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Abstract: The paper is devoted to the modelling of the propagation of acoustic
waves at high frequency in anisotropic media. In this case, the WKB approximation
results in eikonal equations whose Hamiltonians are neither convex nor concave in
the impulse variable so that the Fermat principle fails. In this paper, methods
of differential games are adopted for the analysis of wave propagation. If the
Hamiltonian of a differential game approximates the Hamiltonian of the eikonal
equation, then the solution to the game approximates the phase function satisfying
the eikonal equation. Classification of singularities in differential games associated
with wave propagation problems is done. Numerical results are presented for wave
velocity surfaces typical for anisotropic quartz crystals. Copyright c©2005 IFAC
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1. INTRODUCTION

The study of questions related to the propagation
of acoustic waves in anisotropic media is very
important for many applications such as biolog-
ical sensors whose operating principle is based on
the excitation and detection of acoustic waves in
crystals. Propagation of acoustic waves of high fre-
quency in isotropic media is well investigated and
mathematically described by means of geometric
optics and the Fermat principle. The latter ex-
presses the fact that the rays, energy propagation
trajectories, are minimizers of a functional which
is the curve integral of some Lagrangian. In the
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case of short waves in anisotropic media, one can
also utilize geometric optics using WKB approxi-
mations. This leads to Hamilton-Jacobi (eikonal)
equations describing dynamics of the wave phase
(see e.g. (Barles, 1985)).

Many publications are devoted to the computa-
tion of ray fields and wave fronts in the case
of convex in the impulse variable Hamiltonians
(see, for example (Cerveny, 1985; Benamou, 1996;
Sethian, 2002)). However, typical Hamiltonians in
the anisotropic case are neither convex, nor con-
cave so that one can not find a proper Lagrangian
that would realize the Fermat principle.

This paper considers the possibility to approxi-
mate the Hamiltonians through conflict-controlled



systems where the first player chooses the current
velocity from an admissible set of velocities with
the goal to minimize the signal propagation time,
whereas the second, opposite, player strives to
maximize this time. Although such an approach
might look artificial, the point is that solutions
to problems with close Hamiltonians must be also
close each to other. Thus, the value function of
the associated time-optimal differential game sat-
isfies the eikonal equation of the wave propagation
problem. Therefore, level sets of the value function
represent wave fronts (first arrival) propagating in
the anisotropic medium.

Similar to the Fermat principle, optimal trajec-
tories in the associated differential game can ap-
parently deliver information about the rays rep-
resenting the energy flow. Note, that the struc-
ture of optimal trajectories in differential games is
rather complicated because of the so-called singu-
lar surfaces that can attract, repulse and break the
trajectories. In the paper, a preliminary analysis
of possible types of singular surfaces is performed
for Hamiltonians that correspond to typical phase
velocity contours related to anisotropic crystals.

2. LAGRANGIAN AND HAMILTONIAN
FORMALISM IN RAY TRACING

The rays along which disturbances propagate in
a medium can be computed as the extremals of
the functional representing the propagation time
(Fermat’ principle):

T =

t1
∫

t0

L(x, ẋ)dt, L(x, ẋ) =
|ẋ|

V (x, ẋ/|ẋ|)
(1)

where V is the energy wave velocity which spec-
ifies the wave surface V at each point of the
medium (Auld, 1972). Equivalently, the surface V
can be given as L(x, v) = 1.

The wave front propagation can be found by
solving the Hamilton-Jacobi (eikonal) equation

H(x,
∂T

∂x
) = 1, H(x, p) = |p|W (x, p/|p|), (2)

where the W is the phase wave velocity that
specifies the velocity surface W at each point of
the medium. The specifier N(x, e) of the slow-

ness surface N is defined through the relation:
N(x, e)W (x, e) = 1 for all unit vectors e. The
surface N can be also given as H(x, n) = 1.

The Lagrangian L(x, ẋ) and the Hamiltonan
H(x, p) are positively homogeneous of degree one
in the second variable and admit the representa-
tion (Rund, 1966):

L2(x, ẋ) = 〈G(x, ẋ)ẋ, ẋ〉 ,H2(x, p) = 〈Q(x, p)p, p〉 ,

where G and Q are positively homogeneous of
degree zero symmetric matrices.

