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Abstract:  A popular approach to detect the Transcriptional Start Sites (TSSs) of genes 
that are CpG sensitive is based on the CpG islands. For these genes, their TSSs is 
characterized by sudden increases in the CpGs in the DNA sequence. In this paper, a 
novel gene prediction method is proposed that transforms the problem of detecting the 
TSSs to that of detecting a change in the mean of a stochastic process using the 
asymptotic local approach. Features of the CpG islands, such as the cyclic nature, are 
used to reduce the false detection rate. The proposed method is applied successfully to 
identify all the genes in the rabbit alpha-like gene cluster, and in a section of the human 
chromosome 22, 73% of the confirmed genes are predicted. Comparison with the Dragon 
Gene Start Finder is also made showing that the proposed method has a higher sensitivity.   
Copyright © 2005 IFAC 
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1. INTRODUCTION 

The outcome of the sequencing of DNA is a string of 
four different bases: adenine (A), thymine (T), 
cytosine (C), and guanine (G).  After sequencing, the 
next important task is to extract the hidden meaning 
behind these data, by first finding the genes, then 
determining how their expression is regulated and 
the functions of the proteins they encode. These 
results would be very useful for analyzing the 
association between gene mutations and diseases, 
and for discovering measures to cure the diseases.   

There are two common approaches to identify genes. 
The first approach is based on comparison with 
known genes, whilst the second one is to identify 
special features in the DNA sequence signifying the 
possible existence of genes. In the first approach, 
picking the gene sequence for comparison and 
selecting the thresholds in the comparison can be 
difficult and time consuming. Further, these methods 
suffer from the main drawback that it is virtually 
impossible to identify new genes, as comparisons are 
made only with known genes.   

In the second approach, criteria are proposed to 
discriminate between the protein-coding regions and 
the non-coding regions. Since these techniques do not 
rely solely on the knowledge of existing genes, they 
are therefore more general. Several criteria are 
proposed: differences in codon usage (Staden and 
McLachlan, 1982), hexamer counts (Fickett, 1996), 
entropy measures (Almagor, 1985). Statistical 
analysis methods are also developed based on neural 
networks (Snyder and Stormo, 1995), or Markov 
models (Burge and Karlin, 1998), or a combination 
of these techniques (Bajic et al., 2002). 

Another popular criterion to find genes is the 
detection of the Transcriptional Start Site (TSS).  
Among the signals for identifying the TSS, the 
proximity to CpG islands is recognized to be one of 
the most important ones (Hannenhalli and Levy, 
2001), as they overlap the promoter and extend about 
1,000 base pairs (bps) downstream into the TSS of a 
gene. The CpG islands are characterized by sudden 
increases in the counts of C followed immediately by 
G in the DNA sequence, and they are unmethylated 
regions of the genome that are associated with the 5’ 
ends of most house-keeping genes and many 



regulated genes (Birds, 1986). The CG binucleotides 
are often referred to as the CpG to reflect the 
phospodiester bond that connects the two nucleotides. 
The best of existing techniques can only achieve in 
eukaryotic genomes a sensitivity of about 60%, and a 
specificity of 50% (Westhead et al., 2002).  

As sudden changes in the count of CpGs that 
characterizes the CpG islands are similar to faults in 
engineering systems, the detection of TSSs can be 
formulated as a fault detection problem, and well 
developed fault detection techniques for engineering 
systems can then be applied to detect genes in the 
DNA sequence. Asymptotic local approach, which 
transforms the fault diagnosis problem into one that 
detects statistical changes in the mean of a random 
variable, has been applied successfully to detect 
faults in engineering systems (Wang and Chan, 2002), 
and is extended to detect the CpG islands in the DNA 
sequence in this paper. Two case studies involving 
the rabbit alpha-like globin gene cluster and a section 
of the human chromosome 22 are presented. In the 
case of human chromosome 22, 73% of the 
confirmed genes can be predicted using the proposed 
method. 

