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Abstract: A variety of control problems require the control action and/or state
to be positive. Typical applications include situations where the operating point
maximizes (steady state) efficiency so that the steady state control and/or the
steady state itself lie on the boundaries of their respective constraint sets. Any
deviation of the control and/or state from its steady state value must therefore
be directed to the interior of its constraint set. To address these problems, we
characterize a novel family of the robust control invariant sets for linear systems
under positivity constraints. The existence of a constraint admissible member of
this family can be checked by solving a single linear or quadratic programming
problem. The solution of this optimization problem yields the corresponding
controller. These results are then used to devise a robust time–optimal control
scheme for regulation of uncertain linear systems under positivity constraints.
Robust finite–time attractivity of an appropriately chosen member of this family
is also established. Copyright c©2005 IFAC.
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1. INTRODUCTION

Most studies in the theory of constrained control
include the assumption that the origin is in the
interior of constraint sets; see for example (Mayne
et al., 2000; Bemporad and Morari, 1999) and
references therein. This assumption is not always
satisfied in practice. In some practical problems,
the controlled system is required to operate as
close as possible to or at, the boundary of the con-
straint set. This issue has been discussed in (Rao
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and Rawlings, 1999; Pannocchia et al., 2003). Here
we consider a more general problem – the regula-
tion problem for discrete-time linear systems with
positive state and control constraints subject to
additive and bounded disturbances. Control under
positivity constraints raises interesting problems
that are amplified if the system is subject to
additive and bounded disturbances.

In this paper we exploit recent results on robust
control invariance (Raković, 2005) and standard
ideas in robust time-optimal control (Bertsekas
and Rhodes, 1971; Blanchini, 1992; Mayne and
Schroeder, 1997; Kerrigan and Mayne, 2002) to
devise an efficient control algorithm.



Instead of controlling the system to the desired
reference couple (x̂, û) that lie on the boundary
of the constraint set, we control the system to a
robust control invariant set centered at an equilib-
rium point (x̄, ū) while minimizing an appropriate
distance from the reference couple (x̂, û). The
first subproblem is the construction of a suitable
target set, that is an appropriately computed ro-
bust control invariant set centered at a suitable
equilibrium (x̄, ū). An adequate terminal set can,
in principle, be computed as the maximal ro-
bust control (positively) invariant set by employ-
ing standard recursive set computations of viabil-
ity (or set invariance) theory (Aubin, 1991; Kol-
manovsky and Gilbert, 1998; Blanchini, 1999).
However, in general case finite time computation
of such a set is not guaranteed. In contrast to
the standard results in set invariance, we provide
a novel characterization of a family of the poly-
topic robust control invariant sets. The existence
of a constraint admissible member of this family
as well as the computation of the corresponding
feedback controller can be efficiently realized by
solving a single linear or quadratic programming
problem (LP or QP). This set is then used to
implement a standard robust time-optimal control
scheme. We also remark that the recent method-
ology of parametric programming (Bemporad et
al., 2002; De Doná and Goodwin, 2000; Mayne
and Raković, 2003) can be used to obtain low
complexity controllers (Grieder et al., 2003) that
ensure robust constraint satisfaction as well as
robust time–optimal convergence to the target set.

This paper is organized as follows. Section 2 is
concerned with preliminaries. Section 3 addresses
the robust control invariance issue for linear sys-
tems with positive constraints. Section 4 gives an
algorithm for the construction of a non-decreasing
sequence of the robust control invariant sets – level
sets of the value function for the robust time–
optimal control problem. Section 5 presents an
interesting numerical example. Finally, Section 6
contains concluding remarks.

Notation: Let N , {0, 1, 2, . . .}, N+ , {1, 2, . . .}
and Nq , {0, 1, . . . , q}. Let 0 denote vector (or
matrix) of zeros and I identity matrix of appro-
priate dimensions. A polyhedron is the (convex)
intersection of a finite number of open and/or
closed half-spaces and a polytope is a closed and
bounded polyhedron. Given a polyhedral set P ,

{z | Cpz ≤ cp}, the set Pεp
, {z | Cpz ≤ cp − εp}.

