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Abstract: This paper studies the stability and optimality of a distributed con-
sensus protocol for n-player repeated non cooperative games under incomplete
information. At each stage, the players choose binary strategies and incur in a
payoff monotonically decreasing with the number of active players. The game is
specialized to an inventory application, where fixed costs are shared among all
retailers, interested in whether reordering or not from a common warehouse. The
authors focus on Pareto optimality as a measure of coordination of reordering
strategies, proving that there exists a unique Pareto optimal Nash equilibrium
that verifies certain stability conditions.Copyright c©2005 IFAC.
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1. INTRODUCTION

The present paper aims at showing that the con-
sensus protocol introduced in (Bauso et al., 2003)
and in (Bauso et al., 2004) allows the conver-
gence of strategies to the desired equilibrium by
exploiting stability properties of Pareto optimal
Nash equilibria (Shamma and Arslan, 2003). In
our consensus protocol each player exchanges a
limited amount of information with a subset of
other players. We cast this protocol within the
minimal information paradigm (Fax and Mur-
ray, 2002) to reduce each player’s data exposure
to the competitors.

Our results apply to repeated non cooperative
games in which, at each stage, the payoff of the
players is a monotonic function of the strate-
gies of the others. Possible examples are the so-
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called externality games (Friedman, 1996) and
cost-sharing games (Watts, 2002).

We consider a multi-retailer inventory application.
The players, namely different competing retailers,
aim at coordinating joint orders thus to share
fixed transportation costs (see, e.g., (Silver et
al., 1998)). Our idea of selecting the best (Pareto
optimal) among several Nash equilibria presents
some similarities with (Cachon, 2001). However,
we do not implement either central coordination
or side payments as we consider a competitive
environment.

2. THE INVENTORY GAME

Hereafter, we indicate with the same symbol i
both the generic player and the associated index.

We consider a set of n players Γ = {1, . . . , n}
where each player may exchange information only
with a subset of neighbor players. More formally,



we assume that the set Γ induces a single compo-
nent graph G = (Γ, E) whose edgeset E includes
all the non oriented couples (i, j) of players that
exchange information with each other. In this
context, we define the neighborhood of a player
i the set Ni = {j : (i, j) ∈ E} ∪ {i}.
Players cannot hold any private inventory but
share a common warehouse. At each stage k, each
player i faces a customer demand and decides
whether to fulfill it or to pay a penalty pi; the
unfilled demand is lost. We call active player the
one who decides to meet the demand. The active
players receive the items required by their cus-
tomer from the common warehouse and equally
divide a fixed transportation cost K.

More formally, we define the function si(k) ∈ Si =
{0, 1} as the strategy of player i, for each player
i ∈ Γ. We indicate s(k) = {s1(k), . . . , sn(k)} as
the vector of the players’ strategies and s−i =
{s1(k), . . . , si−1(k), si+1(k), . . . , sn(k)} as the vec-
tor of strategies of players j 6= i. At stage k, si(k)
is equal to 1 if player i meets the demand and
equal to 0 otherwise. Then si(k) has a payoff

Ji(k)(si(k), s−i(k)) =
K

1 + ‖s−i(k)‖1 si(k) + (1− si(k))pi,
(1)

where ‖s−i(k)‖1 is trivially equal to the number
of active players other than i.

At stage k, player i processes two types of pub-
lic information: pre-decision information, xi(k),
received from the neighbor players in Ni, and
post-decision information, zi(k), transmitted to
the neighbor players. Player i selects its strategy
si(k) = µi(xi(k)) on the on the basis of only its
predecision information

The information evolves according to a distributed
protocol Π = {φi, hi, i ∈ Γ} defined by the
following equations:

xi(k + 1) = φi(zj(k) for all j ∈ Ni) (2a)

zi(k) = hi(si(k), si(k − 1), xi(k)) (2b)

In (Bauso et al., 2003) and (Bauso et al., 2004),
we show that there can be defined functions φi(·)
and hi(·) such that xi(k) = ‖s−i(k − 1)‖1.
Note that if each player i knew the other players’
strategies s−i(k) it would optimize its payoff (1)
choosing as best response (see, e.g., (Shamma and
Arslan, 2003)) the following threshold strategy

si(k) = (‖s−i(k)‖1 ≥ li), (3)

where the threshold li is equal to K
pi
−1, ‖s−i(k)‖1

is the number of all other active players, and
(‖s−i(k)‖1 ≥ li) is a boolean function that re-
turns 1 if its argument holds true, 0 otherwise.

