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Abstract: This paper addresses an approach of continuously adjusting the brake torque to 
fulfil a comfortable and safe drive. A full-order model which consists of three subsystems 
is under consideration. The controllers are designed for two cases. In the first case 
considered the vehicle speed when the slip rate is small, and an adaptive control scheme 
is then developed. In the second case, the rapid of slip rate is deemed as the control target 
when the slip rate is large, and an adaptive sliding mode control is developed. Due to 
unknown changing condition, the fuzzy concept is adopted incorporated with the above-
mentioned controllers. Asymptotic stability of the overall system is confirmed via 
Lyapunov stability theorem.  Copyright © 2005 IFAC 
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1. Introduction 

 
An anti-lock brake system (ABS), which is operated 
at urgent brake, has been developed as a standard 
product in automotive system. Limpert (1999) has 
shown that could control the wheel slip rate 
appropriately within the rang of 0.2 and 0.25, but it 
could not guarantee the stop of vehicle motion in 
safety distance. Thus, in this paper a continuous 
brake action is presented which considers both slip 
rate and safety distance. There are many technical 
literatures discussing the vehicle and wheel dynamics, 
e.g., Gissinger, et al. (1995) presented the vehicle 
brake dynamics obtained by system identification. 
Raza, et al. (1995) introduced a dynamics model that 
contains the hydraulic dynamics, but the effects of 
slip rate have not been considered. Kuang, et al. 
(1999) presented a dynamics model with 
consideration of hydraulic dynamics and slip rate 
dynamics, but the system’s structure is too 
complicated. Dugoff, et al. (1970) proposed a full-
order vehicle motion dynamics with simple and 
accurate form. In this paper, we have adopted the 
dynamics model proposed in Dugoff, et al. (1970) 
incorporated with a first-order hydraulic model 
which has been proposed in Thayer (1965) due to 
their simplicity, accuracy, and practicality. As for the 
previously developed the sliding mode techniques 
and fuzzy control have been applied to ABS, but 
accurate motion control can not be achieved. Gerdes, 
et al. (1997) developed a vehicle velocity and 
position control method by using the multiple sliding 
surfaces control methodology, but the comfort 
requirement has not been considered during brake. 

Huang, et al. (1999) presented a cruise control 
method by switching throttle and brake action 
without considering the slip rate. Yi, et al. (2001) 
planned a braking profile for deceleration, and the 
safety distance and comfortable performance can 
then be determined from this deceleration profile. 
However, the system parameters as well as road 
condition should be known in priori which would 
very difficult for controller design. Hence, in this 
paper, to cope with imperfect knowledge of vehicle 
system and road conditions an adaptive fuzzy 
controller is developed which does not need 
information concerning the system parameters. 
This paper is organized as follows: In section 2, the 
mathematical model of a vehicle motion system is 
derived. Section 3 is presented to introduce the 
planning of “desired braking profile”. In section 4 
the adaptive fuzzy controller which includes braking 
torque controller and hydraulic system controller is 
devised and the stability result is also shown to fulfil 
the requirements. In section 5, computer simulation 
results which can effectively verify the proposed 
controller are shown. Finally, some concluding 
remarks are discussed in section 6. 
 

2. Model Formulation 
 
In the section, the vehicle model with a servo brake 
is derived based on previous literatures. 
 
2.1 Tire Force Dynamics 
 
There are many literatures discussing the 
mathematical model of the tire force, among which 



 
 

     

the model proposed by Dugoff, et al. (1970), is the 
most accurate but not complicated as compared to 
the other proposed systems. In the above paper, the 
author proposed the longitudinal brake force xF  
depends on the slip rate and can be mathematically 
represented as: 
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where: 
zF : normal force (N) 

fv : vehicle velocity (m/s) 

fω : wheel angular velocity (rad/s) 
s : wheel slip rate 

sc : longitudinal tire stiffness (N) 
µ :friction coefficient 
r : wheel radius (m) 
Furthermore, from Henry, et al. (1980), the friction 
coefficient can be defined as: 

fs vsAe ⋅⋅−= 0µµ  (4)
where: 

0µ : friction coefficient when s=0 

sA : adhesion reduction coefficient 
Here the effect of suspension system is not taken into 
account, and all the road surface characteristic 
coefficients zF , sc , sA  and 0µ  are assumed to be 
constant but unknown. 
 
2.2 Tire Dynamics Model 
 
The wheel is assumed to be a homogeneous rigid-
like body, then the rotational dynamics can be 
represented as: 

Bxf TrFI −=ω&  (5)

where I  is the wheel inertial and BT  is the brake 
torque. 
 