The organization of the paper is as follows. In 
Section 2, a brief review of the DNA sequence, the 
CpG islands, and the asymptotic local approach is 
present-ed. The detection of the TSSs in the DNA 
sequence based on the asymptotic local approach is 
derived in Section 3, and its performance is 
illustrated using the rabbit alpha-like globin gene 
cluster and a section of the human chromosome 22, 
as presented in Section 4. For the human 
chromosome 22, a comparison with the Dragon Gene 
Start Finder method is also made. 
 
 

2. PRELIMINARIES 
 
2.1 The CpG Islands 

A genome is a complete set of instructions for 
making an organism containing the master blueprint 
for all cellular structures and activities for the 
lifetime of the cell or organism (Krane and Raymer, 
2002). The DNA molecule in human genome, similar 
to other higher organisms, is a two-strand wrapping 
around each other that resembles a twisted ladder. A 
single strand of DNA is generated by chaining 
together nucleotides via a phosphodiester bond. In 
this bond, the phosphate molecule of a nucleotide is 
attached to the hydroxyl group of the next nucleotide.  
The 5’ end of a nucleotide is a phosphate group 
attached to the 5’ carbon of the pentose sugar. The 3’ 
end is the nucleotide that is free for appending to the 
next nucleotide. The pairing of the bases follows 
certain strict rules, e.g., adenine will pair only with 
thymine (the A-T pair) and cytosine with guanine 
(the C-G pair). The ordering of the bases along the 
sugar-phosphate backbone is referred to as the DNA 
sequence, and this sequence contains the exact 
genetic instructions for a particular organism with its 
own unique traits.  
 

The human genome contains approximately 3 billion 
bps, organized into 24 distinct and physically 
separate microscopic units called chromosomes. All 
genes are arranged linearly along the chromosomes. 
The nucleus of most human cells contains two sets of 
chromosomes inherited from the parents. Each set of 
chromosomes contains 23 single chromosomes 
composing of 22 autosomes and an X or Y sex 
chromosome. Under normal condition, a female has a 
pair of X chromosomes and a male has an X and Y 
pair. In the chromosomes, it contains roughly equal 
parts of protein and DNA, which contains an average 
of 150 million bases. The DNA molecules are among 
the largest molecules now known.  
 
As an example, the number of CpGs in the following 
section of a DNA sequence is 6. 
 
GATCATCATCGAATGGAGTTGAATGGAATTA
TCAAAGAATGGAATCCAGTGGTATCATCATC
AAATGGAACCGAATGGAATCATCAAATGGAC
TCAAATGGAATCATTGAATAGATTCGAATGG
AATCATCATCGAATGAAATCGAATGGAAAAA
TTGAATGGACTCGAATGGAACCATCATTGAA
TGGAAACCAAAGGA 
 
 
2.2 The Local Asymptotic Approach 

Consider the nonlinear system, 

)())(,),1(()( tentytyfty +−−= L  (1) 
where y(t) is the output, e(t) is a zero mean white 
noise with a variance of σ2, and n is the maximum 
lags in the output. Define x(t) = [y(t - 1) … y(t - n)]T, 
where x ∈ Rn. Assuming system (1) is approximated 
by a nonlinear model, , obtained by minimizing ))((ˆ txf

)(ˆ)( tyty −  for x∈Rn. Let 

))((ˆ)(ˆ txfty =    (2) 
From (1) and (2), the modeling error, ε(t), is 

)())((ˆ))(()(ˆ)()( tetxftxftytyt +−=−=ε  (3) 
For a system with component or actuator fault, and 
sensor fault, the output of the system becomes (Wang 
and Chan, 2002), 

)()())(()( tetytxfty f +∆+=   (4) 
where ff(x(t)) is the nonlinear dynamics of the system 
after a component or actuator fault has been 
developed, and ∆y(t) arises from the sensor fault. 
There are a number of approaches to approximate the 
nonlinear system (1), including neural networks and 
neurofuzzy networks (Wang and Chan, 2002). From 
(4), the component or actuator fault can be 
formulated as changes in the weights of the network, 
whilst sensor faults, a change in the output. Since the 
model given by (2) is trained from data collected 
before any faults have developed, the modeling error 
ε(t) obtained from this model is:  
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 (5) 

As some of the TSSs are characterized by a sudden 
increases in CpGs, similar to the case of a sensor 
fault, methods developed for detecting sensor faults 