Working in an incomplete information context,
our generic player i can only estimate the num-
ber ‖s−i(k)‖1 of all other active players. However,
in the rest of the paper, we prove that the thresh-
old strategy

si(k) = (‖s−i(k − 1)‖1 ≥ li) (4)

allows the convergence of strategies (4) to the
Pareto optimal Nash equilibrium s∗. To this aim,
in the next section, we prove that the Pareto
optimal Nash equilibrium exists and, in Section
4, we prove that such equilibrium is stable.

3. EXISTENCE OF A PARETO OPTIMAL
NASH EQUILIBRIUM

Initially, let us make, without loss of generality,
the following assumptions:

Assumption 1 The set Γ of players is ordered so
that l1 ≤ l2 ≤ . . . ≤ ln.

Assumption 2 There may exist other players
i = n + 1, n + 2, . . . not included in Γ, all of them
with thresholds li = ∞
Assumption 3 The players in the empty subset
of Γ have thresholds li = −∞.

The last assumption is obviously artificial, but
simplifies the proofs of most results in the rest of
the paper. It allows us to prove theorems without
the necessity of introducing different arguments in
case the set of active players is empty.

3.1 Existence of Nash Equilibria

In a Nash equilibrium s? = {s?
1, . . . , s?

n}, each
player i selects a strategy s?

i such that

Ji(s?
i , s?

−i) ≤ Ji(si, s?
−i) for all si ∈ Si, i ∈ Γ.(5)

From (3), we obtain the equilibrium conditions

s?
i = (‖s?

−i‖1 ≥ li), for all i ∈ Γ. (6)

Then, given Assumption 1, we can state, the
following necessary conditions on the existence of
a Nash Equilibrium.

Lemma 1. If s? is a Nash equilibrium then:

i) if player i is active, namely s?
i = 1, then

all the preceding players 1, . . . , i− 1 are also
active, i.e., s?

1 = . . . = s?
i−1 = 1;

ii) if player i is not active, namely s?
i = 0, then

neither all successive players i + 1, . . . , n are
active, i.e., s?

i+1 = . . . = s?
n = 0.



Proof - We show that the assumption s?
i = 1 and

s?
i−1 = 0 are in contradiction to prove item i).

The equilibrium condition (6) and s?
i = 1 imply

‖s−i‖1 =
∑

j∈Γ, j 6=i s?
j ≥ li. Since s?

i−1 = 0, the
latter inequality is equivalent to

∑

j∈Γ, j 6=i, j 6=i−1

s?
j ≥ li. (7)

However, condition (6) and s?
i−1 = 0 also imply

‖s−(i−1)‖1 =
∑

j∈Γ, j 6=i−1 s?
j < li−1. But this last

inequality is in contradiction with (7) since∑
j∈Γ, j 6=i, j 6=i−1 s?

j ≤
∑

j∈Γ, j 6=i−1 s?
j .

A complementary argument proves item ii).

Let us now introduce two definitions.

Definition 1. A set C ⊆ Γ of cardinality |C| = r is
complete if it contains all the first r players, with
r ≥ 0, i.e., C = {1, . . . , r}.

Definition 2. A set C ⊆ Γ is compatible if li ≤
|C| − 1 for all i ∈ C.

Note that each player of a compatible set C finds
convenient to meet the demand if all other players
in C do the same. Note also that C = ∅ is both a
compatible and a complete set.

Theorem 1. The vector of strategies s?, defined as

s?
i =

{
1 if i ∈ C
0 otherwise (8)

is a Nash equilibrium if and only if the set C =
{1, . . . , r} ⊆ Γ is both compatible and complete
and the following condition holds

lr+1 > r. (9)

Proof - Sufficiency. Assume that s?, defined
as in (8), is a Nash equilibrium. Observe that
if C = ∅ then it is complete and compatible by
definition. Otherwise, C is complete by Lemma 1
and compatible by definition of a Nash equilib-
rium. Finally, note that if C = Γ, condition (9)
holds since ln+1 = ∞. Otherwise, condition (9)
holds since the player r + 1 6∈ C chooses a strat-
egy s?

r+1 = 0 that, together with (6), implies
lr+1 > ‖s?