Lagrangian and Hamiltonian can be transformed
to each other through the formulas

Q = G−1(x, ω(x, p)), G = Q−1(x, φ(x, ẋ)),

if the following condition is fulfilled:

detG(x, ẋ) = det

[

1

2
(L2)ẋẋ

]

= detQ−1(x, p) 6= 0,

which means that the Hamiltonian and La-
grangian are strictly convex or concave. The func-
tion ẋ = ω(x, p) is defined implicitly by

p = φ(x, ẋ) =
1

2
(L2)ẋ = LLẋ = G(x, ẋ)ẋ.

For anisotropic media the Hamiltonians may be
convex-concave like as in differential games. In
this case, one can not transform the Hamilto-
nian to a single-valued Lagrangian. Constructions
based on Hamilton-Jacobi equations are neverthe-
less possible, though solutions may contain singu-
larities known in differential games.

3. HAMILTON-JACOBI EQUATION IN
GEOMETRICAL OPTICS

Eikonal equation (2) with W being the phase wave
velocity arises, for example, when applying the
WKB approximation to the elasticity equations

ρuitt−
∂

∂xj

(

Cijkl(x)
∂ul

∂xk

)

= 0, i, j, k, l = 1, 2, 3.

describing anisotropic inhomogeneous media. Here
ui are the components of the displacement vector,
ρ is the density, and Cijkl is the elastic stiffness
tensor. The summation over repeated indices is
assumed.

One looks for solutions of the form

uε
j(t, x) = εeiS(t,x)/εvε

j (t, x)

with

vε
j (t, x) = v0

j (t, x) + εv1
j (t, x) + . . . ,

and the initial conditions

uε
j(0, x) = εeiS(0,x)/εφj(x), x ∈ R3,

uε
jt(0, x) = ψj(x), x ∈ R3.

Here ε is a small parameter, ε = (length scale ×
wave number)−1. Assuming ε << 1, restrict the
analysis to the first term of the expansion for vε

j .

Inserting this ansatz into the elasticity equations
and collecting terms of the order 1/ε and 1,
respectively, yields the following non-stationary
eikonal and transport equations

det

∣

∣

∣

∣

∣

1

ρ
Cijkl(x)

∂S

∂xj

∂S

∂xk
−

(

∂S

∂t

)2

I

∣

∣

∣

∣

∣

= 0,



ρSttv
0
i + 2ρStv

0
it − Cijkl(x)

∂2S

∂xj∂xk
v0

l −

−2Cijkl(x)
∂S

∂xj

∂v0
l

∂xk
−

[

∂

∂xj
Cijkl(x)

]

∂S

∂xk
v0

l = 0,

for i = 1, 2, 3. Let functions Wα(x, n), α = 1, 2, 3,
be solutions to the eigenvalue problem

det

∣

∣

∣

∣

1

ρ
Cijkl(x)njnk − W 2I

∣

∣

∣

∣

= 0

where |n| = 1. The functions Wα(x, n) are known
to be the phase velocities for three types of waves
propagating in anisotropic media in the direction
n. The non-stationary eikonal equation is obvi-
ously equivalent to the following three equations

Sαt − |∇Sα|Wα

(

x,
∇Sα

|∇Sα|

)

= 0, α = 1, 2, 3.

The substitution Sα(t, x) = t+Tα(x) leads to the
eikonal equation

|∇Tα(x)|Wα

(

x,
∇Tα(x)

|∇Tα(x)|

)

= 1, α = 1, 2, 3,

which determines the propagation times Tα(x) for
different wave modes (see Section 4).

4. DESCRIPTION OF WAVES
PROPAGATION USING DIFFERENTIAL

GAME APPROACH

Generally, if the slowness surface N is non-convex,
it is impossible to transform the velocity surface

W to the wave surface V to obtain the variational
problem (1) with a single valued Lagrangian.
Therefore, it is necessary to work with the original
Hamiltonian (2) constructed on the base of the
velocity surface W. This Hamiltonian is convex-
concave whenever the slowness surface N is non-
convex. Thus, equation (2) can be associated with
a differential game (Isaacs, 1965) but not with an
optimal control problem. When solving differen-
tial games, the main goal is to find the set of
optimal trajectories in its complexity, i.e. the op-
timal phase portrait. Note that these trajectories
are not arranged in a regular way as they are in
the calculus of variations or even in the theory
of optimal control. There are several specific tra-
jectories, called singular lines (Isaacs, 1965; Me-
likyan, 1998) which match regions filled by regular
trajectories. The knowledge of types and locations
of singularities can deliver important information
about the behavior of rays in the associated wave
propagation problem.

