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Abstract: Approaches for the identification of piecewise affine systems are pre-
sented. The identification problem for piecewise affine systems is formulated as a
smooth constrained, and a nonsmooth unconstrained optimization problem. The
main advantage of the new problem formulations is the fact that no mixed integer
problems have to be solved within this method. The feasibility and performance of
the procedures are demonstrated by identifying two piecewise affine characteristic
maps. Copyright c©2005 IFAC

Keywords: identification, modelling, optimization, hybrid systems

1. INTRODUCTION

The identification of piecewise affine systems is
a field of growing interest and the increasing
number of publications in this area emphasizes the
relevance and importance of this topic.
In (Ferrari-Trecate et al., 2001; Ferrari-Trecate et
al., 2003; Hoffmann, 1999; Münz and Krebs, 2002;
Münz et al., 2003; Münz et al., 2004a; Münz et
al., 2004b) iterative identification procedures are
proposed, where the identification procedure is
split up into several tasks.
As an example, the method given in (Münz and
Krebs, 2002) consists of two steps:

• First, the measured data is partitioned such
that a local model is able to represent the
data within one partition.

• In the second step, the shape and the location
of these partitions are optimized.

In (Münz et al., 2003; Münz et al., 2004b), these
two steps are extended by determination of gra-
dients for the originally discontinuous problem

and thus it becomes possible to apply numerical
optimization methods which exploit gradient in-
formation for the partitioning and optimization.

Perhaps the most straightforward way of tack-
ling the piecewise affine identification problem is
to formulate a performance index and to mini-
mize it with respect to its parameters. Such ap-
proaches, originally developed for linear systems,
exist for piecewise affine systems with continu-
ous transitions between the different submodels
(e.g. (Roll, 2003)). For piecewise affine systems
with jumps between different submodels other
approaches are proposed in (Münz et al., 2004a)
and (Vidal et al., 2003). As the optimization prob-
lem, resulting from the identification problem is
mixed–integer in most cases, one would guess that
it is a NP–equivalent problem. In this paper, it
is shown that the problem can be reduced to a
continuous nonlinear problem.

As a basis of this paper, the problem of piecewise
affine identification is formalized in section 2. In



section 3 some methods are discussed for trans-
forming the piecewise affine identification prob-
lem, which is originally mixed–integer, into a
smooth nonlinear problem with linear constraints
or into a nonsmooth but unconstrained problem.
Since the resulting problem is not convex, some re-
marks for detecting local optima are made in sec-
tion 4. The procedure is demonstrated identifying
a static three–dimensional and a four–dimensional
sample characteristic map in section 6. Finally,
the results are discussed in section 7 and some
conclusions are drawn.

2. PROBLEM STATEMENT

The usual approach for the identification of linear
dynamic systems is to choose the parameters of a
linear system such that they minimize the sum of a
norm of the prediction error (Isermann, 1992); as
a generalization of this approach the identification
of piecewise affine models is interpreted as an
optimization problem:
Consider a set of measured data at discrete time
instants, y(1), . . . , y(N), u(1), . . . u(N − 1) and
assume that a subset of Rn forms the state space
and a subset of Rm forms the space of the inputs.
Then, it is the objective of the identification to
find a model which maps the subset I of the space
Rn × Rm to a subset of the space Rn according
to the measured data.
In the following, the space I ⊂ Rn×Rm is referred
to as identification–space or I–space.
The piecewise affine model M consists of M affine
models

x(k+1) = Ajx(k)+Bju(k)+cj , j = 1 . . . M (1)

and the measurements y(k) are obtained from

y(k) = x(k) + ε(k) (2)

with ε as unavoidable noise. Each of these affine
models is valid only on a subset Ij of I and the
Ij form a complete and disjoint partition of I; i.e.

M⋃

j=1

Ij = I and Ii ∩ Ij = ∅ ∀i 6= j.

With knowledge about the desired structure of
the model, the identification problem can now be
formulated as the minimization of a performance
index

J =
N−1∑

i=1

M∑

j=1

∥∥∥
(
y(i + 1)− ŷ

j
(i + 1)

)∥∥∥ zij . (3)

Herein, y(i+1) are the measured data correspond-
ing to a certain state x(i + 1) of the system ac-
cording to equation 2. The quantities ŷ

j
(i+1) are

the predicted outputs of the identified submodel j
and can be rewritten as

ŷ
j
(i + 1) = Ajy(i) + Bju(i) + cj .

