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Abstract: This paper presents a nonlinear control scheme for deflection control of a
flexible beam using Shape Memory Alloy (SMA) actuators. These actuators posses
interesting properties in terms of force generation capacity, possibility of miniaturization,
and power consumption. However, their use in precision applications is hampered
by undesirable characteristics such as nonlinearities, hysteresis, extreme temperature
dependencies, and slow response. By taking into account thenonlinear and thermal
characteristics, a control scheme based on partial feedback linearization is developed in
order to regulate the forces exerted by a differential SMA actuator pair attached to a
flexible beam. A Lyapunov stability analysis is furnished and guidelines are provided for
selecting controller gain parameters. Furthermore, performance of the developed control
scheme is tested experimentally on a laboratory testbed.Copyright c©2005 IFAC.
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1. INTRODUCTION

Smart material systems offer great possibilities in
terms of providing novel and economical solutions
to engineering problems. Smart materials such as
Piezo-electric Transducers (PZT), Shape Memory
Alloys (SMA), Magneto- and Electro-Rheological
Fluids (MRF and ERF), Magnetostrictive materials,
and fiber-optic sensors have been used in such di-
verse areas as automotive vehicles, robots, orthodon-
tic treatment, biotechnology, civil engineering struc-
tures, space structures, sports equipment, etc. (see
e.g., (Janocha, 1999), (Otsuka and Wayman, 1998),
(Srinivasan and McFarland, 2001)). SMA actuators
have also been used for vibration control of flexible
beams, see e.g., (Choi and Cheong, 1996). However,
these works have not taken into account the nonlinear
effects of SMA actuators and the effect of tempera-
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ture on performance of the vibration control scheme.
Noting that the force generated by an SMA actuator
is highly nonlinear, the control objective is to regulate
the magnitude of force exerted by the SMA actuator.
The desired force corresponds to the desired position
of the beam.

2. SYSTEM MODELING AND CONTROL

A simplified model of a flexible beam actuated by a
differential two-string system is shown in Figure 1.
Taking into account the non-linearity and temperature
dependence of the SMA string, the dynamics of the
system are given by

Mδ̈ + Kδ = bn(ε1, ε2, T1, T2) (1)

Ṫ1 + β(T1 − Ta) = αu1 (2)

Ṫ2 + β(T2 − Ta) = αu2 (3)

whereδ is the N × 1 vector of flexible modes,M
and K are theN × N mass and stiffness matrices
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Fig. 1. Flexible beam driven by two SMA actuators.

of the flexible beam, respectively, obtained using the
Lagrangian formulation (Meirovitch, 1975),b is the
input-effect vector,n(ε, T1, T2) is the nonlinear force
generated by the SMA string, which depends on strain
and temperature (Liang and Rogers, 1992). Moreover,
ε1, ε2 are the strains induced in the SMA strings,T1

is the temperature of SMA 1 (the lower wire),T2

is the temperature of the SMA 2 (the upper wire),
Ta is the ambient temperature, andα, β are positive
constants. The inputsu1 and u2 correspond to the
heat generated in the strings and are nonzero whenever
the corresponding SMA is actuated. Otherwise, these
inputs are zero.

Equations (2) and (3) are obtained from the heat trans-
fer dynamics of a single wire expressed as (Madhill
and Wang, 1998)

ρcV
dT

dt
= Ri2(t) − hA(T − Ta) (4)

whereρ (kg/m3) is the mass density of string mate-
rial, c (J/(kg◦C)) is the specific heat,V (m3) is the
volume of string,i (A) is the electric current,R (Ω) is
the string resistance,h (W/(m2◦C)) is the convection
heat transfer coefficient,A (m2) is the surface area of
the string, andTa is the ambient temperature. Note
that the inputsu1 andu2 in (2) and (3) can only take
positive values or zero corresponding to the current
inputs applied to the two strings in Figure 1. Also, note
from (4) that the values ofα andβ in (2) and (3) are
dependent on geometric and physical properties of the
SMA strings.