−(r+1)‖1 = r.

Necessity. Assume that C is complete, compatible
and condition (9) holds. Observe that Ji(1, s?

−i) ≤
Ji(0, s?

−i) and therefore s?
i = 1 holds, for all

players i ∈ C, since C is compatible. Then note
that, since C is complete, all i 6∈ C are such that
i > r. From condition (9) we also have li > r
for all i > r. Hence, Ji(0, s?

−i) ≤ Ji(1, s?
−i) holds

and consequently s?
i = 0 for all players i 6∈ C.

From Theorem 1 we derive the following corollary.

Corollary 1. (Existence of Nash equilibria) Let
C be the maximal compatible set. Then, there
always exists a Nash equilibrium

s?
i =

{
1 if i ∈ C
0 otherwise

(10)

Proof - First observe that the set C always exists
since it may possibly be the empty set.

With Assumptions 1, 2, 3 in mind, we show
that if C is maximal then it is also complete.
Assume by contradiction that C is not complete.
Let player i be in C and player i − 1 be not in
C. As i ∈ C, then li < |C|. Since li−1 ≤ li,
then li−1 < |C| which in turn implies that also
C ∪ {i − 1} is a compatible set in contradiction
with the maximality hypothesis on C.

Now, assume that C is equal to {1, . . . , r}. Since C
is maximal, C∪{r+1} is not compatible, so lr+1 >
r, i.e., condition (9). Then, even for C ⊂ Γ, the hy-
potheses of Theorem 1 hold true, and the vector of
strategies s?, defined in (10) is a Nash equilibrium.
Note that due to Assumptions 2, 3 the above rea-
soning applies also to the cases C = ∅ and C = Γ.

Two additional considerations can be done. First,
other Nash equilibria different from s? defined
in (10) may exist. They are associated to complete
and compatible sets C that are not maximal.

Second, if C is the maximal compatible set, it
trivially holds

r = |C| = max
λ
{λ ∈ {1, . . . , n} : lλ < λ} . (11)

3.2 Pareto Optimality of the Nash equilibrium
associated to C

A vector of strategies ŝ is Pareto optimal if there
is no other vector of strategies s such that

Ji(si, s−i) ≤ Ji(ŝi, ŝ−i) for all i ∈ Γ (12)

and strict inequality holds for at least one player.

Theorem 2. Let s? be the Nash equilibrium as-
sociated to the maximal compatible set C. If
pi 6= K

|C| for all i ∈ C, then

• [Pareto optimality] the vector of strategies s?

is Pareto optimal;
• [uniqueness] the vector of strategies s? is the

unique Pareto optimal Nash equilibrium.

Proof Pareto optimality. We show that Nash
equilibrium s? is Pareto optimal since any other



vector of strategies s induces a worse payoff to at
least one player. In the Nash equilibrium s?, each
i ∈ C gets a payoff Ji(1, s?

−i) = K

|C| < pi, each

i 6∈ C gets a payoff Ji(0, s?
−i) = pi < K

|C| . Now,
consider the vector of strategies s. Define D =
{i ∈ C : si = 0} as the set of players with li < |C|
that are not active in s and E = {i 6∈ C : si = 1}
as the set of players with li ≥ |C| that are active
in s. Trivially, D ∪E 6= ∅ as s 6= s?. We deal with
E 6= ∅ and E = ∅ separately.

If E 6= ∅ and D = ∅, each i ∈ E gets a
payoff Ji(1, s−i) = K

|C∪E| strictly greater than

Ji(0, s?
−i) = pi as C is the maximal compatible

sets. The latter condition trivially holds also when
D 6= ∅ since, in this case, each player i ∈ E incurs
in a higher payoff Ji(1, s−i) = K

|(C∪E)\D| .

If E = ∅, then D 6= ∅, and each i ∈ C\D, if exists,
gets a payoff Ji(1, s−i) = K

|C\D| > Ji(0, s?
−i) =

K

|C| . At the same time, each i ∈ D gets a payoff

Ji(0, s−i) = pi > Ji(1, s?
−i) = K

|C| . Finally, each

i ∈ Γ\C gets a payoff Ji(0, s−i) = pi = Ji(0, s?
−i).