Let B
q
p(z, r) , {x ∈ R

q | |x − z|p ≤ r} be a
p-norm ball in R

q centered at z, where r ≥ 0
and | · |p denotes the vector p-norm. Given two
sets U and V, such that U ⊂ R

n and V ⊂ R
n,

the Minkowski set addition is defined by U ⊕
V , {u + v | u ∈ U , v ∈ V} and the Pontryagin
set difference by: U ⊖ V , {x | x ⊕ V ⊆ U}.
Given the sequence of sets {Ui ⊂ R

n}b
i=a, we

define
⊕b

i=a Ui , Ua ⊕ · · · ⊕ Ub. We use 2U to
denote the power set (set of all subsets) of U and
d(u,U) , infv∈U |u − v|.

2. PRELIMINARIES

We consider the following discrete-time linear
time-invariant (DLTI) system:

x+ = Ax + Bu + w, (2.1)

where x ∈ R
n is the current state, u ∈ R

m

is the current control action x+ is the successor
state, w ∈ R

n is an unknown disturbance and
(A,B) ∈ R

n×n × R
n×m. The disturbance w is

persistent, but contained in a convex and compact
set W ⊂ R

n that contains the origin. We make
the standing assumption that the couple (A,B)
is controllable. The system (2.1) is subject to the
following set of hard state and control constraints:

(x, u) ∈ X × U (2.2)

where X ⊆ R
n
+ and U ⊆ R

m
+ are polyhedral

and polytopic sets respectively. We denote by
φ(k;x, π,w(·)) the solution to (2.1) at time in-
stant k if the initial state is x at time 0, the
control policy π , {µi(·), i ∈ NN−1} (where for
each i ∈ NN−1, µi(·) : X → U) and w(·) is an
admissible infinite disturbance sequence.

Let the set F denote the set of equilibrium points
for the nominal part of difference equation (2.1)
(i.e. x+ = Ax + Bu) :

F , {(x̄, ū) | (A − I)x̄ + Bū = 0} (2.3)

If A−I is invertible than x̄(ū) , −(A−I)−1Bū is
a singleton for any ū ∈ R

m. We need the following
definitions in the sequel:

Definition 1. The set Ω ⊂ R
n is a robust control

invariant (RCI) set for the system (2.1) and
constraint set (X,U,W ) if Ω ⊆ X and for all
x ∈ Ω there exists a u ∈ U such that Ax + Bu +
w ∈ Ω for all w ∈ W .

Definition 2. The set Ω is robust asymptotically
(finite-time) attractive with domain of attraction
Ψ iff, for all x(0) ∈ Ψ, d(x(i),Ω) → 0 as i → ∞
(there exists a time I such that x(i) ∈ Ω for all
i ≥ I) for all admissible disturbance sequences.

3. ROBUST CONTROL INVARIANCE ISSUE

First, we characterize a family of the polytopic
RCI sets for the system (2.1) for unconstrained
case, for constraint set (Rn, Rm,W ), by extending
a relevant result recently established in (Raković,
2005).



Let Mi ∈ R
m×n, i ∈ N and for each k ∈ N let

Mk , (M0,M1, . . . ,Mk−2,Mk−1). An appropri-
ate characterization of a family of RCI sets for
the system (2.1) and constraint set (Rn, Rm,W )
is given by the following sets for k ≥ n:

Rk(Mk) ,

k−1
⊕

i=0

Di(Mk)W (3.1)

where the matrices Di(Mk), i ∈ Nk, k ≥ n are
defined by:

D0(Mk) = I, Di(Mk) , Ai+
i−1
∑

j=0

Ai−1−jBMj , i ≥ 1

(3.2)
providing that Mk satisfies:

Dk(Mk) = 0. (3.3)

Since the couple (A,B) is assumed to be con-
trollable such a choice exists for all k ≥ n. Let
Mk denote the set of all matrices Mk satisfying
condition (3.3):

Mk , {Mk | Dk(Mk) = 0} (3.4)

Theorem 1. (Raković, 2005) Given any Mk ∈ Mk

and the corresponding set Rk(Mk) there exists
a control law ν : Rk(Mk) → R

m such that
Ax + Bν(x) ⊕ W ⊆ Rk(Mk), ∀x ∈ Rk(Mk), i.e.
the set Rk(Mk) is RCI for the system (2.1) and
constraint set (Rn, Rm,W ).