2.3 Servo-Hydraulic System Model 
 
Chao (1965) and Thayer (1997) presented the servo-
hydraulic dynamics that can be approximately 
modelled as a first-order system. Thus, the transfer 
function can be written as: 
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where: 
BT : Braking Torque of the Servo Hydraulic System 

U : Control Input Voltage 
τ,c : Parameters of the Hydraulic System 

 
2.4 Complete Brake Model 
 

Based on above derivations, the complete full-order 
dynamic model for the hydraulic brake system is 
divided into two cases and  is described as: 
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Where the wheel dynamics in case 2 has been 
replaced by slip rate dynamics for control purpose. 
 

3. Planning of Desired Braking Profile 
 
Both drive comfort and safety are general 
requirements in contemporary automotive industry. 
Yi, et al. (2001) presented the desired braking 
profiles that can be precisely defined according to 
comfort and safety conditions. Generally, the jerk for 
deceleration can be mathematically represented as: 
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where: 
da : desired deceleration constant (m/s2) 

12 ttta −=∆ , 23 tttb −=∆ , 34 tttc −=∆  are time 
parameters designed to satisfy the comfort and safety 
demands. The at∆  and ct∆  have been selected to 
limit the following jerk condition for comfort: 

-10 m/s2< j(t) < 10 m/s2 
By integrating ( )tj  twice and third times, the desired 
velocity and distance functions are respectively 
written as: 
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If it is desirable to stop the vehicle at 4tt = , we can 
set: 
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where d is the distance measured from the preceding 
vehicle as the brake is initially applied and ε  is 
some allowable safety distance. 
 

4. Adaptive Fuzzy Controller Design 
 
In this section, an adaptive fuzzy controller is 
devised to achieve brake trajectory tracking as 
mentioned previously. Therefore, the controller 
design will be accomplished in two loops, namely, 
outer loop and inner loop which are designed to 
control the vehicle motion dynamics and servo 
hydraulic dynamics, respectively. 
 
4.1 Vehicle Motion Controller Design 
 
Case 1: 
In this case, the control objective is to force the 
vehicle motion to follow the desired deceleration 
profiles smoothly. Thus, we consider the equation (7) 
and (8), and by taking the time derivative of equation 
(7), we have: 
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as: 
( ) fdf vvte −=  (19)

Then, by taking twice time derivative of (18), the 
following equality holds: 
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If the control input BT  is designed as: 
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2,1, =iiδ are some positive constants, and 

4,3,2,1,ˆ =ici
 are the estimates of 4,3,2,1, =ici , 

respectively. we get, after substituting (21) into (20): 
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where iii ccc ˆ~ −= , 4,,2,1 K=i . The above 
equation can also be rewritten as the following 
matrix form: 
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To prove the stability of the closed-loop system (23), 
we define the Lyapunov function candidate as: 

CCPXXV TT ~~
2
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where P  and Γ  are some diagonal positive definite 
matrices. Then by differentiating 1V  with respect to 
time, we get: 
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If we further let the adaptive laws be: 
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then the following result is achieved: 
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where Q satisfies the Lyapunov equation 
QPAPAT −=+ . From the Lyapunov stability theory, 

we can conclude that ( )te& , ( )ee  and ( ) 0→∫ dtte  

asymptotically. 
Case 2: 
In this case, an adaptive sliding mode control scheme 
will be advocated to decrease the slip rate rapidly. 
Therefore, we consider equation (10) and (11). 
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The wheel dynamics has been replaced by the slip 
rate dynamics according to equation (3). We merely 
consider equation (27) for controller design. Define: 
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where 3,2,1, =ipi  are some positive constants. To 
rapidly decrease the slip rate s, we design the 
controller as: 
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where k is a positive constant, and 3,2,1,ˆ =ipi  are 
the estimates for 3,2,1, =ipi . For the stability proof, 
we define the Lyapunov function as follows: 
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where Ψ  is some diagonal positive definite matrices. 
Then, by differentiating 2V  with respect to time and 
invoking (28), (29), (30), the following equation 
satisfies: 
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If we further let the adaptive laws be: 
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From Barbalat’s lemma, we can infer 0→s  as 

∞→t . 
 