The variables zij describe the affiliation of a data
y(i) to a submodel j. Thus, these variables are re-
stricted to binary values. ‖·‖ denotes an arbitrary
norm.
In general, this performance index has to be min-
imized with respect to the parameter matrices
Aj , Bj , cj , and to the variables zij .
Since the norm is a nonlinear function, the ob-
jective of this problem is nonlinear. Furthermore,
the problem is mixed integer, due to the binary
variables zij

As general mixed–integer problems are hard to
solve, the approach proposed in the sequel tries
to transform this problem into a smooth optimiza-
tion problem.

3. TRANSFORMATION OF THE PROBLEM

The problem stated in section 2 reads as follows:

min





N−1∑

i=1

M∑

j=1

∥∥(
y(i+1)−Ajy(i)+Bju(i) + cj

)∥∥ zij





s.t.
zij ∈ {0, 1} (4)

M∑

j=1

zij = 1 ∀i

To solve this problem, a branch and bound algo-
rithm could be applied, but the search tree for this
problem increases exponentially with the number
of data N and the number of submodels M .
Thus a relaxation of this problem is made, which
replaces the integer constraint by zij ∈ [0, 1]. This
leads to the relaxed problem

min





N−1∑

i=1

M∑

j=1

∥∥(
y(i+1)−Ajy(i)−Bju(i)− cj

)∥∥ zij





s.t.
zij ∈ [0, 1] (5)

M∑

j=1

zij = 1 ∀i

Lemma 1. The global optimal value of prob-
lem (4) coincides with the global optimal value
of the relaxed problem (5). The set of optimal
solutions of problem (4) is a subset of the set of
optimal solutions of problem (5).

Proof Let A∗j , B
∗
j , c

∗
j and Z∗ be the parame-

ters in a global optimum of problem 5. Suppose
that the elements in Z∗ are non–integer. Since
the error of each data k to the different affine
models is concerned, there is a set of submodels
Ml, l ⊂ {1, ..., M} which show the least error to



that particular data k.
There are two cases: If the set of closest models
has exactly one element, the corresponding pa-
rameter zkl is increased by ε > 0; one of the other
zki > 0 is decreased by ε > 0 to keep feasible.
Hence the performance index decreases. This is
a contradiction to the assumptions and thus a
global optimal solution cannot violate the integer
constraints in this case.
In the second case, the set of closest models con-
tains more than one element. Then, the perfor-
mance index does not change, if the percentage of
the membership is changed between these closest
models. In this case, the set of global optimal
solutions increases by relaxation, but the global
optimal value is not changed. Furthermore, the
same contradiction as in case 1 holds, if one of
the closest models and a non–closest model with
membership zki > 0 are considered. Hence, an
optimal solution in the second case yields mem-
berships of the closest models which sum up to 1.
An optimal integer solution is then obtained by
setting the membership zki of one closest model
to 1 and the others to 0. 2

According to Lemma 1, by finding the global op-
timal solution of the nonlinear constrained prob-
lem (5), a solution for the mixed–integer prob-
lem (4) is obtained and thus, the original mixed
integer piecewise affine identification problem is
reduced to a nonlinear constrained optimization
problem.
To solve this problem in practice, a particular
norm has to be chosen. In this paper, the 1–norm
and the 2–norm is considered.
If the 1–norm is chosen, the problem can be
rewritten as

min





N−1∑

i=1

M∑

j=1

∥∥(
y(i+1)−Ajy(i)−Bju(i)− cj

)∥∥
1
zij





s.t.
zij ∈ [0, 1] (6)

M∑

j=1

zij = 1 ∀i,

where the ‖ · ‖1 denotes the 1–norm of a vector:
‖(x1 x2)T ‖1 = |x1|+ |x2|.
This particular problem can be rewritten as a
quadratic problem by eliminating the absolute
values with help of slack variables. Since

min |x|
is equivalent to

min s

s.t.
s ≥ x

s ≥ −x

problem (6) can be rewritten as

min





N−1∑

i=1

M∑

j=1

n∑

k=1

sk
ijzij





s.t. (7)

(s1
ij , . . . , s

n
ij)

T ≥ y(i+1)−Ajy(i)−Bju(i)− cj

(s1
ij , . . . , s

n
ij)