2.1 Kinematic Relationships

The input effect vectorb in (1) depends on the place
where the SMA strings are attached. In order to obtain
this vector refer to Figure 1, which is comprised of a
cantilevered flexible beam attached to SMA strings.
Let fs1

be the force exerted by SMA 1, which is
placed atxa along the link. We assume that this force
is measurable, for example by using a force sensor
mounted on the rigid base, where the other end of the
string is attached. Neglecting curvature of the beam,
the tangential and normal components offs1

, denoted
by fs1T andfs1N , are obtained as

fs1T = fs1
cos(γ1), fs1N = fs1

sin(γ1). (5)

The anglesγ1 andγ2 can be obtained from

γ1 = tan−1

(

d − ya

xa

)

+ θ

γ2 = tan−1

(

d + ya

xa

)

− θ (6)

with ya given by

ya =

N
∑

i=1

φi(xa)δi (7)

whereφi(xa) is thei-th mode shape function. Using
the method of virtual work and Lagrangian formula-
tion (Meirovitch, 1975), one can obtain the input effect
vectorb given by

bi = sin(γ)φi(xa) (8)

Assuming thatθ ≈ ya/xa is small enough andd ≫ ya

we have

bi =
d

√

d2 + x2
a

φi(xa), i = 1, 2, · · · , N · (9)

The ε term in (1) is a function of the modal vectorδ
as described next. Referring to Figure 1, the lengthl1
can be obtained from the trigonometric relationship

l21 = d2 + x2
a − 2dxacos(π/2 − θ). (10)

Now definingl10 =
√

d2 + x2
a, wherel10 is the value

of l1, the strainε1 is given by

ε1 =

√

l210 − 2dya − l10
l10

= (1 − 2
d

l210
ya)1/2 − 1· (11)

Noting that lengths of the two strings are equal when
there is no deflection, i.e.,l20 = l10, ε2 can be
obtained in a similar way as follows

ε2 =

√

l210 + 2dya − l10
l10

= (1 + 2
d

l210
ya)1/2 − 1· (12)

Expanding the square root function in (11) and ne-
glecting higher order terms, the strain relationships for
the two strings can be obtained as

ε1 =−ε2 = −
d

l210
ya

=−
d

l210

N
∑

i=1

φi(xa)δi := ε (13)

whereε is the strain term given in (1). Equation (13)
may also be written in the following form



ε = −Φaδ (14)

where

Φa =
d

l210
[φ1(xa) φ2(xa) · · · φN (xa)]. (15)

Considering the right hand side of (1), the term
n(ε1, ε2, T1, T2) is the difference between two exter-
nal forces acting on the flexible link by the SMA
strings. Referring to (13), and changing the depen-
dency ofn(·) to ε we have

n(ε, T1, T2) = A(σ(−ε, T1) − σ(ε, T2)) (16)

whereA is the cross sectional area of the SMA string
and theσ(·) terms represent stresses induced by the
two SMA strings. The appearance ofε in (16) and its
dependence onδ as given by (13) affects the magni-
tudes of flexural modes given by (1). In this regard,
the open-loop flexural modes of the system are not the
same as the eigenvalues of the flexible beam given by
eig(M−1K). To illustrate this, a Taylor series expan-
sion of (16) aroundδ = 0 yields

n(ε, T1, T2) = A((σ(0, T1) − σ(0, T2))

+▽δ(σ(−ε, T1)

− σ(ε, T2))|δ=0 + · · · ) (17)

where▽δ denotes the gradient operator with respect
to δ. Neglecting higher order terms, equation (1) can
be approximated as

Mδ̈ + Keδ = Ab(σ(0, T1) − σ(0, T2)) (18)

whereKe is the equivalent stiffness matrix given by

Ke = K − Ab ▽δ (σ(Φaδ, T1)

− σ(−Φaδ, T2))|δ=0) (19)

The above relationship indicates that the open-loop vi-
bration modes of the flexible beam are temperature de-
pendent and are given by the eigenvalues ofM−1Ke,
rather than those ofM−1K.