4.2 Servo Hydraulic System Control 
 
In the servo hydraulic system, the true control input 
is designed so that the output brake torque BT  can 

follow the desired brake torque BdT . For this sake, 
the model reference adaptive control technique will 
be solicited in the controller design. Let the reference 
model be: 
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where 
mτ  is some large positive constant. In state 

space representation, the hydraulic model and the 
reference model can be rewritten as: 

cuTT BB +−= τ&  (34)
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Let the control input u be designed in the following 
form: 
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Define BmBT TTe −= , then the error dynamics: 
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To guarantee the closed-loop system stability, the 
Lyapunov function is defined in the following form: 
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where 2,1, =Γ ii
 are positive constants and c, which is 

known to be positive. Then, by substituting (39) into 
the time derivative of TV , we have: 
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Similarly, the following adaptive laws: 
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are applied to (41) to cancel the coupling terms and 
result in: 
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Again, by Barbalat’s lemma, asymptotic convergence 
of Te is confirmed. 
 
4.3 Composite Controller Design with Fuzzy 

Concept 
 
The vehicle motion controller is designed separately 
according to different conditions. These two types of 
controllers are switched based on the slip condition. 
However, since the road conditions are unknown, the 
switching value for slip rate may be not valid. To 
circumvent this problem, the fuzzy concept is 
incorporated to form a composite control action. 
Based on fuzzy concepts, the switching condition can 
be written in the following linguistic rules: 

IF s is large THEN 1BdBd TT =  
IF s is small THEN 2BdBd TT =  

where the membership functions of the linguistic 
terms “large” and “small” are defined as: 










<∀

≤≤∀
−
−

>∀

=

α

βα
αβ
α

α
µ

s

ss
s

sl

0

1
)(

 
(43)










>∀

≤≤∀
−
+−

<∀

=

β

βα
αβ
β

α
µ

s

ss
s

ss

0

1
)(  

(44)

, respectively, where α  and β  are some positive 
constant. The plots of )(slµ  and )(ssµ  are shown in 
figure_1. 
 



 
 

     

 
Fig. 1. Membership Functions of sµ  and lµ  
 
Therefore, after defuzzification process, the 
composite control law is proposed as: 

ls

BdlBds
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Remark: The choice of parameters α  and β  in the 
membership function should be carefully made. 
Theoretically, the actual switching value ds  must lie 
in the region βα ≤≤ ds , i.e., the range of ds  must 
be roughly estimated form some experimental tests. 
 
 

5. Computer Simulation 
 
In this section, computer simulations are performed 
to show the effectiveness of the proposed fuzzy 
control scheme. A very small initial slip rate is 
reasonably assumed. In the simulation cases, the 
initial velocity of vehicle as the controller brake 
torque is applied is set to be 108 km/hr. From the 
simulation results shown below, the velocity of 
vehicle will track the desired stopping trajectory 
rapidly, and the vehicle can accurately follow the 
stopping trajectory so as to guarantee the drive safety. 
The parameters are selected and listed in the 
following: M=1240 kg, F=Mg/4 N, sc =10F N, I=2.1 

kg-m2, R=0.3 m, d=200 m, 1δ =1, 2δ =10, 2δ =700, 
k=1, Γ =0.2, Ψ =2, Φ =1. The values of α  and β  
are defined as 04.0=α  and 06.0=β . As the initial 
values of slip rate is small (for s(0)=0.0001), the 
simulation results are shown in figure_2-figure_6. In 
this case, the tracking performances of vehicle 
displacement, velocity, and deceleration are 
demonstrated in figure_2-figure_4. Figure_5 shows 
the slip rate, whereas figure_6 shows the exerting 
brake torque profile. 
 

 
 
Fig. 2. Vehicle displacement trajectory 

 

 
 
Fig. 3. Vehicle speed tracking trajectory 
 

 
 
Fig. 4. Vehicle acceleration tracking trajectory 
 

 
 
Fig. 5. Wheel Slip Rate 
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Fig. 6. Braking Torque 
 
 

6. Conclusion 
 
In this paper, an adaptive sliding mode control 
scheme with fuzzy composition that does not need 
the information regarding the system parameters or 
road conditions is proposed to achieve brake 
trajectory tracking of vehicle motion. Under such 
control approach, the slip rate and the vehicle motion 
will be properly adjusted to reach the optimal 
condition. The servo hydraulic system which is 
approximated by a first-order dynamic system is also 
taken into account in the controller design for 
completeness. In addition, with careful design of 
stopping trajectories, both the driver’s safety and 
comfort can be guaranteed. Asymptotic stability is 
guaranteed via Lyapunov stability theory and 
demonstrated by computer simulations. 
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