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Abstract: This paper presents a design method of the reference governor for a
stabilizable linear system with input constraints. When the input has a constraint,
the input saturation might happen and thus, the controller cannot work correctly.
Furthermore, the output might diverge in the case of an open loop unstable
system. To remedy this problem, the reference governor is proposed. The set-point
control problem with control constraints is considered. In the proposed method,
the behaviors of the states and input are predicted and the reference is modified so
that the predicted input never exceeds the saturation limits and the modified one
is closest to the given set-point command among the values which are achievable
without the input saturation. The convergence of the newly generated reference
trajectory is proved. Simulation results are included to verify the performance of
the proposed method. Copyright c©2005 IFAC.
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1. INTRODUCTION

Every physical actuator is subject to saturation
due to its upper and lower limits. When we ap-
ply a control scheme designed without consid-
ering this actuator saturation, the performance
cannot be guaranteed or the system can become
unstable because the controller cannot work as
expected. A well-known example of performance
degradation is an integrator windup phenomenon
in a PID controller (Franklin et al., 1994; Åström
and Hägglund, 1995). Whenever control satura-
tion happens, the integrator will keep integrating
unnecessarily, resulting in substantial overshoot.
The remedy for this is to stop the integral control
law from integrating, because the input to the
plant does not change at all when saturated. This
is referred to as an anti-windup scheme. Another
solution is the reference modification. By mod-
ifying the reference, we can prevent the control

input from entering the saturation region. This is
a reference governor approach. In the case of the
unstable open loop plants, changing the control
signal can make the closed loop system unstable
because the stabilization by the controller cannot
be guaranteed. The reference governor is an aux-
iliary system to the controller, which is already
designed to stabilize the system and track the
reference in the absence of the input constraints.
Therefore, the reference governor approach is ef-
fective especially when the open loop plant is
unstable.

Many researches have been carried out in the
field of feedback control systems with input con-
straints. Pertinent results and relevant references
are suggested in (Sussmann et al., 1994). One
of the research directions is anti-windup schemes
(Kothare et al., 1994; Hanus et al., 1987; Åström
and Rundqwist, 1989; Zheng et al., 1994; Hu



and Rangaiah, 2000). Some studies address the
adaptive control method to solve an actuator sat-
uration problem (Tao and Kokotović, 1996; Tao
and F. F. Lewis, 2001; Hu and Lin, 2001; Kapila
and K. M. Grigoriadis, 2002). Recently, the ref-
erence governor approach has been much stud-
ied, mostly based on the predictive control. Mov-
ing horizon optimal control (Mayne and Michal-
ska, 1990; Yang and Polak, 1993) and model
predictive control (Mosca, 1995) have proved to
be appropriate for dealing with such a problem.
Gilbert et al. (Gilbert et al., 1995; Gilbert and
Kolmanovsky, 1995) suggested discrete-time ref-
erence governors. Bemporad et al. (Bemporad et
al., 1997; Bemporad and Mosca, 1998; Bemporad,
1998) developed a class of discrete-time reference
governors based on conceptual tools of predictive
control. Also, Gilbert and Kolmanovsky proposed
the reference governor for continuous-time nonlin-
ear systems based on families of Lyapunov func-
tions (Gilbert and Kolmanovsky, 1999), which is
further extended to the method based on sublevel
sets of equilibria-parameterized functions (Gilbert
and Kolmanovsky, 2001).

In this paper, we pursue the approach originated
by Kapasouris et al. (Kapasouris et al., 1988; Ka-
pasouris et al., 1990) and consider a set-point con-
trol problem associated with linear systems with
input constraints. The main idea is to modify the
reference depending on the possibility of present
and future violation of the input constraint. We
simplify the structure of the reference governor
without an integrator. While the approach by
Kapasouris can be only applied to the case of
saturation in transient state, our approach can
also handle the case of saturation in steady-state.
Also, we reduce the computational complexity.
Using the proposed method, the stability of the
closed loop system is maintained, especially for
open loop unstable plant.

We first describe the linear plant and the sta-
bilizing state feedback controller in Section 2.
In Section 3, we propose the reference governor
to modify the reference trajectory to maintain
the closed loop stability. The performance of the
proposed reference governor for such a system is
proved. Moreover, we introduce the time horizon
in calculating the time infinity norm to reduce
the computational complexity, which is possible
because all states will be settled in stable linear
systems. In Section 4, Simulation results are in-
cluded to demonstrate the performance. Section 5
contains conclusions.

Fig. 1. The overall structure of the proposed
reference governor.

2. STATEMENT OF THE PROBLEM

Consider the following single-input single-output
(SISO) linear time invariant system with n-
dimensional state x ∈ <n,

ẋ = Ax + Bu,

y = Cx,
(1)

where A ∈ <n×n, B ∈ <n×1, C ∈ <1×n. It is
desired to pick a state-feedback control u so that
the output y follows a given set-point command
r and the overall system is stabilized. The state
feedback control

u = Kx + r, (2)

where K ∈ <1×n is a stabilizing feedback gain
vector, can stabilize the system under Assumption
1.