The family of RCI sets (3.1) for the system (2.1)
and constraint set (Rn, Rm,W ) is merely a subset
of a richer family of RCI sets for system (2.1)
defined by the following sets for k ≥ n:

Sk(x̄, ū,Mk) , x̄ ⊕ Rk(Mk) (3.5)

and for all triples (x̄, ū,Mk) ∈ F × Mk.

Theorem 2. (Raković, 2005) Given any triple
(x̄, ū,Mk) ∈ F × Mk and the corresponding
set Sk(x̄, ū,Mk) there exists a control law µ :
Sk(x̄, ū,Mk) → R

m such that Ax + Bµ(x) ⊕
W ⊆ Sk(x̄, ū,Mk), ∀x ∈ Sk(x̄, ū,Mk), i.e. the
set Sk(x̄, ū,Mk) is RCI for the system (2.1) and
constraint set (Rn, Rm,W ).

PROOF. Let x ∈ Sk(x̄, ū,Mk) so that x = x̄+y

for some (x̄, ū, y) ∈ F × Rk(Mk). Let µ(x) = ū +
ν(y), where ν(·) is the control law of Theorem 1.
x+ ∈ A(x̄+y)+B(ū+ν(y))⊕W . Since (x̄, ū) ∈ F ,
x̄ = Ax̄+Bū. Also Ay+Bν(y)⊕W ⊆ Rk(Mk) by
Theorem 1. Hence, Ax+Bµ(x)⊕W = Ax̄+Bū+
Ay + Bν(y) ⊕ W = x̄ + Ay + Bν(y) ⊕ W ⊆ x̄ ⊕
Rk(Mk) = Sk(x̄, ū,Mk), ∀x ∈ Sk(x̄, ū,Mk).

The feedback control law µ : Sk(x̄, ū,Mk) → R
m

in Theorem 2 is a selection from the set valued

map:
U(x) , ū + MkW(x) (3.6)

where Mk ∈ Mk and the set of disturbance se-
quences W(x) is defined for each x ∈ Sk(x̄, ū,Mk)
by:

W(x) , {w | w ∈ Wk, x̄ + Dw = x}, (3.7)

where Wk , W × W × . . . × W and D =
[Dk−1(Mk) . . . D0(Mk)]. A µ(·) satisfying The-
orem 2 can be defined, for instance, as follows:

µ(x) , ū + Mkw
0(x) (3.8a)

w0(x) , arg min
w

{|w|2 | w ∈ W(x)} (3.8b)

The function w0(·) is piecewise affine, being the
solution of a parametric quadratic programme;
it follows that the feedback control law µ :
Sk(x̄, ū,Mk) → R

m is piecewise affine (being an
affine map of a piecewise affine function). Imple-
mentation of µ(·) can be simplified by noticing
that w0(x) in (3.8) can be replaced by any distur-
bance sequence w , {w0, w1, . . . , wk−1} ∈ W(x).

Theorem 2 states that for any k ≥ n the RCI set
Sk(x̄, ū,Mk) for the system (2.1) and constraint
set (Rn, Rm,W ), finitely determined by k, is easily
computed if W is a polytope. The set Sk(x̄, ū,Mk)
is parametrized by the couple (x̄, ū) and the ma-
trix Mk; this allows us to formulate an LP or QP
that yields the set Sk(x̄, ū,Mk) while minimizing
an appropriate norm of the set Sk(x̄, ū,Mk) or the
standard Euclidean distance of the couple (x̄, ū)
from the desired reference couple (x̂, û) in case of
the hard positive state and control constraints.