T ≥ −y(i+1)+Ajy(i)+Bju(i) + cj

zij ∈ [0, 1]
M∑

j=1

zij = 1 ∀i,

In this representation, it is obvious, that the
performance index of the piecewise affine iden-
tification problem is indefinite, since the Hesse–
Matrix which can be seen directly from the per-
formance index of this quadratic problem is sym-
metric and has only zeros on the prime diagonal.
Hence the optimization problem does not have
a unique minimum. This also can be seen from
the fact, that for each feasible solution x0 =
(s1

11, . . . , s
n
NM , z11, . . . , zNM )T of (7), there are M !

equivalent points which are obtained by permut-
ing the numbering of the submodels. Hence, there
are at least M ! global minima. Further more,
there are local optima in which an optimization
algorithm may be trapped. A method to escape
these local optima is discussed in the next section.

4. GLOBAL MINIMIZATION

The smooth optimization approach to piecewise
affine identification problems discussed in the last
section normally yields good results if the noise
is low. But even for undisturbed problems, there
may be local minima, as the following example
shows.

Example 1. The measured data depicted in fig-
ure 1 is to be identified. The number of submodels
M = 2 and the constants for each model c1 = 0
and c2 = −6 are known and thus, the parameters
a1 and a2 are to estimate. This identification can
be performed by minimizing the smooth problem
(5). As another equivalent problem, it is possible
to solve the continuous but nonsmooth problem

min

{
N−1∑

i=1

min
j

∥∥y(i+1)−Ajy(i)−Bju(i)− cj

∥∥
}

(8)

It becomes obvious that this problem is equivalent
to (5) if a similar reasoning as for Lemma 1 is used.
The performance index for the sample data set is
plotted in figure 2; there, the quadratic norm is
used. Apparently, there are two local minima and
the right one coincides with the global minimum.

To be not trapped in such local minima, it is nec-
essary to apply suitable optimization techniques,
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Fig. 2. performance index for example 1; function
values larger than 50 are not plotted

as described in (Hansen, 1992; Ratz, 1992; Huyer
and Neumaier, 1999). In particular the MCS–
algorithm described in (Huyer and Neumaier,
1999) was applied in this work.
Even though, a global minimum for the perfor-
mance index is found with these algorithms, it
may happen in in the case of noisy data that some
data are assigned to the ”wrong” submodel. Thus,
in the next section a method is described to assign
the data to the submodels in a sensible way.

5. USING GRAPHS TO ASSIGN DATA TO
SUBMODELS

If the data is assigned to the nearest submodel
after minimizing performance index (5) or (8),
it is possible in the case of noisy data that the
assignment of the data is scattered and thus,
there are no compact areas which belong to one
submodel. To solve this problem, the following
procedure can be applied.

In a first step a graph is needed, which indicates
adjacency in the measured data. Two vertices of
the graph, which are formed by the measured
data, are linked by an edge, if these data are
adjacent. To set up such a graph the Delaunay tri-
angulation can be applied. Due to the properties
of the Delaunay triangulation, it is asserted that
no other data is contained in the circumsphere of
a simplex and thus this triangulation produces a
sensible adjacency graph.

In the second step, the vertices are assigned to the
closest submodel according to the norm used for
the global minimization. Afterwards, the graph is
divided into M components; vertex i belongs to
component j if the distance between submodel j
and data i is minimum. All edges between vertices
to different submodels are eliminated.In this way,
M graphs are obtained.

In the third step, the largest connected compo-
nent of each graph is searched and this largest
component forms a center component to which all
the remaining vertices, belonging not to a largest
component, are assigned to in the fourth step. All
edges between vertices belonging not to one of the
largest connected components are removed, too

To do the assignment, all vertices adjacent to
the center component j according to the elimi-
nated edges become candidates for being assigned
to submodel j. This way, M sets of candidates
are obtained and the distances between the can-
didates and the corresponding affine model are
calculated according to the norm used for the
global minimization. Then, the candidate with the
minimum distance between model and measured
data is searched over all M sets of candidates and
is assigned to the corresponding model. The sets
of candidates have to be updated and step 4 is
repeated until all vertices are assigned to a center
component.

This procedure yields M connected components
and hence compact subsets of the I–space where
one affine model is valid.