  



can therefore be extended to detect the TSSs. In this 
case, , and (5) reduces to, ))((ˆ))(( txftxf f ≈

)()()( tetyt +∆=ε   (6) 
Since e(t) is assumed to be zero mean, the problem 
of detecting the TSSs can be formulated as one that 
detects the change in the mean of ε(t), similar to the 
case of detecting sensor faults. Clearly, the ability to 
detect ∆y(t) from ε(t) depends on the amplitude ratio 
of the noise e(t) to ∆y(t). The detection of ∆y(t) is 
now reduced to the detecting of a change in the mean 
of a Gaussian process, and the asymptotic local 
approach is shown to be effective to detect this class 
of changes (Wang and Chan, 2002). Consider 
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Since e(k) is assumed to be a Gaussian process with 
zero mean, hence DM(t) is also a Gaussian process 
with zero mean, if ∆y(t) is identically zero. However, 
if ∆y(t) is non-zero, the mean of DM(t) is clearly non-
zero. Consequently, the detection of ∆y(t) is now 
reduced to that of detecting a change in the mean of 
DM(t). Define SM(t), 
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where σ2(t) is the variance of e(t) at time t. It is well 
known that SM(t) is χ2-distributed with 1 degree of 
freedom (Wang and Chan, 2002). Therefore, the 
changes in the mean of DM(t) can now be detected by 
χ2-test for a given confidence limit.  
 
 

3. GENE PREDICTION BASED ON THE 
ASYMPTOTIC LOCAL APPROACH 

Following the discussion in Section 2.1, a time-series, 
denoted by Ncg(t), is formed from the DNA sequence 
by first dividing it into sections with a size of n, and 
then aggregating the number of CpGs in each section. 
The argument t of Ncg(t) is the section number, and is 
also the order of the aggregated data in the time-
series. The choice of n is important as it affects the 
effectiveness of the method to predict the TSSs. 
Since the occurrence of CpGs can be random, Ncg(t) 
is generally a noisy time series. If n is chosen to be 
too small, there will be many zeros in Ncg(t), and if n 
is chosen to be too large, not only the number of data 
for the statistical test is reduced, special features in 
Ncg(t) may also be smoothed out. In both cases, it 
would be difficult to detect the TSSs. 

As shown in Fig. 1(a) in Example 1, Ncg(t) is quite 
erratic, and approximating it by a time-varying 
nonlinear model is difficult. A simple, yet effective 
approach is to consider it to be a time-varying 
stochastic process with a time-varying mean, which 
can be estimated by a moving window with a fixed 
size, as follows, 
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where nm is the size of the moving window. The 
estimated modeling error )(ˆ tε  is given by, 

)(ˆ)()(ˆ tftNt cg −=ε   (10) 
For a suitably chosen nm, )(ˆ tε  is usually reasonably 
random with zero mean, except at the TSSs, where 
there is a sudden increase in CpGs. Consequently, the 
detection of CpG islands is reduced to detecting a 
change in the mean of  from zero. The 
asymptotic local approach described in Section 2.2 is 
used to detect this change. First, D

)(ˆ tε

M(t) is computed 
from (7) for a given M. Then SM(t) is computed from 
(8), and the χ2 test is performed at a given confidence 
level. Similarly, the estimated variance of )(ˆ tε , 

denoted by , is also computed by a moving 
window with a fixed size, as follows,  
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where nv is the window size. Let λ be the threshold 
obtained from the χ2-table for a given confidence 
level. Then a positive prediction of a TSS is made, if 
SM(t) exceed this confidence level, and a gene is 
likely to be found in the vicinity of the predicted TSS. 
The sensitivity of this technique clearly depends on 
the choice of the confidence level. A large 
confidence level, i.e., close to 1, makes the test more 
stringent, and consequently, less false predicted TSSs 
will be produced. In contrast, a smaller confidence 
level increases the sensitivity of the method, but 
more predicted TSSs will be obtained, and the 
number of false predictions will increase. It should be 
noted that the strategy for choosing the confidence 
level in the prediction of the TSSs is different from 
that fault detection. In engineering systems, false 
fault detections may be costly. However, false 
prediction of genes is not too serious a problem, as it 
only increases the experimentation costs, which is 
often relatively small. However, the cost of missed 
predict-ion of genes is much higher, as important 
genes may not be found quickly. For these reasons, 
the strategy for choosing the confidence level is to 
increase the probability of predicting genes, but 
without unduly increasing the number of false 
predictions. 
 