3.1 Optimized Robust Control Invariance Under
Positivity Constraints

We consider the following case frequently encoun-
tered in practice:

W , {Ed + f | |d|∞ ≤ η} (3.9)

where d ∈ R
t, E ∈ R

n×t and f ∈ R
n and:

◦

F6= ∅ (3.10)

where
◦

F, F ∩ (interior(X) × interior(U)). We
illustrate that in this case, one can formulate an
LP or QP, whose feasibility establishes existence
of a RCI set Sk(x̄, ū,Mk) for the system (2.1)
and constraint set (X,U,W ). The control law
µ(x) satisfies µ(x) ∈ U(x̄, ū,Mk) for all x ∈
Sk(x̄, ū,Mk) where:

U(x̄, ū,Mk) , ū ⊕
k−1
⊕

i=0

MiW (3.11)

The constraints (2.2) are satisfied if:

Sk(x̄, ū,Mk) ⊆ Xεx
, U(x̄, ū,Mk) ⊆ Uεu

(3.12)



where (εx, εu) ≥ 0.

Let γ , (x̄, ū,Mk, εx, εu, α, β) and

Γ , {γ | (x̄, ū,Mk) ∈ F × Mk,

Sk(x̄, ū,Mk) ⊆ Xεx
∩ B

n
p (x̂, α),

U(x̄, ū,Mk) ⊆ Uεu
∩ B

m
p (û, β),

(εx, εu, α, β) ≥ 0} (3.13)

where Sk(x̄, ū,Mk) and U(x̄, ū,Mk) are given by
(3.5) and (3.11), respectively, and (x̂, û) is the
desired reference couple.

Let

d1(γ) , qαα + qββ

d2(γ) , |x̄ − x̂|2Q + |ū − û|2R (3.14)

where the couple (qα, qβ) and the positive definite
weighting matrices Q and R are design variables.
Consider the following minimization problems:

P
i
k : γ0 = arg min

γ
{di(γ) | γ ∈ Γ}, i = 1, 2 (3.15)

where γ0 , (x̄, ū,Mk, εx, εu, α, β)0. It is easy to
establish (Raković, 2005) that the the problem P

1
k

is an LP and the problem P
2
k is a QP providing

that p = 1 or p = ∞ in (3.13).

If the set Γ 6= ∅, there exists a RCI set Sk =
Sk(x̄0, ū0,M0

k) for the system (2.1) and constraint
set (X,U,W ), and corresponding control law µ(·)
defined by (3.7) and (3.8) with (x̄, ū,Mk) =
(x̄0, ū0,M0

k). Furthermore, there might exist more
than one set Sk(x̄, ū,Mk) that yields the optimal
cost. The cost function might be modified. For
instance, an appropriate choice for the cost func-
tion is a positively weighted quadratic norm of the
decision variable γ that yields a unique solution,
since in this case problem becomes a quadratic
programming problem of the form minγ{|γ|

2
P | γ ∈

Γ}, where P is positive definite and it represents
a suitable weight. A relevant observation is:

Proposition 1. Suppose that the problem P
1
k (P2

k)
is feasible for some k ∈ N and the optimal value
of d1k (d2k) is d1

0
k (d2

0
k), then, for every integer

s ≥ k, the problem P
1
s (P2

s) is also feasible and the
corresponding optimal value of d1s (d2s) satisfies
d1

0
s ≤ d1

0
k (d2

0
s ≤ d2

0
k).

Thus we conclude that the first subproblem –
checking the existence and the construction of a
suitable target set that is robust control invari-
ant set for the system (2.1) and constraint set
(X,U,W ) and the computation of the correspond-
ing feedback controller can be efficiently realized
by solving a single LP or QP (if necessary for
sufficiently large k ∈ N). The crucial advantage of
our method lie in the fact that the hard positive
state and control constraints are incorporated di-
rectly into the optimization problem allowing for

the construction of an appropriate RCI set (target
set) with a local piecewise affine feedback control
law µ : Sk(x̄, ū,Mk) → U that renders the set
Sk(x̄, ū,Mk) RCI. These results can be used in the
synthesis of the robust time–optimal controller as
we illustrate next.

4. ROBUST TIME–OPTIMAL CONTROL

In this section we assume that there exists a set
T , Sk(x̄0, ū0,M0

k) obtained by solving the prob-
lem P

1
k or (P2

k) for some k ∈ N; T is compact, RCI
for the system (2.1) and constraint set (X,U,W )
and contains the point x̄0 in its interior; this set
is a suitable target set.

