatability may be described concisely
as the property that a closed path in the taskspace
generates a closed path in the endogenous configura-
tion space. A geometric interpretation of repeatability
is the following: outside singularities the kinematics
endow the endogenous configuration space with the
structure of a fiber bundle over the taskspace, such that
the inverse kinematic algorithm defines a connection
on this bundle. If the connection has trivial holonomy
group, the algorithm is repeatable. It has been shown
that an inverse kinematics algorithm for mobile ma-
nipulators is repeatable if its associated distribution
is involutive, so integrable (Tchoń, 2002). This means
that after choosing an initial condition, the algorithm
operates on a fixed integral manifold of the associ-
ated distribution. This being so, in order to design
a repeatable inverse kinematics algorithm for mobile
manipulators one needs to find the associated distri-
bution annihilated by an augmenting kinematics map
such that level sets of this map coincide with integral
manifolds of the distribution. Notice that exactly the
same method has been applied to stationary manipu-
lators resulting in the extended Jacobian inverse kine-
matics algorithm that has the property of repeatability
(Baillieul, 1985; Roberts and Maciejewski, 1992).

In this paper, using a characterization of repeatabil-
ity provided in (Tchoń, 2002), we define and exam-
ine a specific repeatable, extended Jacobian inverse
kinematics algorithm for mobile manipulators. With
reference to its invariant manifolds this algorithm is
called hyperbolic. Having approximated platform con-
trol functions by means of truncated Fourier series
we obtain a band-limited version of the hyperbolic
algorithm with invariant manifolds determined by a
hyperbolic relationship between the Fourier coeffi-
cients of platform controls and joint positions of the
aboard manipulator. Performance of the algorithm has
been illustrated with computer simulations involving
a kinematic car-type platform equipped with an RTR
manipulator. We have noticed that, although in the
process of disretization repeatability of the hyperbolic
algorithm may be lost, the algorithm remains conver-
gent in a satisfactory way.

The composition of this paper is the following. In
section 2 we briefly summarize the concept of Jaco-
bian extension, and introduce the hyperbolic extended
Jacobian inverse kinematics algorithm for mobile ma-
nipulators. Band-limited version of this algorithm is
given in section 3. Section 4 presents results of com-
puter simulations. The paper is concluded with sec-
tion 5.

2. BASIC CONCEPTS

We shall study mobile manipulators consisting of
a nonholonomic mobile platform and a holonomic
onboard manipulator. On assumption that the plat-
form motion obeys some velocity constraints (e.g. not
permitting longitudinal or lateral slip of platform’s
wheels), the kinematics of such a mobile manipulator
can be represented by means of a driftless control
system with outputs,







q̇ = G(q)u =
m

∑
i=1

gi(q)ui,

y = k(q,x),
(1)

where q = (q1, . . . ,qn) ∈ Rn is a vector of generalized
coordinates of the platform, x = (x1, . . . ,xp) ∈ Rp de-
notes the joint positions of the aboard manipulator,
and y = (y1, . . . ,yr)∈ Rr defines taskspace coordinates
of the end effector. In most cases m ≤ n and m ≤ r. In
accordance with the endogenous configuration space
approach we introduce the endogenous configuration
space X = L2

m[0,T ]× Rp of the mobile manipulator
comprising admissible controls u(·) of the platform
and joint positions x of the manipulator. X is a Hilbert
space with inner product

< (u1(·),x1),(u2(·),x2) >=

∫ T

0
uT

1 (t)u2(t)dt + xT
1 x2.

To every endogenous configuration (u(·),x) ∈ X there
correspond two trajectories: q(t) = ϕq0,t(u(·)) – a tra-
jectory of the platform, and an end effector trajectory
y(t) = k(q(t),x). We shall assume the existence of q(t)
for every t ∈ [0,T ]. Departing from the representation
(1) we define the instantaneous kinematics

Kq0,T : X → Rr

of the mobile manipulator as the input-output map of
system (1)

Kq0,T (u(·),x) = y(T ) = k(ϕq0,T (u(·)),x). (2)

The instantaneous kinematics determine reachable at
T end effector positions and orientations of the mobile
manipulator subject to the control (u(·),x), provided
that the platform starts from q0.