2.2 Development of the Control Scheme

The force generated by an SMA actuator is a nonlinear
function of the string temperature and strain. Besides,
the actuator nonlinearity is not well known and varies
with the operating point (Liang and Rogers, 1992). In
order to deal with the nonlinear and uncertain char-
acteristics of SMA actuators, the control strategy in
this paper is targeted towards regulating the actuation
force to a desired value that corresponds to the desired
position of the flexible beam. Towards this end, let us
consider the system dynamics given by (1)–(3) and
define the output as

yo = Ψδ (20)

whereΨ is a constant matrix that relates modal vari-
ables to the output of interestyo. The numerical value
of Ψ depends on the appropriate modal shape func-
tions determined by geometric boundary conditions
of the partial differential equation describing the be-
havior of the beam–clamped-free for the beam in this
study (see e.g., (Meirovitch, 1975)). The output under
control can be the displacement of the tip position of
the beam or a location close to the tip. Taking the time
derivative ofyo twice and using (1) we have

ÿo = ΨM−1(bno(ε, T1, T2) − Kδ) (21)

whereno(ε, T1, T2) is the desiredn(ε, T1, T2) corre-
sponding toyo. Note thatn(·) can be measured by
measuring the tensional forces acting on the SMA
strings. Let us further takeno(·) according to

no(ε, T1, T2) = (ΨM−1b)−1(v + ΨM−1Kδ)(22)

wherev is a new control input. Substituting the above
equation in (21) yields

ÿo = v (23)

Denoting the reference position byyr and the error by
e = yr − yo, let us choosev as

v = −Kdẏo + Kpe (24)

whereKd and Kp are feedback gains. It is also as-
sumed thaṫyo is known by measurement or estimation,
e.g., by numerical differentiation of modal variables
or using a state observer. The resulting closed-loop
system will then be given by

ë + Kdė + Kpe = 0· (25)

Now substituting (24) in (22) yields

no(ε, T1, T2) =
1

ΨM−1b
(Kpe +

+ Kdė + ΨM−1Kδ)· (26)

A main goal of the controller is to maken(·) approach
no(·). Towards this end, let us define the output to be
controlled as

y = n(ε, T1, T2) − no(ε, T1, T2)· (27)

Following the (Hirschorn, 1979), (Byrnes and Isidori,
1985), the output variable is differentiated once for the
input to appear in the input-output dynamics. Thus,
starting from

ẏ =
∂n

∂ε
ε̇ +

∂n

∂T1

Ṫ1 +
∂n

∂T2

Ṫ2 − ṅo (28)

and utilizing (14), (2), (3), (22), (24), and (26),ẏ can
be written after some algebraic manipulations, in the
following form



ẏ = h1u + h2 + h3 (29)

whereu andh1 are defined as follows

u =

{

u1 u1 ≥ 0, u2 = 0
−u2 u1 = 0, u2 ≥ 0

h1 =











α
∂n

∂T1

u ≥ 0

α
∂n

∂T2

u < 0
(30)

andh2, h3 are given by

h2 = Kdn(ε, T1, T2) −
KdΨM−1K

ΨM−1b
δ

+
KpΨ − ΨM−1K

ΨM−1b
δ̇

h3 =−β
∂n

∂T1

(T1 − Ta) − β
∂n

∂T2

(T2 − Ta)

−
∂n

∂ε
Φaδ̇ (31)

with Φa defined as

Φa =
d

l10
[φ1(xa) φ2(xa) · · ·φn(xa)]. (32)

Referring to (30) and (31),h1 is of known sign and
approximate value,h2 is completely known, and the
value ofh3 is not available, since it is assumed that
T1 andT2 are not measured. Let us choose the control
law as

u = ĥ−1
1 (−kyy − h2) (33)

whereĥ1 is an estimate ofh1 andky is a feedback gain
whose approximate value will be determined later in
this paper based on a Lyapunov stability analysis.