6. EXAMPLES

As Least Squares approaches for the identification
of dynamical systems map the dynamic identifi-
cation problem to a static identification problem,
the approach proposed in this paper is demon-
strated by using multidimensional static piecewise
affine characteristic maps.

Example 2. The sample function used for the gen-
eration of the data is illustrated in figure 3.
The function consists of three affine submodels
f1(x1, x2) = 0.2x1+x2+1, {x |x2 ≥ −5x1+1.25∧
x2 ≥ x1 − 0.1 ∧ x2 ≤ −0.5x2 + 1}; f2(x1, x2) = 3,
{x|x2 ≥ −5x1+1.25∧x2 ≥ x1−0.1∧x2 ≥ −0.5x2+
1}; f3(x1, x2) = 2, otherwise. The noise added to
the data is N(µ, σ2) = N(0, 0.005) distributed.

This data was identified using the following
procedure: The problem description (8) with a
quadratic norm was used and minimized with
MCS (Huyer and Neumaier, 1999). The intermedi-
ate result where the data is assigned to the nearest
model can be seen in figure 4. It is visible, that
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Fig. 3. data with noise considered in the identifi-
cation process
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Fig. 4. after the first step of the identification: the
data is assigned to the closest model
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assignment

some data, which should belong to model (·) is
assigned to model (+).

Carrying out the Delaunay triangulation and
searching for the largest components of the result-
ing graph yields the largest components depicted
in figure 5. The iterative assignment of the can-
didates yields the graph in figure 6. Using this
fixed assignment of the data to the submodels,
figure 7 is obtained after a least squares fit for
each submodel. As it can be seen, the submodels
and the assignment of the data is well identified.
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Fig. 6. largest components of the graph after
assignment
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Fig. 7. identified model
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Fig. 8. I–space for the 4D–example

Example 3. The next example deals with a piece-
wise affine function with two submodels depend-
ing on three variables f1(x1, x2, x3) = 1, {x | x1 <
0.5 ∧ x2 < 0.5 ∧ x3 > 0.5}; f2(x1, x2, x3) = 0,
otherwise. This time, the noise is N(0, 0.015) dis-
tributed. For the generation of sample data the I–
space was covered with 113 equidistant points in
a 0.1 grid. In figure 8 the I–space for the function
with the two domains of the submodels used to
generate the data is depicted. For the identifica-
tion, again performance index (8) with a quadratic
norm was used. After applying the identification
to the data, the following affine parameters are
obtained: f̂1(x1, x2, x3) = −0.0156x1+0.1260x2−
0.0587x3 + 1.02021, f̂2(x1, x2, x3) = −0.0178x1 +
0.0022x2 − 0.0002x3 + 0.01110. All data are as-
signed correctly to the two affine submodels. To
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Fig. 9. identified model: cut at x3 = 0.8

get an impression of the identified model, a cut at
x3 = 0.8 is shown in figure 9

7. CONCLUSIONS

The presented identification method proceeds in
the steps global optimization of a performance
index, where a suitable form can be chosen from 2
equivalent forms; the first is a smooth constrained
formulation, the second is nonsmooth but uncon-
strained.

Since the number of parameters is quite small
in the nonsmooth formulation, state of the art
solvers as (Huyer and Neumaier, 1999) are able to
solve the sample-problems within a few minutes.

The algorithms to create compact areas for the
validity of one submodel work on graphs. Analysis
of these algorithms shows that they are very
efficient and fast.

To obtain good identification results, a number of
submodels is necessary such that the real system
can be approximated sufficiently good with the
chosen number of models. I.e. the number of sub-
models has to be larger or equal to the number
of submodels in the original system. Furthermore,
the number of submodels has to be manageable
with reasonable effort. Often, such a number is
known from a priori knowledge. Thus, the im-
portance of clustering techniques which guess the
number of submodels from measured data exactly
decreases in the field of piecewise affine identifica-
tion.

The identification approaches introduced in this
paper allow to determine the dynamics of the
submodels and the validity of the submodels with
sufficient accuracy and sufficient low computa-
tional effort. Available a priori knowledge may be
used to support the different steps.

Since technical systems are often of higher order
and similar characteristic maps are widespread in
technical systems, e.g. in the models of turbo–
chargers of diesel engines, it is of practical interest

to have an approach that copes with such systems.
As it was shown in the application, the presented
algorithm is able to identify such systems.
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