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Abstract: The orthogonal least squares algorithm (OLS) and the support vector regression 
(SVR) are two popular approaches to choose the structure of the Radial Basis Function 
Network (RBFN). The former is derived based only on the modelling errors, whilst the 
latter also on the model complexity. A comparison of the generalization results of 
networks selected from the OLS and the SVR is presented here using a simulated 
nonlinear system, and river discharges and rainfall data of Fuji River. The RBFN based 
on the SVR is shown to perform better than that based on the OLS.  
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1.  INTRODUCTION 

The lattice and the scattering methods are the two 
most popular approaches to select the structure of a 
Radial Basis Function Network (RBFN). In the 
former, the input space of the network is partitioned 
by lattice with the radial basis functions (RBFs) 
positioned at the nodes (Brown and Harris, 1994), 
whilst in the latter, the RBFs are scattered over the 
input space (Jang, et al., 1997). The well known 
problem in the lattice method is the “curse of 
dimensionality”, since the number of RBFs in the 
network increases exponentially as the dimension of 
the input space increases. With the RBFs scattered 
over the input space in the scattered method, fewer 
RBFs are used, hence reducing this problem to a 
more manageable one. However, the main problem in 
the scattering method is the selection of the centres 
of the RBFs, so as to reduce complexity of network, 
whilst maintaining its generalization ability. 

There are two popular approaches to select the 
structure of the networks in the scattering method. 
The first one is to minimize a cost function 
consisting of the model complexity and the variance 

of the modeling errors, and the second one, just to 
minimize the variance of the modeling errors. The 
Support Vector Regression (SVR) derived from 
statistical learning theory and structural risk 
minimization principle (Vapnik, 1998) is an example 
of the first approach. The Support Vector Radial 
Basis Function Network (SVRBFN) is derived from 
SVR with the Support Vectors (SVs) as the centres of 
the RBFs of the network (Chan, et al. (2001). In the 
second approach, the Orthogonal Least Squares (OLS) 
learning algorithm (Chen et al., 1989) is proposed for 
selecting the centres of the RBFs. Both approaches 
have their own strength. However, if they are 
compared based on the variance of the modeling 
errors, better results will generally be obtained from 
the second approach, as it minimizes only the 
variance of the modeling errors. However, the 
generalization result may not necessary be better than 
the lattice method, as the latter may over-fit the data. 
In this paper, the generalization ability of both 
approaches is compared using a simulated nonlinear 
dynamic system with additive white noise, and the 
river discharges and rainfall data of Fuji River from 
January 1990 to December 1993. 
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2.  RADIAL BASIS FUNCTION NETWORKS 

Consider a nonlinear system with a white noise, 

          (1) 
)())(,),1(

),(,),1(()(
kemkuku

mkykyfky
u

y
+−−

−−=
L

L

where y(k) and u(k) are the output and the input; my 
and mu are known orders of the system; e(k) is a 
normally distributed zero mean white noise, e(k) ~ 
N(0,σ2); f(.) is a well-defined but unknown nonlinear 
function. The nonlinear system (1) can be rewritten 
as, 
       (2) )())(()( kekXfky +=
where X(k) = [y(k–1),…,y(k–my),…,u(k–1),…,y(k–
mu)]T. Let m = my + mu. For convenience, denote X(k) 
= [x1(k) , … , xm(k)]T. Since f(.) is a well-defined 
nonlinear function, and RBFs are able to interpolate 
in high-dimensional input space (Powell, 1985), the 
following RBFN can provide a good approximation 
of f(.),  
  (3) ∑ == n
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where Ni(.) is the ith multivariate basis function and θi 
is the corresponding weight. In (3), the RBF is a 
nonlinear function of the Euclidean distance between 
the network input X(k) and the centre C(i) of the 
basis function, where C(i) = [c1(i) , … , cm(i)]T. The 
Gaussian function µi(X(k)) is used here for their good 
localization property, 
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where γ is the spread (standard deviation) of the 
Gaussian function, which must be chosen to ensure a 
thorough coverage of the input space. As discussed 
previously, the generalization ability of RBFNs 
depend on the choice of the centres of the RBFs, 
which can be chosen by the scattering or the lattice 
methods (Jang et al., 1997).  
 