The robust time–optimal control problem P(x) is
defined, as usual, by:

N0(x) , inf
π,N

{N | (π,N) ∈ ΠN (x) × NNmax
},

(4.1)
where Nmax ∈ N is an upper bound on the horizon
and ΠN (x) is defined as follows:

ΠN (x) , {π | (xi, ui) ∈ X × U, ∀i ∈ NN−1,

∀w(·), xN ∈ T}
(4.2)

where for each i ∈ N, xi , φ(i;x, π,w(·)) and ui ,

µi(φ(i;x, π,w(·))). It should be observed that the
solution is sought in the class of the state feedback
control laws because of the additive disturbances,
i.e. π is a control policy (π = {µi(·), i ∈ NN−1},
where for each i ∈ NN−1, µi(·) : X → U). The
solution to P(x) is

(

π0(x), N0(x)
)

,

arg inf
π,N

{N | (π,N) ∈ ΠN (x) × NNmax
}. (4.3)

Note that, the value function of the problem P(x)
satisfies N0(x) ∈ NNmax

and for any integer i, the
robust controllable set Xi , {x | N0(x) ≤ i}
is the set of initial states that can be robustly
steered (steered for all w(·)) to the target set T ,
in i steps or less while satisfying all state and
control constraints for all admissible disturbance
sequences. Hence N0(x) = i for all x ∈ Xi \Xi−1.

The robust controllable sets {Xi} and the associ-
ated robust time-optimal control laws κi : Xi →
2U can be computed by the following standard
recursion (Mayne and Schroeder, 1997):

Xi , {x ∈ X | ∃u ∈ U s.t.

Ax + Bu ⊕ W ⊆ Xi−1} (4.4)

κi(x) , {u ∈ U | Ax + Bu ⊕ W ⊆ Xi−1},

∀x ∈ Xi (4.5)

for i ∈ NNmax
with the boundary condition X0 =

T = Sk(x̄0, ū0,M0
k).



The time-invariant control law κ0 : XNmax
→ 2U

defined, for all i ∈ NNmax
, by

κ0(x) ,

{

κi(x), ∀x ∈ Xi \ Xi−1, i ≥ 1

µ(x), ∀x ∈ X0

(4.6)

where the feedback control law µ(·) is defined
by (3.7)– (3.8) with (x̄, ū,Mk) = (x̄0, ū0,M0

k),
robustly steers any x ∈ Xi to X0 in i steps
or less to X0, while satisfying state and control
constraints, and thereafter maintains the state in
X0. We now recall a standard result (Mayne and
Schroeder, 1997) in robust time–optimal control:

Proposition 2. Suppose X0 = Sk(x̄0, ū0,M0
k) 6=

∅, then the set sequence {Xi} computed using
the recursion (4.4) is a non-decreasing sequence
of compact RCI sets (for the system (2.1) and
constraint set (X,U,W ), i.e. Xi ⊆ Xi+1 ⊆ X for
all i ∈ NNmax

; moreover for each i ∈ NNmax
, Xi

contains the point x̄0 in its interior.

The following property of the set-valued control
law κ0(·) defined in (4.6) follows directly from the
construction of κ0(·):

Theorem 3. The target set X0 is robustly finite-
time attractive for the closed-loop system x+ ∈
Ax + Bκ0(x) ⊕ W with a region of attraction
XNmax

.

We observe that for any i ∈ NNmax
an appropriate

selection of the control law κi(x) for all x ∈ Xi \
Xi−1 can be obtained by employing the para-
metric mathematical programming as we briefly
demonstrate next. For each i ≥ 1, i ∈ NNmax

let:

Zi , {(x, u) ∈ X × U | Ax + Bu ∈ Xi−1 ⊖ W}
(4.7)

and let Vi(x, u) be any linear or quadratic (strictly
convex) function in (x, u), for instance:

Vi(x, u) , |Ax + Bu|2Q (4.8)

Since Zi is a polyhedral set and since Vi(x, u) is
a linear or a quadratic (strictly convex) function
it follows that for each i ≥ 1, i ∈ NNmax

the
optimization problem Pi(x):

θ0
i (x) , arg inf

u
{Vi(x, u) | (x, u) ∈ Zi} (4.9)

is a parametric linear/quadratic problem. As is
well known (Bemporad et al., 2002; De Doná
and Goodwin, 2000; Mayne and Raković, 2003;
Bemporad et al., 2003), the solution takes the
form of a piecewise affine function of state x ∈ Xi:

θ0
i (x) = Si,jx + si,j , x ∈ Ri,j , j ∈ Nli (4.10)

where li is a finite integer and the union of
polyhedral sets Ri,j partition the set Xi, i.e. Xi =
⋃

j∈Nli

Ri,j .