3.1 Guidelines for Choosing the Design Parameters  

The design variables to be chosen by the users are n, 
nm, nv and M, which are the window sizes for 
computing Ncg(t), the moving mean , the moving 

variance  and the statistics D

)(ˆ tf

)(ˆ 2 tσ M(t), and also the 
confidence level in the χ2 test. The following 
discussion concentrates mainly on the choice of the 
design parameters for predicting TSSs in the human 
chromosomes to be used in case study 2 in this paper. 
A common choice of n is 200 (Gardiner-Garden and 
Frommer, 1987). The window size nm for calculating 
the moving mean can be chosen to be 20. As the data 
in Ncg(t) are obtained by aggregating 200bps, setting 
nm to 20 implies 4000 bps are used to calculate . 
A characteristic of the data in N

)(ˆ tf
cg(t) is that it often 

  



contains sequences of consecutive zeros, especially 
if n is smaller than 200. Therefore, it is important to 
select a suitable nv to compute the estimated variance 

. Too small a n)(ˆ 2 tσ v can lead to a small . 
Consequently, S

)(ˆ 2 tσ

M(t) computed by (8) becomes 
statistically significant in the χ2 test, leading to 
excessive false predictions of TSSs. The window size 
for calculating the moving variance  is set to 

15, i.e., 3,000 bps are used to estimate . Since 
a large number of data is required at the start of the 
computation, and to avoid the problem of false 
prediction arising from unreliable and small estimate 
of , a lower bound for  is proposed here. 

If the section of data in N

)(ˆ 2 tσ

)(ˆ 2 tσ

)(ˆ 2 tσ )(ˆ 2 tσ

cg(t) for computing  is 
sufficiently random, it is reasonable to assume at 
least half of the data in the moving window n

)(ˆ 2 tσ

v 
contain a single count of C+G. After correcting for 
the mean of 0.5, the estimated variance becomes  
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Consequently, if  computed from (11) is less 

than 

)(ˆ 2 tσ
2σ , then  is replaced by )(ˆ 2 tσ 2σ . In the χ2 test, 

M is set to 5 and the confidence level to 99.9%. If 
higher sensitivity is required, the confidence level 
can be lowered to 99%. It should be noted that these 
suggested values are guidelines only, and should be 
fine tuned for specific applications. 
 

3.2 Prediction of the TSSs 

From the χ2 test, a prediction of a TSS is made, if 
SM(t) exceeds λ, the threshold obtained from the χ2-
table for a given confidence level. To reduce false 
predictions, the following techniques are used. Since 
there is a higher count of the CpGs at the TSSs,  
is cyclic, as shown in Fig. 1(b) in Example 1 with 
one gene in each cycle. If there are more than one 
statistically significant S

)(ˆ tf

M(t) in a cycle, then a TSS is 
predicted at the position of the largest SM(t). Also, 
predicted TSSs that are near the trough of the moving 
mean  are also ignored, since as explained earlier, 
the TTSs corresponds to regions with large number 
of CpGs. 

)(ˆ tf

From (8), SM(t) is a function of the square of )(ˆ tε , 
and hence it can be statistically significant for 
negative . However, as discussed previously, the 
predicted TSS is expected to occur when there is a 
sudden increase, not a sudden decrease in CpGs. 
Therefore, statistically significant S

)(ˆ tε

M(t) with negative 
ε(t) are also ignored.  
 

3.3 Predicting Genes in the Reverse Direction 

The same procedure can be applied to predict genes 
in the reverse direction, i.e., the 3’end of the DNA 
sequence.  Since C and G are complementary, a CpG 
dinucleotide pair in the direct strand implies that 
there is also a CpG dinucleotide pair in the reverse 

strand. Consequently, a time series similar to Ncg(t) 
with the data arranged in the reverse order is obtained 
first, before applying the procedure described in 
Section 3.3 to detect the TSSs. Since a prediction in 
either the forward or reverse direction often indicates 
a TSS either in the 5’ end or in the 3’, it seems 
sensible to try to find the genes in both directions 
whenever a prediction of the TSS is made. 
 