Since RBFs do not necessarily form a partition of 
unity, Ni(.) is obtained after normalization, as given 
below. 
 ∑ == n
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3.  ORTHOGONAL LEAST SQUARES 

ALGORITHM 
 

The OLS learning algorithm is a technique for 
computing the centres of the RBF and the weights of 
the RBFN from input data (Chen, et al., 1991). An 
input datum is selected as a centre, if it maximizes 
the cost function, defined below as the error 
reduction ratio (ERR) (Chen, et al., 1989). For N 
samples, (3) is rewritten in matrix form as, 
 ξ+= θΦY  (6) 
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If all the input data are chosen as the centres of the 
RBFs, then 
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Consider an orthogonal decomposition of Φ, 
 TQ=Φ  (8) 
where Q is a N x N upper unit triangular matrix 
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and T = [t1 , … , tN] is a N x N matrix, satisfying, 
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Applying the classical Gram-Schmidt (CGS) 
procedure to compute Q one column a time and 
orthogonalizing Φ gives,  
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where <⋅,⋅> is the inner product. Rearranging (6), 
        (12) ξξ))((ξ 1 +=+=+= − TgQQY θΦθΦ
and the linear least squares estimate of g is given by, 
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The estimated weights  is obtained from Qθ = g by 
back substitution. Consider the cost function, 

θ̂
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From (12) and (13), (14) becomes, 
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From (16), a simple and effective forward-selection 
procedure can be derived for choosing the RBF 
centres. This can be considered as finding a subset of 
models with all the related variables denoted by the 
subscript s, e.g., Ts. At the ith stage, by interchanging 
the ith to Nth columns of Φ, a φi is selected that gives 
the largest ERRi when orthogonalized into ti. At the 
first stage, for i = 1 , … , N, denote t1

(i = φi and 
compute 
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Assume that ERR1
(j = max{ERR1

(i, 1 ≤  i  ≤ N}, then 
t1 = t1

(j is the first column of Ts;  g1 = g1
(j is the first 



element of gs; ERR1 = ERR1
(j. At the second stage, 

for i = 1 , … , N and i ≠ j, then compute 
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Assume that ERR2

(k = max{ERR2
(j, 1 ≤  i  ≤ N and i ≠ 

j}, then t2 = t2
(k is the second column of Ts; λ12 = λ12

(k 
for Qs; g2 = g2

(k is the second element of gs; ERR2 = 
ERR2

(k. The selection procedure continues until the 
Ns

th stage until  
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where ρ, 0 < ρ ≤ 1, is a desired tolerance. The 
estimated weights for the subset model  can be 
computed from Q

sθ̂

sθs = gs by back substitution. 
 
 

4. SUPPORT VECTOR BASIS FUNCTION 
NETWORK 

Given N input-output data pairs , 
where X(k) is defined in (2), the SVR is given by, 

N
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  (20) bXwXf +>=< ,)(
where w is a set of weighting parameters, b is the 
bias, and <.,.> is defined in (11). The input space is 
transformed into a high-dimensional feature space 
involving both w and X. The SVR is obtained by 
minimizing the regularized risk functional for a 
precision level ε (Vapnik, 1998), 
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where  is the ε-insensitive loss function and 
C is the regularization constant determining the 
trade-off with the complexity cost ||w||

][ fempV ε

2. The ε-
insensitive loss function gives the SVR a sparseness 
property, since training errors with amplitude less 
than ε will not be penalized, i.e.,  
 })(,0max{)( εε −−=− Xfy Xfy  (22) 
The minimization problem of (21) is equivalent to 
the constrained optimization involving the Lagrange 
multipliers α , α  (Schölkopf and Smola, 2002): 
Min. 
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The regression (20) reduces to, 
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From the Karush-Kuhn-Tucker conditions: 
(1) For data lying outside the ε-insensitive tube, 
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(2) For )/,0( NCi ∈α  such that 0=
i

ξ , 0=iα , then  

b = y(i) - <w,X(i)> + ε, and for iα ∈ (0, C/C), 
such that 0=ξi , 0=iα , then b = y(i) - <w, X(i)> 
- ε. The bias b can be obtained from data lying on 
the boundary of the ε-insensitive tube, |y(i) – 
f(X(i))| = ε. 

(3) For data within the ε-insensitive tube, |y(i)–
f(X(i))| < ε, both Lagrange multipliers will be 
zero, and they are therefore ignored. For data 
lying outside or on the boundary of the ε-
insensitive tube, they are retained as the SVs of 
(24), since one of their Lagrange multipliers is 
non-zero. 

 
Let the kernel K(X(i),X) be given by the inner 
product in the feature space, where X is the m-
dimensional training data in the input space ℜm. With 
kernels that have the SVs as their centres are retained, 
X now reduces to Xsv(i), where nsv is the number of 
SVs, and (24) reduces to the SVR, 
 bkXiXKkXf svn
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The main advantage of the SVR is that its structure, 
i.e., the number and the positions of the SVs, are 
determined objectively for a given precision level ε. 
As the output of the SVR is biased, the SVRBFN 
(Chan et al. 2001) is derived from the SVR to 
overcome this problem,  
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where Ni(X(k)) is the ith normalized basis function, θi 
is the corresponding weight and the kernel is defined 
by the Gaussian function as given by (4), 
     )2)()(exp())(( 22
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The SVRBFN (28) is a kernel-based RBFN with 
clustered partitioning of the input space, where the 
centres of the RBF are given by the SVs. It is shown 
in (Chan et al. 2001) that the variance of the 
modelling errors of the SVRBFN is bounded by ε2. 