To proceed further we need to define the analytic
Jacobian

Jq0,T (u(·),x)(v(·),w) = DKq0,T (u(·),x)(v(·),w) =

C(T,x)
∫ T

0
Φ(T,s)B(s)v(s)ds+D(T,x)w, (3)



of the mobile manipulator as a derivative of the kine-
matics at the configuration (u(·),x). The Jacobian may
be identified with the input-output map of the varia-
tional system

ξ̇ = A(t)ξ+B(t)v, η = C(t,x)ξ+D(t,x)w, (4)

defined as the linear approximation (1) along a triple
(u(t),x,q(t)), initialized at ξ0 = 0, with structure ma-
trices

A(t) =
∂
∂q

(G(q(t))u(t)) , B(t) = G(q(t)),

C(t,x) =
∂k
∂q

(q(t),x), D(t,x) =
∂k
∂x

(q(t),x),

and transition matrix Φ(t,s) satisfying the evolution
equation ∂

∂t Φ(t,s) = A(t)Φ(t,s), Φ(s,s) = In.

In what follows we shall be confined to the case
of p = r. A repeatable inverse kinematics algorithm
should operate on an invariant submanifold of the
endogenous configuration space, and simultaneously
provide a right inverse of the analytic Jacobian. The
invariant manifolds will be introduced as level sets of
an augmenting kinematics map

Hq0,T : X −→ L2
m[0,T ]. (5)

A pair composed of the kinematics (2) and of the map
(5) is referred to as the extended kinematics

(Hq0,T ,Kq0,T ) : X → X (6)

of the mobile manipulator. We shall examine the fol-
lowing simple augmenting map

Hq0,T (u(·),x)(t) = (x1u1(t),x2u2(t), . . . ,xmum(t)).
(7)

It follows that on the level sets of this map the ith
component of the platform control is proportional to
a fixed function from L2[0,T ], with proportionality
coefficient equal to xi. Having substituted the map (7)
into the extended kinematics (6), we get the following
extended Jacobian

J̄q0,T (u(·),x)(v(·),w) = (DHq0,T (u(·),x)(v(·),w),

C(T,x)
∫ T

0
Φ(T,s)B(s)v(s)ds+D(T,x)w), (8)

where

DHq0,T (u(·),x)(v(·),w)(t) =

(w1u1(t)+ x1v1(t), . . . ,wmum(t)+ xmvm(t)) . (9)

In a region of the endogenous configuration space
where the extended Jacobian is invertible we propose
the following definition

JE#
q0,T (u(·),x)η = J̄−1

q0,T (u(·),x)(0(·),η), (10)

of a right inverse of the analytic Jacobian, where η ∈
Rr. Now letting

(JE#
q0,T (u(·),x)η)(t) =

(

v(t)
w

)

we deduce that

J̄q0,T (u(·),x)
(

v(t)
w

)

=

(

0
η

)

.

By (8), (9) this is equivalent to

wiui(t)+ xivi(t) = 0, for i = 1, . . . ,m, (11)

and

C(T,x)
∫ T

0
Φ(T,s)B(s)v(s)ds+D(T,x)w = η. (12)

This being so, from (11) we compute

v(t) = −diag{
ui(t)

xi
}mw̄m,

where vector w̄m = (w1, . . . ,wm)T includes the first m
components of w, and diag{ai}m = diag{a1, . . . ,am}.
After a substitution of v(t) into (12) we arrive at

[−C(T,x)
∫ T

0
Φ(T,s)B(s)diag{

ui(s)
xi

}mds+D(T,x)m,

D(T,x)r−m]w = Eq0,T (u(·),x)w = η.