 

4. CASE STUDIES 
Case Study 1–Rabbit alpha-like globin gene cluster 

The rabbit alpha-like globin gene cluster is well 
known to be CpG islands rich (Hardison, et al., 1991). 
Since it is a rather short sequence, a different set of 
parameters from that described in Section 3.3 are 
used. They are: n = 100, nm = 10, nv = 5, and M = 3. 
The aggregated CpGs time series, Ncg(t), is plotted in 
Fig. 1(a), together with three confirmed genes 
marked by a solid line at the top of the graph. The 
moving average  shown in Fig. 1(b) has three 
cycles, same number as the number of genes in the 
sequence. The residuals 

)(ˆ tf

)(ˆ tε  computed by (10) are 
plotted in Fig. 1(c), and SM(t) computed by (8) in Fig. 
1(d). At a confidence level of 99.5%, the threshold 
obtained from the χ2-table for 1 degree of freedom is: 
λ = 7.88, marked by a horizontal dotted line. From 
Fig. 1(d), four statistically significant SM(t) are 
observed for t at the nucleotide positions of 2150, 
5650, 6650 and 9750. From discussion in Section 3.2, 
SM(t) at t = 5650 is ignored, as there is another more 
significant one at 6750 in the same cycle. Hence, all 
three confirmed genes are correctly predicted. Note 
that although the CpGs islands for the first confirmed 
gene are not as obvious as that for the other two, the 
proposed method is able to predict it successfully.  
 
 
(a) Aggregated CpGs: Ncg(t) 

 
 
(b) Moving mean  )(ˆ tf

 
 
(c) Residuals )(ˆ tε  

 
  



(d)  SM(t) 

 
Fig. 1 Aggregated CpGs, moving mean, residuals  

and SM(t) for rabbit alpha-like globin gene 
cluster 

  

 

Case Study 2  Human chromosome 22 

A section of the human chromosome 22, labeled as 
NT_011519.10 is considered here. It consists of 
3,661,581 bps and is available at the National Center 
for Biotechnology Information (NCBI) website: 
http://www.ncbi.nlm.nih.gov/genome/guide/human/. 
The genes are categorized into 5 groups: (1) 
confirmed genes, (2) prediction + Expressed 
Sequenced Tags (EST) evidence, (3) EST evidence 
only, (4) prediction only, and (5) interim Locus ID. 
The order of the groups indicates the likelihood of 
genes that can be eventually found. For example, it is 
more likely to find a gene from predictions in Group 
(2) than that in Group (5). 
 
From Section 3.1, the design parameters are: n = 200, 
nm = 20, nv = 15, and M = 5. In the following analysis, 
a true positive prediction refers to the case that an 
annotated gene is found within 2,000 bps from the 
predicted position, and a false positive, if no 
annotated gene is found. If a known annotated gene 
fails to be predicted by the method, then a false 
negative is said to be made (Bajic, 2000).  
 

The results of the prediction of these 5 groups of 
genes in both forward and reverse directions by the 
proposed method are presented in Table 1. The 
performance of the proposed method is assessed by 
the sensitivity and specificity. The former criterion is 
the ratio of the number of true positives to the 
number of annotated genes. The closer the sensitivity 
is to 1, the higher is the ability of the method to 
predict genes. The latter criterion is the ratio of the 
number of true positives to the total number of 
predictions. The higher is this ratio, the more likely 
that predictions obtained by the method is a true 
prediction. Ideally, it is desirable that both indices 
are as high as possible. However, from experience, 
for a method devised from one approach, it is likely 
that an increase in one of these indices often leads to 
a decrease in the other. Therefore, methods devised 
using several approaches may be necessary to 
achieve better performance in both indices. In gene 
prediction, sensitivity is more important than 
specificity, as low specificity only increases the 
experimentation costs, whilst a low sensitivity 
implies that the method is unable to perform the task 
of predicting genes. 
 