The idea of this section is to formulate a differ-
ential game whose Hamiltonian coincides with or
is close to the Hamiltonian of the corresponding
wave propagation problem. It occurs that a game

with the so-called “simple dynamics” is appropri-
ate for our purposes:

ẋ = u − v, 0 ≤ t ≤ T , u ∈ P, v ∈ Q.

Here the vectors u and v are controls of two
players P1 and P2, respectively. The controls as-
sume values from convex sets P and Q which can
depend on the state vector x, i.e. P = P (x),
Q = Q(x). Such dependence reflects inhomogene-
ity of the elastic media. The goal of the first player
is to bring the vector x(t) to a given terminal
surface M as soon as possible, i.e. to minimize
the time t of the first event x(t) ∈ M . The second
player strives to maximize the time of reaching M
using his controls v. In other words, the payoff of
the game is the time of attaining M . The value
function T (x) is the optimal guaranteed time of
attaining M when starting from point x.

The function T (x) satisfies the following first-
order PDE, (Isaacs, 1965):

max
u∈P

min
v∈Q

< Tx,−u + v >= 1

for all points x where T is differentiable. At points
of non-differentiability it satisfies the above equa-
tions in a viscosity sense (Subbotin, 1995; Fleming
and Soner, 1993). Therefore, if the sets P and Q
are constructed such that the left hand side of
the last equation coincides with the Hamiltonian
of the wave propagation problem, then T (x) is
the time of the first arrival of the excitation at
x. Therefore, the wave fronts are level sets of the
value function T .

Assuming that P and Q are symmetric about the
origin yields:

H(x, p) = max
u

min
v

〈p,−u + v〉 =

max
u

〈p, u〉 − max
v

〈p, v〉 , u ∈ P (x), v ∈ Q(x).

Obviously, the resulting Hamiltonian H(x, p),
generally, is not purely convex or concave with
respect to p.

The theory of viscosity solutions provides the
existence of piece-wise smooth solutions to the
Hamilton-Jacobi equation

H

(

x,
∂S

∂x

)

= 1.

Generally, the singular surfaces (lines in two di-
mensions) are of the following types: dispersal,
equivocal, and focal, see Fig. 1. The dispersal
surface does not contain trajectories, while the
equivocal and focal surfaces consist of singular
trajectories. The arrows in Fig. 1 show the motion
of the phase point of the game in direct time. For
the ray propagation problem the directions of all
arrows must be reversed. Recall that the terminal
surface M “absorbs” trajectories in a differential
game, whereas it irradiates rays in the related
wave propagation problem.
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Fig. 1. Singular lines in direct time for game (backward time for rays).

The gradient ∂S/∂x has a jump on singular lines.
Denote the gradient on different sides of a singular
line by p and q, p 6= q. In (Melikyan, 1998), using
the definition of viscosity solutions, the following
necessary conditions for possible values of p and q
are derived in the form of inequalities depending
on the character of the gradient jump:

H(x, λq + (1 − λ)p) ≥ 1, S = max{S+, S−},

H(x, λq + (1 − λ)p) ≤ 1, S = min{S+, S−}.

Here λ runs in the interval [0, 1]; S+ and S− are
smooth branches of the solution S.