Assumption 1. A + BK is Hurwitz.

The closed loop system including the plant and
the controller can be written as:

ẋ = (A + BK)x + Br,

y = Cx.
(3)

3. REFERENCE GOVERNOR DESIGN AND
ANALYSIS

In this section, a design method of reference
governor for a closed loop system (3) with an
actuator saturation is proposed and the properties
of the proposed reference governor are discussed.

3.1 Overall Structure

Assume a control input has saturation limits umax

and umin. Define an saturation operator as

sat(u) =





umax if u ≥ umax

u if umin ≤ u ≤ umax

umin if u ≤ umin

. (4)



Because the controller is designed without consid-
ering the actuator saturation, the controller can
guarantee its performance only in the unsaturated
region. Therefore, it is desirable to prevent a con-
trol input from entering the saturated region.

The goal of the reference governor is to find a
modified reference closest to the given reference r
with keeping a control input staying in the unsatu-
rated region and thus making the saturation never
happen. The overall structure of the proposed
reference governor is shown in Figure 1. A time-
varying parameter µ is introduced, through which
the reference modification is achieved.

3.2 Construction of Reference Governor

If we consider u as an output in the closed-loop
system and also apply the proposed reference gov-
ernor to this system, the overall system equation
including the reference governor becomes

ẋ = Acx + Bµr,

u = Kx + µr,
(5)

where Ac = A + BK.

The basic idea is to find µ closest to 1 such that
u(t) satisfies the input constraints for all t ∈
[0, ∞). However, it is impossible to get u(t) after
the current time to (i.e., t > to). Hence, we have to
use predicted signals instead of actual signals. Let
x̂(τ) and û(τ), τ = t − to, denote the predicted
state and the predicted input signal for t > to

in the reference governor. Then, the predicted
system equation in the reference governor can be
written as:

˙̂x(τ) = Acx̂(τ) + Bµr,

û(τ) = Kx̂(τ) + µr.
(6)

The purpose of the reference governor is to pick µ
closest to 1 so that the predicted control input û
never saturates for given r in (6). If we denote a
saturation limit as L with umax = −umin = L, the
avoidance of the input saturation and convergence
of the output to the value closest to the given r
among the values which are achievable without
the input saturation is shown in the following
theorem under the Assumption 2.

Assumption 2. Initial state x(0) satisfies the in-
put constraints, i.e, there exists µ such that

|KeAcτx(0) + K
(
eAcτ − I

)
A−1

c Bµr + µr| ≤ L,

∀τ ∈ [0, ∞), (7)

and is denoted by µ(0).

Theorem 3. If we choose the largest µ ∈ [µ(0), 1]
which satisfies (8) when µ(0) ≤ 1 or the smallest
µ ∈ [1, µ(0)] which satisfies (8) when µ(0) ≥ 1,
for t ≥ to,

|KeAcτx(to) + K
(
eAcτ − I

)
A−1

c Bµr + µr| ≤ L,

∀τ ∈ [0, ∞), (8)

the actual input can satisfy the given input con-
straints for t ≥ to, i.e.,

|u(t)| ≤ L, ∀t ∈ [to, ∞), (9)

and µ converges to some constant µ∗. Then, µ∗r
is the closest value to r among the values which
are achievable within the given saturation limits.
If the given reference r is attainable without
violating the input constraints, µ∗ = 1.

Proof: The solution of (6) with x̂(0) = x(to) can
be obtained as follows:

û(τ) = KeAcτ x̂(0) + K

∫ τ

0

eAc(τ−ξ)Bµrdξ + µr

= KeAcτ x̂(0) + KeAcτ

∫ τ

0

e−AcξdξBµr + µr

= KeAcτ x̂(0) + K
(
eAcτ − I

)
A−1

c Bµr + µr

= KeAcτx(to) + K
(
eAcτ − I

)
A−1

c Bµr + µr.

Then, (8) implies

|û(τ)| ≤ L, ∀τ ∈ [0, ∞). (10)

If we substitute τ with t− to, then (10) becomes

|û(t− to)| ≤ L, ∀t ∈ [to, ∞). (11)

Also, the solution of (5) on t ≥ to is:

u(t) = KeAc(t−to)x(to)

+K
(
eAc(t−to) − I

)
A−1

c Bµr + µr (12)

= û(t− to). (13)

Therefore,

|u(t)| ≤ L, ∀t ∈ [to, ∞). (14)

Denote µ which satisfies (8) as admissible µ.
From the Assumption 2, there exists admissible
µ(0). Assume µ(0) is less than 1. If there is no
admissible µ(t) larger than µ(0) for all t ∈ [0, ∞),
µ∗ = µ(0). Since only the µ(t) which is larger
than µ∗ is meaningful, if there is an admissible
µ(t) which is larger than µ∗, µ∗ = µ(t). Also, the
output will reach µ∗r. Therefore, µ∗ will increase
until there is no admissible µ(t) which is larger
than µ∗. Therefore, µ∗ is monotone increasing



and it is also bounded, thus it converges. If there
exists an admissible µ(t) ≥ 1, which means the
given reference r is attainable without violating
the input constraints, µ∗ is set to one, i.e., µ∗ = 1.
When µ(0) is larger than 1, the convergence of µ∗

can be proved in a similar way.