Uniqueness. Consider a generic Nash equilibrium
s associated to a complete and compatible set
C different form C. Since C is maximal then
C ⊂ C. Then, each i ∈ C, if exists, gets a payoff
Ji(si, s−i) = K

|C| > Ji(s?
i , s

?
−i) = K

|C| ; analogously,

each i ∈ C \ C gets a payoff Ji(si, s−i) = pi >
Ji(s?

i , s
?
−i) = K

|C| ; finally, each player i ∈ Γ\C, gets
a payoff Ji(si, s−i) = pi = Ji(s?

i , s
?
−i). Then, any

generic Nash equilibrium has payoffs not better
than the ones associated to s?.

Observe that if pi = K

|C| there exists two Pareto
optimal Nash equilibria with equal payoff. They
are associated respectively to the maximal com-
patible set C and to the empty set. In the rest of
the paper, only the equilibrium s? associated to
the maximal compatible set C will be called the
Pareto optimal Nash equilibrium.

4. STABILITY OF NASH EQUILIBRIA

In this section, we prove the stability of the Pareto
optimal Nash equilibrium under the hypothesis
that at each stage k, each player i implements
strategy (4).

Given an equilibrium s? and the associated com-
plete compatible set C = {1, . . . , r}, the vector
∆s(0) = s(0) − s? ≥ 0 (∆s(0) ≤ 0) is defined
a positive (negative) perturbation at stage 0. In
other words, a positive (negative) perturbation
is a change of strategies of a subset of players
P = {i ∈ Γ \ C : ∆si(0) = 1} (P = {i ∈ C :

∆si(0) = −1}), called perturbed set. The cardi-
nality of the perturbed set |P | = ‖∆s(0)‖1 is the
number of players that join the set C (leave the
set C). In addition, a positive (negative) pertur-
bation ∆s(0) is maximal when ‖∆s(0)‖1 = |Γ\C|,
(‖∆s(0)‖1 = |C|). In this last case, all the players
in Γ \ C, (C) change strategy.

We call a Nash equilibrium s? stable with respect
to positive perturbations if there exists a scalar
δ > 0 and k̄ > 0 such that if ‖∆s(0)‖1 ≤ δ,
then sk = s? for all k ≥ k̄. Analogously, we call a
Nash equilibrium s? maximally stable with respect
to positive perturbations if it is stable with respect
to the maximal positive perturbation ∆s(0).

In the following, let us introduce some theorems
concerning the stability of Nash equilibria.

Theorem 3. Consider a Nash equilibrium s? as-
sociated to a set C = {1, . . . , r}. The vector of
strategies s? is stable with respect to positive
perturbations ∆s(0) : ||∆s(0)||1 = j − r − 1 if
all players i 6∈ C, with r < i ≤ j, have thresholds
li ≥ i.

Proof - Keep in mind that the players observe the
other strategies with a one-step delay throughout
this proof. Observe that, since s? is a Nash equi-
librium, Theorem 1 and the definition of positive
perturbation implies that the following two con-
ditions hold: i) the threshold lr+1 ≥ r + 1 and,
ii) at stage k = 0, si(0) = 1, for all i ∈ C ∪ P ,
whereas si(0) = 0, for all i ∈ Γ \C ∪ P . Note also
that a positive perturbation ∆s(0) induces players
i ∈ Γ \ C, with thresholds li ≤ |C ∪ P | to change
strategy from si(0) = 0 to si(1) = 1. Differently,
all players i ∈ C, will not change strategy, since
they have thresholds li ≤ |C| < |C ∪ P |.
Consider now a particular perturbation ∆s(0)
with ||∆s(0)||1 = j − r − 1. Then, at stage k = 1,
all players i ≥ j set si(1) = 0, since they observe
j − 1 active players, and their threshold is li ≥ j.
Hence, at stage k = 2, player j − 1 surely sets
sj−1(2) = 0, since it observes at most j− 2 active
players and its threshold is lj−1 ≥ j−1. Following
the same line of reasoning at the generic stage
k with 1 < k < j − r, player j − k + 1 sets
sj−k+1(k) = 0, since it observes at most j − k
active players and lj−k+1 ≥ j − k + 1. Hence, at
most at stage k = j − r the strategies converge to
the desired Nash equilibrium s?.