Hereabove subscripts m, r −m refer, respectively, to
the first m and the last r − m columns of D(T,x).
Finally, assuming invertibility of Eq0,T (u(·),x), we
compute the extended Jacobian inverse inverse

(JE#
q0,T (u(·),x)η)(t) =

(

v(t)
w

)

=









−diag{
ui(t)

xi
}m 0

Im 0
0 Ir−m









E−1
q0,T (u(·),x)η. (13)

It turns out that the inverse (13) has the following
properties

DHq0,T (u(·),x)JE#
q0,T (u(·),x)η = 0(·), and

Jq0,T (u(·),x)JE#
iq0,T (u(·),x)η = η (14)

of which the first guarantees repeatability, while the
second provides a Jacobian right inverse.

Given a desirable point yd ∈ Rr in the taskspace, the
inverse (13) defines an associated dynamic system

d
dθ

(

uθ(t)
x(θ)

)

= −γ
(

JE#
q0,T (uθ(·),x(θ))e(θ)

)

(t), (15)

where γ > 0, and

e(θ) = Kq0,T (uθ(·),x(θ))− yd

stands for the taskspace error. We assume that the
system (15) is complete, i.e. uθ(·) and x(θ) exist for
every θ ∈ R. Having differentiated the error along a
trajectory of (15) and accomplished suitable substitu-
tions we get

d
dθ

e(θ) = Jq0,T (uθ(·),x(θ))
d

dθ

(

uθ(·)
x(θ)

)

=

−γJq0,T (uθ(·),x(θ))JE#
q0,T (uθ(·),x(θ))e(θ)=−γe(θ).

The error vanishes exponentially, what means that the
dynamic system (15) indeed defines an inverse kine-
matics algorithm. We shall call this algorithm hyper-
bolic. A solution of the inverse kinematic problem is
obtained as the limit

(

ud(t)
xd

)

= lim
θ→+∞

(

uθ(t)
x(θ)

)

.



Observe that due to the first property of (14), when
processing a sequence of inverse kinematic problems,
all trajectories of (15) lie within an invariant manifold

V = {(u(·),x) ∈ X |Hq0,T (u(·),x) = Hq0,T (u0(·),x0)},

determined by the initial condition. These invariant
manifolds coincide with integral manifolds of the dis-
tribution associated with the hyperbolic inverse kine-
matics algorithm.

3. BAND-LIMITED EXTENDED JACOBIAN
ALGORITHM

For computational reasons we shall use a finite-
dimensional (Ritz) approximation of platform controls
in the form of truncated trigonometric series,

ui(t) = λi
0 +

si

∑
k=1

λi
2k−1 sinkωt +λi

2k coskωt,

for i = 1,2, . . . ,m, ω = 2π/T. This will be written con-
cisely as u(t) = P(t)λ, where λ = (λ1,λ2, . . . ,λm) ∈
Rs, s = m + 2∑m

i=1 si, and P(t) is a block diagonal
matrix

P(t) = blocdiag{Ps1(t),Ps2(t), . . . ,Psm(t)},

whose ith block entry

Psi(t) =
[

1 sinωt cosωt . . . sinsiωt cossiωt
]

.

Because employing the truncated series automatically
limits the bandwidth of control signals, we shall speak
of band-limited controls. In the band-limited case the
endogenous configuration gets finitely parameterized
by (λ,x) ∈ Rs+p. The band-limited kinematics (2) will
be denoted by K̃q0,T (λ,x). The band-limited analytic
Jacobian becomes an r× (s+ p) matrix

J̃q0,T (λ,x) =

[

C(T,x)
∫ T

0
Φ(T,s)B(s)P(s)ds, D(T,x)

]

.

The band-limited augmenting map (7) takes the form

H̃q0,T (λ,x) = (x1λ1
0, . . . ,x1λ1

s1
, . . . ,xmλm

0 , . . . ,xmλm
sm).