 
Since the SVRBFN is a linear-in-weight network, the 
weights can be computed by the linear least squares 
method. In vector notation, the SVRBFN (26) 
becomes, 
  (28) θkXBky T ))(()( =
where B(X(k)) = [N1(X(k)) , … , Nnsv(X(k))]T and θ = 
[θ1 , … , θnsv]T. The estimate of y(k) is given by, 
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The training procedure of the SVRBFN is as follows. 
 
Step 1 Normalize the input-output data to be within 

the range [0,1]. Choose the spread γ of the 
Gaussian function (29) to ensure a thorough 
coverage of the input space. 

Step 2 Select ε and C, and obtain the SVs by 
minimizing )α , α(L  subject to the constraints 
given by (23). 

Step 3 Using the SVs as the centres of the normalized 
basis functions, compute B(X(k)) = 
[N1(X(k)),…, Nnsv(X(k))]T in (30). Obtain the 
linear least squares estimate of the weights  
from (32). 

θ̂

Step 4 Evaluate the modelling errors of the SVRBFN. 
Choose another ε, if necessary, and repeat 
Steps 2 and 3. 

Step 5 Compute the estimated output from (29), then 
use the scaling factors in Step 1 to re-scale the 
estimated output back to the original range. 

 
 

5.  EXAMPLES 
 

To compare the generalization results of the RBFN 
obtained by the OLS algorithm and the SVRBFN, two 
examples are presented here. The first one involves a 
simulated nonlinear dynamic system and the second 
one, the river discharges and rainfalls data for the 
Fuji River. 
 
Example 1 - Nonlinear System 
Consider the nonlinear system (Brown and Harris, 
1994), 
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where e(k) is a white noise. From (33), m = 2, and 
X(k) = [y(k-1), y(k-2)]T. For e(k) ≡ 0, the output of the 
nonlinear system is a spiral starting from the initial 
condition X(1) = [0.1, 0.1]T moving towards a 
globally attracting limit cycle, as shown in Fig. 1. 
For e(k) ~ N(0,0.12), 300 data are generated with  X(1) 
= [0, 0]T, as shown in Fig, 2. 
 
Only the first 50 data are used to determine the 
structure of the SVRBFN, as the remaining data are 
on the limit cycle, and hence they do not offer new 
information for modelling. From the procedure 
described in section 4, 10 SVs are obtained for γ2 = ½, 
ε = 0.2 and C = 300, and are marked by circles in Fig. 
2. The variance of the modelling errors is 0.0099, 
and the mean is approximately zero. From the 
estimated weight ,  is computed from (28), 
and the iterative map is shown in Fig. 3.  

iθ̂ )(ˆ ky

 
The OLS algorithmmethod given by (17) to (19) is 
now used to select the centres of the RBFs. In this 

case, Φ given by (7) contains 300 columns. The same 
spread, γ2 = ½, is also used.  

 
Fig. 1  Iterative map of output for  0)( ≡ke

 
Fig. 2  Iterative map of output for e(k) ~ N(0,0.12) 

showing 10 OLS centres and 10 SVs 

 
Fig. 3  Iterative map of output of SVRBFN 

 
Table 1 RBF networks obtained for different ρ

ρ 0.02 0.021 0.022
OLS Centres 12 10 9 

2σ̂  0.0097 0.010 0.0106 

 
In Table 1, the data retained are referred to as the 
OLS centres for convenience. The main reason for 
choosing these values of ρ is that the results obtained 
are comparable to that from the SVRBFN that has 10-
SV. Only the iterative map of the output of the RBFN 
with 12 OLS centres is shown in Fig. 4, as the 
variance of the modeling errors is the smallest, and 
all other three iterative maps are similar to it. 
Although the variance of the modelling errors of the 
RBFN with 12 OLS centres are smaller than that of 
the SVRBFN with 10 SVs, the iterative map of its 
output shown in Fig. 4 looks different from that of 
the nonlinear system shown in Fig. 1. However, the 
iterative map of the SVRBFN with 10-SV shown in 
Fig. 3 is closer to that shown in Fig. 1, indicating a 
better generalization result is obtained from the 
SVRBFN.  