The above control scheme acts on part of the system
dynamics that is related to the input-output behavior.
The other part of the dynamics, often referred to
as internal dynamics (Slotine and Li, 1991), can be
obtained by solving forn(·) in (27), i.e.,

n(ε, T1, T2) = y +
1

ΨM−1b
(Kpe + Kdė

= ΨM−1Kδ) (34)

and substituting it in (1), which results in

δ̈ =−M−1((I −
bΨM−1

ΨM−1b
)K + Kp

bΨ

ΨM−1b
)δ

−Kd
M−1bΨ

ΨM−1b
δ̇ + M−1b(y + Kp

yr

ΨM−1b
)·(35)

It can be concluded that if the flexure dynamics given
by (35) are controllable then they can be stabilized by
a proper choice of feedback gainsKp, Kd. It should
also be noted that the output location vectorΨ, and the
input vectorb are at our disposal and can be chosen
to satisfy controllability properties. This is usually
the case as can be verified for a model with a single

mode (scalarδ), which is the most important mode to
control.

Now let us write (35) in the form

∆̇ = A∆∆ + b∆(y +
Kpyr

ΨM−1b
) (36)

where

A∆ =





0 I

A21 −Kd
M−1bΨ

ΨM−1b





∆T = [δT δ̇T ], b∆ =

[

0
M−1b

]

(37)

with

A21 =−M−1((I −
bΨM−1

ΨM−1b
)K

+ Kp
bΨ

ΨM−1b
)· (38)

It is assumed thatA∆ can be made Hurwitz by a
proper choice ofKp, Kd, Ψ, andb. Thus, the equi-
librium value of∆, i.e., wheny and∆̇ are set to zero,
is given by

∆̄ = −A−1
∆

b∆

Kpyr

ΨM−1b
· (39)

Then defining∆̃ = ∆− ∆̄ and rewriting (36) in terms
of ∆̃ yields

˙̃∆ = A∆∆̃ + b∆y (40)

Now let us consider the closed loop system dynamics
described by (29) and (40) and choose the Lyapunov
function candidate

V =
1

2
y2 + ǫ2∆∆̃T P∆∆̃ (41)

whereǫ2∆ is a nonzero constant andP∆ is a positive-
definite matrix. A proof of the closed-loop system sta-
bility can be established based on the above Lyapunov
function as described in section 2.3. The result of this
analysis can be used to provide qualitative guidelines
for choosing control parametersKp, Kd, andky as
described later.

2.3 Stability Analysis

SinceA∆ in (37) is Hurwitz, for any positive-definite
matrix Q∆ there exists a positive-definite matrixP∆

satisfying the following Lyapunov equation

AT
∆P∆ + P∆A∆ = −Q∆· (42)

Considering the dynamics of the system given by (29)
and (40) and the Lyapunov function (41), we have



V̇ =−kyh1ĥ
−1
1 y2 − ǫ∆∆̃T Q∆∆̃ + y((1 − h1ĥ

−1
1 )h2

+ h3) + 2ǫ∆ybT
∆P∆∆̃· (43)

Furthermore, utilizing (26), (31) can be written in the
form

h2 = Kdy + c1yr + γT
2 ∆̃

h3 = γ3 + γT
4

˙̃∆ (44)

where

γT
2 =

[

−
KdKpΨ

ΨM−1b

−K2
dΨ + KpΨ − ΨM−1K

ΨM−1b

]

γ3 =−β(
∂n

∂T1

(T1 − Ta) +
∂n

∂T2

(T2 − Ta))

γT
4 =

[

0 0 · · · 0 −
∂n

∂ε
Φa

]

1×2n

c1 =
KpKd − γT

2 A−1
∆

b∆Kp

ΨM−1b
· (45)

Considering an arbitrary bounded regionΩ ⊂ R2n+2

around the origin of the state space of(y, ∆̃, T1 −
Ta, T2 −Ta) the following inequalities can be written

‖γ2∆̃‖ ≤ c2‖∆̃‖, |h3| ≤ c3 + c4‖∆̃‖ (46)

where‖ · ‖ denotes the2-norm,c2 is the norm ofγ2,
andc3, c4 are upper bounds ofγ3 andγ4, respectively.