If we let:

i0(x) , arg min
i
{i ∈ NNmax

| x ∈ Xi} (4.11)

it follows that θ0
i0(x)(x) ∈ κi(x) for all i ≥ 1, i ∈

NNmax
.

Our final remark is that the presented results are
also applicable, with a minor set of appropriate
modifications, when the hard control and state
constraints are arbitrary polytopes not necessarily
satisfying X × U ⊆ R

n
+ × R

m
+ .

5. NUMERICAL EXAMPLE

Our numerical example is the second order unsta-
ble system that is a linearized model of a flight
vehicle sampled every 0.2 s.:

x+ =

[

0.9625 −0.1837
0.3633 0.8289

]

x +

[

0.0618
−0.5990

]

u + w

(5.1)
where w ∈ W ,

{

w ∈ R
2 | |w|∞ ≤ 0.05

}

. The
following set of hard semi–positive state and posi-
tive control constraints is required to be satisfied:

X ={x | 0 ≤ x1 ≤ 10, −0.5 ≤ x2 ≤ 10},

U ={u | 0 ≤ u ≤ 1} (5.2)

where xi is the ith coordinate of a vector x. The
control objective is to bring the system as close
as possible to the origin, i.e. (x̂, û) = (0, 0) that
is a point on the boundary of the constraint sets.
The appropriate target set is constructed from the
solution of the modified version of the problem P

1
k,

in which p = ∞ and (εx, εu) were set to 0 and with
the following design parameters:

(k, qα, qβ) = (9, 1, 1), (5.3)

The optimal values of a triple (x̄0, ū0,M0
k) are

as follows: x̄0 = (0.2421, −0.0000)′, ū0 = 0.1468
and:

Mk
0 =





























−0.0627 1.4081
−0.0000 0.0000
−0.0000 0.0000
−0.0000 0.0000
0.0000 −0.0000
0.0000 −0.0000
1.1753 −0.0212
0.1611 −0.1083
0.0000 0.0000





























(5.4)

The RCI set X0 = Sk(x̄0, ū0,M0
k) is shown to-

gether with the RCI set sequence {Xi}, i ∈ N13

computed by (4.4) in Figure 1.

6. CONCLUSIONS

The main contribution of this note is a novel
characterization of a family of RCI sets for which
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3

x1

x2
X0 = Sk(x̄0, ū0,M0

k
)

X9

Fig. 1. RCI Set Sequence {Xi}, i ∈ N13

the corresponding control law is non-linear (piece-
wise affine) enabling better results to be obtained
compared with existing methods where the con-
trol law is linear. Construction of a member of
this family that is constraint admissible can be
obtained from the solution of an appropriately
specified LP or QP. The optimized robust control
invariance algorithms were employed to devise
robust–time optimal controller that is illustrated
by an example. The results can be extended to
the case when disturbance belongs to an arbitrary
polytope.

An appropriate and relatively simple extension of
the presented results allows for efficient robust
model predictive control of linear discrete time
systems subject to positive state and control con-
straints and additive, but bounded disturbances.
This relevant extension will be presented else-
where.
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trol of constrained piecewise affine discrete-
time systems. Journal of Computational Op-
timization and Applications 25, 167–191.

Mayne, D. Q. and W. R. Schroeder (1997). Ro-
bust time-optimal control of constrained lin-
ear systems. Automatica 33, 2103–2118.

Mayne, D. Q., J. B. Rawlings, C. V. Rao and
P. O. M. Scokaert (2000). Constrained model
predictive control: Stability and optimality.
Automatica 36, 789–814. Survey paper.

Pannocchia, G., S. J. Wright and J. B. Rawlings
(2003). Existence and computation of infinite
horizon model predictive control with active
steady-state input constraints. IEEE Trans.
Automatic Control 48(6), 1002–1006.
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