Remark 3.1. The maximum and minimum values
of µ(t) can be directly calculated from (8) using
the input saturation limit values. Define α(τ) =
KeAcτ and β(τ) = K

(
eAcτ − I

)
A−1

c B + 1. Then
(8) means that

|α(τ)x(to) + β(τ)µr| ≤ L ∀τ ∈ [0, ∞).

Therefore,

µmax = min

{
min

β(τ)>0

L− α(τ)x(to)

β(τ)r
, min

β(τ)<0

−L− α(τ)x(to)

β(τ)r

}
,

µmin = max

{
max

β(τ)>0

−L− α(τ)x(to)

β(τ)r
, max

β(τ)<0

L− α(τ)x(to)

β(τ)r

}
,

∀τ ∈ [0, ∞).

Since any µ between µmax and µmin satisfies
the input constraints, µ∗ should be selected as
min{µmax, 1}.

Remark 3.2. From the practical point of view,
û(τ) cannot be calculated for all τ ∈ [0, ∞). In
practice, the time interval is restricted to [0, T ].
T should be large enough to get an information
for the maximum and minimum values of |u(t)|.
There is no general rule for picking the time
interval T . However, we can think of a guideline in
linear systems, for example, the settling time can
be one candidate. Simulation results in the next
subsection provide the insight about how to get
the value of T .

4. SIMULATION RESULTS

The performance of the proposed reference gov-
ernor is now illustrated through simulations. The
set-point regulation problem for an unstable linear
time invariant system is considered. The plant is
given by

ẋ1 = x2,

ẋ2 = −2x1 + 3x2 + u,

y = x1.

(15)

The plant has unstable poles at s = 1 and
s = 2. To stabilize this plant, the state feedback
controller is designed as

u = −6x2 + 2r, (16)

where r is a desired set-point. Then, the closed
loop system poles are at s = −1 and s = −2, and
y will approach to r asymptotically.

An initial condition is given by x(0) = [0 0].
Figure 2 shows the regulation performance of
the given state feedback controller without an
actuator saturation when r = 1; Figure 2(a) shows
reference and output trajectories and Figure 2(b)
shows an input trajectory. As shown in Figure
2(b), input varies between −1 and 2. Assume the
actuator works only between −0.5 and 2, i.e.,

sat(u) =





2 if u ≥ 2
−0.5 if u ≤ −0.5
u if − 0.5 ≤ u ≤ 2

. (17)

Then, saturation happens at u = −0.5, which
causes the instability of the closed loop system
since the open loop plant is unstable. Figure 3(a)
and 3(b) show the response of the output and
the input, respectively. To solve this problem, the
proposed reference governor is applied with T = 5.
The predicted system equation in the reference
governor can be represented as follows:

˙̂x(τ) = Acx̂(τ) + Bµr,

û(τ) = Kx̂(τ) + µr,
(18)

where

Ac =
[

0 1
−2 −3

]
, (19)

B =
[

0
1

]
, (20)

K =
[
0 − 6

]
. (21)

The solution of (18) can be obtained as follows:

û(τ) =
(
12e−τ − 12e−2τ

)
x̂1(0)

+
(
6e−τ − 12e−2τ

)
x̂2(0)

+
(−12e−τ + 12e−2τ + 2

)
µr. (22)

Then, µ can be calculated by checking the max-
imum and minimum value of û(τ) and restrict-
ing both the maximum value is less than umax

and the minimum value is larger than umin on
0 ≤ τ ≤ 5. Figure 4(a) depicts modified reference
and output trajectories and Figure 4(b) depicts
an input trajectory. The changes of parameter µ
and maximum and minimum value of the input û
on τ ∈ [0, 5] are described in Figure 4(c) and 4(d).
The saturation does not happen and the stability
of the system is maintained. Moreover, the output
trajectory approaches to the modified set-point
asymptotically. From these results, we can see
that the proposed reference governor shows the
satisfactory performance.

5. CONCLUSIONS

In this paper, we have proposed the design method
of the reference governor for a linear plant with
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(a) The output trajectory. The solid line
indicates the reference and the dashed line
indicates the output.
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Fig. 2. The regulation performance in the case of
no input saturation when x(0) = [0 0].

saturating actuators and a stabilizing controller.
Since the plant is open loop unstable, actuator
saturation should be avoided to make the stabi-
lizing controller work correctly. The contributions
of the proposed reference governor can be summa-
rized as follows:

• By introducing parameter µ, reference is
modified depending on the variation of µ.

• As µ goes to 1, the reference governor gen-
erates the given reference r. Hence, the per-
formance for unsaturated input can be recov-
ered.

• Whenever the control input reaches the sat-
uration bound, µ is changed such that the
control input stays in the unsaturated region.

• The modified reference converges to some
constant value achievable with the input
which satisfies the constraints, thus avoiding
the saturation phenomenon.
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