Now, letting uθ(t) = P(t)λ(θ) and x = x(θ), we obtain
the following band-limited extended Jacobian hyper-
bolic inverse kinematics algorithm

d
dθ

(

λ(θ)
x(θ)

)

=

−γ









−diag{
λi(θ)

xi(θ)
}m 0

Im 0
0 Ir−m









Ẽ−1
q0,T (λ(θ),x(θ))ẽ(θ),

(16)

where ẽ(θ) = K̃q0,T (λ(θ),x(θ)) − yd is the band-
limited taskspace error, and

Ẽq0,T (λ,x) = [−C(T,x)
∫ T

0
Φ(T,s)B(s)P(s)ds

diag{
λi

xi
}m +Dm(T,x),Dr−m(T,x)].

It is easily seen that the first property of (14) results in
the existence of hyperbolic invariant manifolds with
respect to the dynamics of (16), defined as

xiλi = ci = xi(0)λi(0)

for some constant vectors ci ∈ R2si+1, i = 1,2, . . . ,m.
This justifies the adjective “hyperbolic” in our inverse
kinematics algorithm. The invariant manifolds deter-
mine a relationship between the motion of the plat-
form and of the onboard manipulator; thus by a proper
choice of the invariant manifolds we may prescribe the
motion coordination of a mobile manipulator during
the accomplishment of its task. Furthermore, restricted
to an invariant manifold, the hyperbolic inverse kine-
matics algorithm simplifies to the following form

dx(θ)

dθ
= −γẼ−1

q0,T (λ(θ),x(θ))ẽ(θ)

λi(θ) =
ci

xi(θ)
, i = 1, . . . ,m.

(17)

The system (17) is well defined provided that xi(θ) 6=
0. It consists of a differential equation and an algebraic
equation, what is computationally advantageous.

4. SIMULATIONS

In this section the band-limited hyperbolic inverse
kinematics algorithm (16) will be applied to a mobile
manipulator composed of a kinematic car-type mobile
platform and an RTR aboard manipulator, portrayed in
figure 1. The coordinate vector q = (q1,q2,q3,q4) ∈

x1

x2

x3

(q  ,q  )

q

q

4

1 2

3

l2

l3 l

Fig. 1. RTR manipulator atop of kinematic car

R4 is comprised of positions and orientations of the
platform, and of the heading angle of the front wheels.
The coordinate vector x = (x1,x2,x3) ∈ R3 includes
manipulator joint positions. Cartesian positions of the
end effector y = (y1,y2,y3) ∈ R3 serve as taskspace
coordinates. The length of the car is taken as a measure
unit (l = 1). The link lengths of the onboard manipu-
lator are equal to l2 = 0.5, l3 = 1. The resulting control
system representation (1) of kinematics, excluding lat-
eral slip of platform wheels, takes the following form



{

q̇1 = u1 cosq3 cosq4, q̇2 = u1 sinq3 cosq4,
q̇3 = u1 sinq4, q̇4 = u2,

y =





y1
y2
y3



 =





q1 +(l2 + l3 cosx3)cos(q3 + x1)
q2 +(l2 + l3 cosx3)sin(q3 + x1)

x2 + l3 sinx3



 .

(18)
In simulations we set T = 1, and use very simple
platform controls, of the form

ui(t) = λi
0 +λi

1 sin2πt +λi
2 cos2πt, i = 1,2.

It may be easily checked that, after replacing the
continuous version (16) of the hyperbolic algorithm
by a discrete one, the algorithm’s dynamics may no
longer stay within the invariant manifold. For this
reason, in order to define the discrete form of the
hyperbolic algorithm we need to use instead of (17)
the general formula (16). The result is the following

xθ+1 = xθ − γẼ−1
q0,T (λθ,xθ)ẽθ,

λ1
θ+1 = λ1

θ

(

2−
x1θ+1

x1θ

)

,

λ2
θ+1 = λ2

θ

(

2−
x2θ+1

x2θ

)

.