Theorem 3 proves the stability of a Nash equilib-
rium s? when all players j > r have a threshold
lj ≥ j. Now, let us deal with the situation in which
there exist players j > r with thresholds lj < j.
To be more specific, let us consider the particular
player j such that j = arg min{i ∈ Γ \C : li < i}.



Clearly, when player j exists, it must be j ≥ r+2,
since it must necessarily be lr+1 ≥ r + 1 from
condition (9) of Theorem 1. In addition, lj = j−1
since for all i such that r < i < j there holds li ≥ i
by minimality of j.

Theorem 4. Consider the Nash equilibrium s? as-
sociated to a set C = {1, . . . , r} and assume
that there exists a player j = arg min{i ∈ Γ \
C : li < i}. The vector of strategies s? is not stable
with respect to positive perturbations ∆s(0) :
||∆s(0)||1 = j − r.

Proof - It is enough to show that the Nash
equilibrium s? is not stable with respect a per-
turbation ∆s(0) : ||∆s(0)||1 = j − r induced by
the perturbed set P = {r +1, . . . , j}. To this aim,
consider that, at stage k = 1, players r + 1, . . . , j
set sr+1(1) = . . . = sj(1) = 1 since their thresh-
olds are lower than or equal to lj = j − 1. The
players r+1, . . . , j do not change their strategies in
the following stages, then the desired equilibrium
point s? will never be reached.

Given the Nash equilibrium s? and assuming the
existence of a player j = arg min{i ∈ Γ \ C :
li < i}, Theorems 3 and 4 establish that s?

is stable with respect to positive perturbation
∆s(0) if ||∆s(0)||1 < j − r − 1 and is not stable
if ||∆s(0)||1 ≥ j − r. The following theorem
addresses the case ||∆s(0)||1 = j − r − 1.

Theorem 5. Consider the Nash equilibrium s? as-
sociated to a set C = {1, . . . , r}. Assume that
there exists a player j = arg min{i ∈ Γ\C : li < i}
and let î = arg min{i ∈ Γ \ C : li = j − 1}. The
vector of strategies s? is not stable with respect
to positive perturbations ∆s(0) : ||∆s(0)||1 = j −
r − 1 iff at least one of the following conditions
holds:
i) there exist players j + 1, . . . , 2j − î − 1 with
threshold equal to j − 1,
ii) there exist players j + 1, . . . , 2j − î.

Proof - Let us initially observe that, due to the
minimality of j, î is less than or equal to j − 1. If
î = j − 1 then condition i) holds since it defines
an empty set.

Sufficiency. We first prove condition i). For doing
so, let the perturbed set P be equal to {r +
1, . . . , j − 1} then sr+1(0) = . . . = sj−1(0) = 1,
which implies, at stage k = 1, sr+1(1) = . . . =
sî−1(1) = 1, sj(1) = . . . = s2j−î−1(1) = 1.
Actually, each player i such that r + 1 ≤ i ≤ î− 1
observes that at the previous stage, k = 0, other
j−2 ≥ li players are active and each player i such
that j ≤ i ≤ 2j−î−1 observes that other j−1 = li
players are active. Similarly, at stage k = 2, it

surely holds that sr+1(2) = . . . = sj−1(2) = 1.
Hence, from such a stage on, the players r +
1, . . . , j − 1 surely decide to meet the demand on
the even stages and strategies oscillate.

It is left to prove condition ii). Let the perturbed
set P be equal to {r+1, . . . , î−1, j+1, . . . , 2j− î}
then sr+1(0) = . . . = sî−1(0) = 1 and sj+1(0) =
. . . = s2j−î(0) = 1, which implies, at stage k = 1,
sr+1(1) = . . . = sj(1) = 1. Actually, each player
i such that r + 1 ≤ i ≤ î − 1 observes that at
the previous stage, k = 0, other j − 2 ≥ li players
are active and each player i such that î ≤ i ≤ j
observes that other j − 1 = li players are active.
For an analogous reason, from stage k = 2 on,
the players r + 1, . . . , j surely decide to meet the
demand at every stage and strategies converge to
a new Nash equilibrium different from s?.