 
Fig. 4  Iterative map of output of the RBFN  with 

12-OLS centres  
 
Example 2 - River discharges of Fuji River 
Daily river discharges y(k)m3/s, are collected at 
Kitamat-suno gauging station, 10.7 km from the river 
mouth with a catchment area of 3540 km2. Rainfall 
u(k) mm are collected daily at 10 weather stations in 
and around the basin (Kamikuishiki, Nakatomi, 
Kawaguchiko, Yamana-ka, Nanbu, Ooizumi, 
Nirasaki, Kofu, Katsunuma and Ootsuki). A total of 
1461 sets of daily rainfall and river discharges data 
from January 1990 to December1993 are used in this 
example. The first 1000 normalized data are used to 
train the RBFN, whilst the remaining data are used to 
validate the networks. From the autocorrelation 
functions of river discharges, and the cross-
correlation functions between rainfall and river 
discharges, the input X(k) is (Choy and Chan, 2003):  
        Tku  ,ku  ,ky  ,kykX )]1()()2()1([)( −−−= . 
Out of the 1000 normalized data, only 53 data are 
used to select the SVs, as the computing time using 
all 1000 data may be substantial. These data are 
obtained as follows. As most data are lying within 
the range between 0 and 0.1, this range is divided 
into 10 sub-divisions. Thirty data are obtained by 
selecting 3 data randomly from each sub-division. 
The other data are the smallest and all data in the 
range between 0.1 and 1 (Choy and Chan, 2003). 
These are the training data for both the SVRBFN and 
the RBFN based on the OLS. For γ = 1 and C = 300, 
several SVRBFNs are obtained for different ε. The 
“best” model is obtained for ε = 0.09, as shown in 
Fig. 5, with 9 SVs marked by circles. The mean of 
the modelling errors is approximately zero and the 
variance is 88.682. Four outliers are observed in the 
modelling errors, which may arise from the data 
collection process. Since rainfalls are accumulated 
over a day, whilst the river discharge data are 
measured at regular intervals, discrepancies may 
therefore arise from the data collection process 
(Choy and Chan, 2004). Intervention variables are 
introduced to remove these outliers (Box, et al., 
1994). The procedure for selecting the SVRBFN is 
repeated with the adjusted data with γ = 0.7, C = 300, 
ε = 0.09. Ten SVs are selected and the variance of the 
modelling errors is 44.402. 
 
The SVRBFN is validated by using it to predict the 
river discharges for the period from 1001 to 1461. 
The variance of the prediction errors is 78.322, and 

reduces to 55.192 after two further outliers in the 
residuals are removed, giving a result close to that 
obtained previously. 

Fig. 5  10 OLS centres vs 10 SVs 
 
The OLS learning algorithm is now used to identify 
the RBF centres using all of the 1000 data. With γ = 1, 
ρ = 0.057, 10 OLS centres are obtained. The variance 
of the modelling errors is 74.692 and 6 outliers are 
observed. As discussed above, they are removed 
using 6 intervention variables, and the variance of the 
modelling errors is 45.322. The variance of the 
prediction errors using validation data is 84.182, and 
2 outliers are observed. Excluding these 2 outliers, 
the variance is 60.622. Clearly, the SVRBFN performs 
slightly better than the RBFN obtained from the OLS 
learning algorithm. 
 
To compare the performance of these networks, the 
case where it rains for two consecutive days is 
considered. The prediction of the river discharges for 
a 5-day period after raining for the first two days are 
computed from these networks with intervention 
variables. For convenience, normalized data are used 
in the following comparison. The normalized rainfall 
for day 1 is fixed at 0.4, giving 4.0)1( =u , and )2(u  
is set to a value varying from 0 to 1 with an 
increment of 0.05. The prediction of river discharge 
from the SVRBFN for these rainfalls is shown in Fig. 
6, showing the highly nonlinear relationship. 

 
Fig. 6  River discharges after raining for 2 

consecutive days with 4.0)1( =u  
 

The procedure is repeated for both networks with 
)2(u set to 0.4, whilst )1(u varies from 0 to 1 by an 

increment of 0.2. The results are plotted in Fig. 7. It 
is observed that the predicted river discharges in day 
2 from the RBFN based on the OLS algorithm are 
almost the same irrespective of the rainfalls on that 



day. This result does not seem to be sensible. In 
contrast, the predicted river discharges in day 2 from 
the SVRBFN varies in-line with changes in the 
rainfall on that day, showing clearly that the 
generalization results obtained from the SVRBFN is 
more sensible than that obtained from the OLS 
algorithm. 
 
(a) RBFN using OLS 

 
(b) SVRBFN 

 
Fig. 7 River discharges after raining for the first 2 

days 

6.  CONCLUSIONS 
 
The selection of the structure of RBFN is 
investigated. From simulated and real data, it is 
found that the generalization results of the network 
with its structure selected taking into account the 
model complexity, i. e., the SVRBN is much better 
than the one that considered only the variance of the 
modelling errors, i.e., the OLS algorithm. This result 
illustrates the importance of the model complexity in 
the structure selection of RBFNs. 
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