 

 

Table 1 Prediction of genes by the proposed method 

Categories 
True 

Positive
False 

Negative 
True 
total 

False 
Positive

1 Confirmed 40 15 55  
2 Predicted + EST 

evidence 9 11 20  
3 EST evidence 

only 2 4 6  
4 Predicted only 0 2 2  
5 Interim Locus ID 10 15 25  

Overall 61 47 108 65 

 

From Table 1, the sensitivity and specificity are 
computed, and are shown in Table 2. The results for 
Groups 1 and 2 are more important, as Group 1 
consists of confirmed genes, and genes are more 
likely to be found eventually in Group 2 than the 
remaining groups. A relative high sensitivity of 0.65 
is obtained for genes in both Groups 1 and 2. The 
specificity, as discussed earlier, is only 0.39. 
 

Table 2 Sensitivity and specificity of the proposed 
method 

Categories Sensitivity Specificity 
1 0.73 0.32 
1+2 0.65 0.39 
1+2+3 0.63 0.40 
1+2+3+4 0.61 0.40 
1+2+3+4+5 0.56 0.48 

 

The proposed method is now compared with the 
Dragon Gene Start Finder (DGSF) (Bajic and Seah, 
2003). It is a computer program that uses three 
methods to predict genes: (i) the Dragon Promoter 
Finder system that makes use of promoter sensor, 
exon sensor and intron sensor, (ii) the estimation of 
the presence of the CpG islands, and (iii) sensor 
fusion methods that combines information obtained 
from (i) and (ii) using data preprocessing techniques 
and artificial neural networks. 

The predictions of the genes by the DGSF are 
summarized in Table 3, and the sensitivity and 
specificity are shown in Table 4. Comparing Tables 2 
and 4, the sensitivity of the proposed method are 
higher than that of the DGSF, though the specificity 
of the proposed method is lower. This is probably 
because several methods are incorporated into the 
DGSF that reduce the false predictions, illustrating 
the advantage of combining several techniques to 
improve the specificity of gene prediction methods. 
However, as the DGSF also uses information on the 
CpG islands, and yet the sensitivity of the DGSF is 
inferior to the proposed method that utilizes only the 
CpG islands indicates that the information from the 
CpG islands have not been fully utilized in the DGSF. 
 

 

 

http://www.ncbi.nlm.nih.gov/genome/guide/human/


  

 

Table 3 Prediction of genes by the DGSF

Categories True 
Positive 

False 
Negative 

True 
total 

False 
Positive

1 39 16 55  
2 3 17 20  
3 1 5 6  
4 0 2 2  
5 7 18 25  

Overall 50 58 108 33 

 

Table 4 Sensitivity and specificity of the DGSF

Categories Sensitivity Specificity 
1 0.71 0.47 
1+2 0.56 0.51 
1+2+3 0.53 0.52 
1+2+3+4 0.52 0.52 
1+2+3+4+5 0.46 0.60 

 
 

5. CONCLUSIONS 

As TSSs are characterized by sudden increases in the 
CpGs, similar to sensor faults in engineering systems, 
statistical tests for sensor faults based on the 
asymptotic local approach is extended to detect these 
sites in this paper. The proposed method is simple to 
use, as it only involves choosing design parameters 
such as the window sizes for aggregating the CpG 
data, and for calculating the moving mean, the 
moving variance, and SM(t) in the χ2 test. Other 
features, such as the cyclic nature of the moving 
mean are utilized to remove false predictions, and 
hence to increase the specificity of the method. The 
proposed method is applied to the rabbit alpha-like 
globin gene cluster and a section of the human 
chromosome 22. It is shown that all the genes in the 
former sequence have been successfully identified. 
In the human chromosome 22, the proposed method 
is able to predict 73% of the confirmed genes in the 
chromosome. The proposed method is compared 
with the Dragon Gene Start Finder. It is shown that 
the proposed method has a higher sensitivity, but a 
lower specificity. This is not too serious a drawback, 
as the penalty for not being able to predict possible 
genes is much higher than the increase in 
experimentation costs. As information of the CpG 
islands is better utilized, the proposed method is a 
better platform for incorporating other approaches to 
develop better method to predict genes. 
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