Necessity. Assume that condition i) and condi-
tion ii) do not hold. Then the set Γ includes at
most 2j − î − 1 players and the threshold of the
last player must satisfy the following condition
l2j−î−1 > j−1. Then, given a perturbation ∆s(0)
with ||∆s(0)||1 = j− r− 1, at stage k = 1 it holds
si(1) = 1 for i such that either i < î or li = j − 1
but i 6∈ P , si(1) = 0 otherwise. Assume without
loss of generality that all i such that li = j−1 but
i 6∈ P are smaller than the minimum ĵ such that
lĵ = j−1 and ĵ ∈ P , then the maximum number of
active players at stage k = 1 may be obtained for
P = {r +1, . . . , î− 1, j, . . . , 2j− î− 1}. Indeed, by
doing this, we preserve all players i with threshold
li = j − 1 from being perturbed at k = 0.

Having chosen such a P , the number of active
players at stage k = 1 is equal to j−1. Indeed, all
players i = î, . . . , j − 1 have thresholds li = j − 1
and therefore sî(1) = . . . = sj−1(1) = 1. At the
same time, all players i = j, . . . , 2j − î − 1 whose
thresholds are li ≥ j−1 observe other j−2 active
players and therefore sj(1) = . . . = s2j−î−1(1) =
0. Now, at stage k = 2, since by assumption is
l2j−î−1 > j − 1, we have s2j−î−1(2) = 0 such as
sî(2) = . . . = sj−1(2) = 0. The situation at k = 2
is equivalent to the one obtainable at k = 0 in
presence of a perturbation with ||∆s(0)||1 = j −
r−2. Since for perturbations with ||∆s(0)|| < j−
r − 1, see Theorem 3, the Nash equilibrium s? is
stable, we can affirm that even in this case the
strategies will converge to s?.

Now, we specialize the previous theorems to the
Pareto optimal Nash equilibrium.

Corollary 2. The unique Pareto optimal Nash
equilibrium is maximally stable with respect to
positive perturbations.



Proof - From definition of maximal stability,
we must show that s? is stable with respect to
the maximal positive perturbation ∆s(0), with
‖∆s(0)‖1 = |Γ − C|. From maximality of C it
must hold li ≥ i for all i, such that r < i < n.
Then, see Theorem 3, s? is stable with respect to
∆s(0) and therefore it is also maximally stable.

Let us conclude remarking that the Pareto opti-
mal Nash equilibrium may not be globally sta-
ble with respect to negative perturbations. It is
straightforward to prove this fact when, e.g., sev-
eral Nash equilibria exist.

5. SIMULATION RESULTS

We consider a set Γ of 8 players. Fig. 1 reports the
induced graph G, whereas Tab. 1 lists the players’
thresholds li.
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Fig. 1. An example of graph G for a set Γ of 8
players

Table 1. Players’ thresholds

players 1 2 3 4 5 6 7 8

li 5 ∞ ∞ ∞ 2 1 4 1

Tab. 2 lists the players’ states xi(k) and the
strategies strategies si(k), for k ≥ 0. Note that, at
k = 0, we assume that each player estimates that
all the other players make its own decision. Such
choice guarantees that the initial vector strategy
si(0) is not negatively perturbed with respect the
Pareto optimal Nash equilibrium s? Then, players
1 − 5 − 6 − 7 − 8 are active, while players 2 −
3 − 4 are not. At stage k = 1 all the players
estimate the number of active players as equal to
5. Then, player 1 changes strategy from s1(0) = 1
to s1(1) = 0 since its estimate is lower than his
corresponding threshold l1 = 5. At k = 2, the
players’ new estimate is 4 and player 7 changes
strategy, too. Finally, at stage k = 3, the players
strategies converge to the Pareto optimal Nash
equilibrium with ‖s?‖1 = 3.

Table 2. States and strategies over time

players 1 2 3 4 5 6 7 8

xi(0) 8 0 0 0 8 8 8 8
si(0) 1 0 0 0 1 1 1 1
xi(1) 5 5 5 5 5 5 5 5
si(1) 0 0 0 0 1 1 1 1
xi(2) 4 4 4 4 4 4 4 4
si(2) 0 0 0 0 1 1 0 1
xi(3) 3 3 3 3 3 3 3 3
si(3) 0 0 0 0 1 1 0 1
xi(k ≥ 4) 3 3 3 3 3 3 3 3
si(k ≥ 4) 0 0 0 0 1 1 0 1
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