(19)

For illustration of the algorithm’s performance we
have solved an exemplary inverse kinematics prob-
lem of reaching the taskspace point yd = (0,0,1)
from two initial platform postures q0 = (−9,0,0,0),
q0 = (−9,3,0,0), with fixed initial configuration x0 =
(π/2,0.5,π/2) of the onboard manipulator. The plat-
form control functions contain either constant terms
(s1 = s2 = 0) or constant terms plus first order har-
monics (s1 = s2 = 1). In the former case λ0 =
(1,−0.1), in the latter the initial amplitudes of har-
monics are set to λ0 = (1,1,1,−0.1,−0.1,−0.1). Fig-
ures 2,3 show results of computer simulations.

5. CONCLUSION

Using the endogenous configuration space approach
we have derived a hyperbolic extended Jacobian, re-
peatable inverse kinematics algorithm for mobile ma-
nipulators. By means of a finite-dimensional approx-
imation of platform controls a band-limited version
of this algorithm has been obtained. The continuous
band-limited algorithm operates on invariant man-
ifolds in the configuration space, whose existence
makes the algorithm repeatable. Computer simula-
tions accomplished for a discrete formulation of the
hyperbolic algorithm show that its convergence and
performance remain satisfactory. However, as we have
already noticed, the discrete hyperbolic algorithm’s
dynamics abandon the invariant manifold, rendering
the algorithm unrepeatable. In order to restore repeata-
bility, the result of each iteration of the algorithm
should be projected back onto the invariant manifold
determined by the initial condition. It turns out that
in order to endow the hyperbolic algorithm with the
projection it suffices to solve a 4th order polynomial
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Fig. 2. Solution to the inverse kinematics problem. Ini-
tial data: q0 = (−9,0,0,0), x0 = (π/2,0.5,π/2),
λ0 = (1,−0.1). Convergence: number of itera-
tions 50, final taskspace error 9.18774e−11.

equation in joint positions of the onboard manipulator,
which can be done analytically. On the other hand,
convergence of the algorithm with projection needs
further investigations.

It should be observed that the hyperbolic inverse kine-
matics algorithm is well defined provided that posi-
tions of certain joints of the aboard manipulator stay
away from 0. As a matter of fact, this disadvantage
can be removed easily by replacing xi in (7) by a term
like x2

i +ε for a positive number ε. Obviously, the new
algorithm will no longer be hyperbolic.

A feature of extended Jacobian inverse kinematics al-
gorithms is the existence of invariant manifolds in the
endogenous configuration space of a mobile manip-
ulator. We believe that these invariant manifolds will
play a significant role in providing a proper motion
coordination between the platform and the onboard



-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

-9 -8 -7 -6 -5 -4 -3 -2 -1  0  1
q1,y1

q2,y2

q
y

-10
-8
-6
-4
-2
 0
 2
 4

 0  0.2  0.4  0.6  0.8  1
t

q1,q2,q3,q4
q1
q2
q3
q4

-5
 0
 5

 10
 15
 20
 25

 0  0.2  0.4  0.6  0.8  1
t

u1,u2

u1
u2

 0
 0.5

 1
 1.5

 2
 2.5

 0  0.2  0.4  0.6  0.8  1
t

x1,x2,x3

x1
x2
x3

-10
-8
-6
-4
-2
 0
 2
 4

 0  0.2  0.4  0.6  0.8  1
t

y1,y2,y3

y1
y2
y3

Fig. 3. Solution to the inverse kinematics problem. Ini-
tial data: q0 = (−9,3,0,0), x0 = (π/2,0.5,π/2),
λ0 = (1,1,1,−0.1,−0.1,−0.1). Convergence:
number of iterations 500, final taskspace error
1.46634e−10.

manipulator. This question as well as the question of
restoring repeatability by endowing the algorithm with
a projection will be a subject of our future research.
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