Utilizing the above inequalities, and defining the fol-
lowing constants

c5 = |1 − h1ĥ1|, c6 = 2‖bT
∆P∆‖, c7 = h1ĥ

−1
1 (47)

V̇ can be further written in the form

V̇ ≤ −ηT Λη + 2αT η (48)

where

η =

[

|y|

‖∆̃‖

]

Λ =







kyc7 − c5Kd
1

2
(c2c5 + c4 + ǫ∆c6)

1

2
(c2c5 + c4 + ǫ∆c6) λmin(Q∆)







αT =
1

2
[c3 + c1c5yr 0]· (49)

From (48), it follows that ifΛ is positive-definite,
the system trajectories would converge to a residual
set whose size is determined by the ellipseηT Λη =
αT η. The diagonals of the ellipse representing the
order of errors are given by

√

αT Λ−1α/λmax(Λ) and
√

αT Λ−1α/λmin(Λ), whereλmax(Λ) andλmin(Λ)
are the maximum and minimum eigenvalues ofΛ,
respectively.

In order to guarantee stability of the closed loop sys-
tem, let us study the effects of controller gainsky, Kp,
and Kd on the closed-loop system stability and the
magnitudes of errors. Towards this end,Λ would be

Fig. 2. Flexible beam setup.

positive-definite if the following conditions are satis-
fied

kyc7 − c5Kd > 0

(kyc7 − c5Kd)λmin(Q∆) >
1

4
(c2c5 + c4 + ǫ∆c6)

2 ·

(50)

The first condition in (50) can be re-written as

ky >

∣

∣

∣

∣

∣

1

h1ĥ
−1
1

− 1

∣

∣

∣

∣

∣

Kd (51)

which implies thatky should be sufficiently larger
thanKd. As for the second condition in (50), assume
that Kp = ω2

N , andKd = 2ξωN , whereωN is the
closed-loop undamped natural frequency andξ is the
damping ratio. ThusKp andKd are of ordersO(ω2

N )
andO(ωN ), respectively. Similarly, it can be verified
that c2, c4, andc6 are of ordersO(ω3

N ), O(ωN ), and
O(ωN ), respectively, which when substituted in the
second inequality in (50) yieldky > O(ω6

N ). Thus,
these relationships provide qualitative measures for
selection of the order ofky in relation toKp andKd

to guarantee stability. In order to study the effects of
controller gains on the magnitudes of errors, consider
the following term

αT Λ−1α = λmin(Q∆)(c3 + c1c5yr)
2/

(4(λmin(Q∆)(kyc7 − c5Kd)

−
1

4
(c2c5 + c4 + ǫ∆c6)

2) (52)

which can be verified to be of orderO(ω−1
N ). Fur-

thermore, it can be verified that the larger diagonal of
the ellipse given by

√

αT Λ−1α/λmax(Λ), is of order
O(ω−4

N ).

3. EXPERIMENTAL EVALUATION

An experimental testbed was constructed to evaluate
performance of the controller as shown in Figure
2. A schematic diagram of this setup is shown in
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Fig. 3. Schematic diagram of the flexible beam setup.

Figure 3 consisting of a laser displacement sensor, two
piezo-resistive force sensors, Flexinol SMA string,
and instrumentation and power amplifiers.

Figure 4 shows experimental results when the control
law given by (33) is applied to the system. Figure
4(a) shows the tip deflection measured by the laser
displacement sensor and the reference desired posi-
tion. At some point during its motion, a disturbance
is applied to the flexible beam by hitting it with a
finger. It is observed that the tip position approaches
the desired position while damping out vibrations due
to the disturbance. Figure 5 shows the results when
a square wave reference input is used to drive the
flexible beam by±0.5 cm. The values of controller
gains were set atKd = 8, Kp = 16, ky = 80, 000.

4. CONCLUSION

In this paper, a nonlinear control scheme was devel-
oped for position control of a flexible beam actuated
by Shape Memory Alloy strings. SMA actuators ex-
hibit highly nonlinear effects with characteristics that
are highly temperature dependent. Since actuator tem-
perature is not readily measurable, it is treated as a
disturbance term that has to be compensated by the
control scheme. The force is regulated to a value cor-
responding to a desirable position of the beam end-
point. Stability analysis of the closed-loop system is
established along with experimental results that illus-
trate the performance of the proposed controller.
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