Perform a geometrical analysis (see Fig. 2) of
the above inequalities using slowness and velocity
surfaces. Bear in mind a differential game with the
Hamiltonian H(x, p) = |p|W (x, p/|p|). Fix some
vectors p, q ∈ N and consider the segment AB
given by λq + (1 − λ)p, 0 ≤ λ ≤ 1. Consider
a point D of this segment and the ray (half-line)
passing trough O and D. Let R and R′ be points
of the intersection of the ray with the surfaces
N and W. Let d, r and r′ be the lengths of
the vectors OD, OR and OR′, respectively. Since
H(x, p) = |p|W (x, p/|p|), it holds: H = dr′. Note
that rr′ = 1 by definition of the surfaces V and
W. Since d > r for the point considered, the
relation dr′ > 1 holds, and, consequently, H > 1.
This consideration shows that the part A′B′ of the
segment AB satisfies the inequality H(x, p) ≥ 1,
the parts AA′ and B′B satisfy the inequality
H(x, p) ≤ 1.
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Fig. 2. Geometric construction showing that sin-
gular lines are possible.

This property allows us to specify candidates
vectors p, q for a potential singular line. Figure 3
demonstrates possible configurations of p, q for
dispersal and equivocal type; for the focal type
one has tangency at the both points p and q.
One can see that unique values of p, q for focal
surface can be found through convexification of
the surface N . The tangency of trajectories in
Fig. 1 leads to the tangency of the segments
at a single point for the equivocal case, and at
both points for the focal case provided that the
Hamiltonian is smooth in neighborhoods of (x, p)
and (x, q), see (Melikyan, 1998). Note, that these
singular lines are only potentially allowed by the
necessary conditions. Which surfaces will appear
in the solution depends on boundary conditions.

p
q

min[S+, S−]

p
q

max[S+, S−]

Fig. 3. Dispersal and equivocal situations.

5. EQUIVALENT DIFFERENTIAL GAMES,
NUMERICAL RESULTS

This section demonstrates application of differ-
ential games to the problem of propagation of
surface acoustic waves in a quartz wafer covered
by a thin film made of the isotropic silicon dioxide.
Such a structure is typical for acoustic sensors
whose operation principle is based on the piezo-
electric excitation of surface acoustic waves and
the detection of the phase shift in the waves that
arises because of deposition of an additional mass
on the sensor surface. The wave propagation ve-
locity in such multi-layered structures is obtained
using numerical treatment of dispersion relations
derived via substituting plane waves into material
equations and matching the interface conditions
between the layers, (Botkin et al., 2004).

In Figure 4, the phase velocity contour for shear
surface acoustic waves propagating in an ST-
quartz wafer covered by a 5 µm SiO2 film is
shown. The contour is symmetric with respect
to the origin. In fact, surface shear waves exist
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Fig. 4. Velocity contour for shear acoustic waves
in ST-quartz covered by a 5 µm SiO2 film.

for directions from the set Ω = {(cos φ, sin φ) :
φ ∈ [−π/6 + kπ/2, π/6 + kπ/2], k = 0, 3}. Such
directions will be called feasible. For all non-
feasible directions, the velocity value is the same
and equals to 3739.79 m/s, which corresponds to
the velocity of shear bulk waves in the structure
considered.

Our next goal is to find constraint sets P and Q
for the differential game

ẋ = u − v, u ∈ P, v ∈ Q,

so that, for every ` ∈ R2, |`| = 1, the value of the
Hamiltonian

H(`) := max
u∈P

min
v∈Q

< `,−u + v >

coincides with or is close to the value W (`) taken
from the velocity surface W shown in Fig. 4.

Assuming that P and Q are symmetric with
respect to the origin yields

H(`) = max
u∈P

< `, u > −max
v∈Q

< `, v > .

Evidently, there exist many sets P and Q satisfy-
ing the relation

max
u∈P

< `, u > −max
v∈Q

< `, v >= W (`), ` ∈ R2.

To approximate the set W along feasible direc-
tions, some parametric families Pα,β , α ≥ 1, β ≥
1, and Qγ , γ > 0, having a simple analytical
description are used. Optimization in α, β, γ yields
the optimal values α∗, β∗, γ∗. Construct the set
P̃α∗,β∗ that deviates from Pα∗,β∗ along four direc-
tions close to (cos(π/4 + kπ/2), sin(π/4 + kπ/2)),
k = 0, 3. The result is represented in Fig. 5.

Consider now a game where the first player having
the control parameter u ∈ P = P̃α∗,β∗ at his
disposal minimizes the time of attaining a given
terminal set M , whereas the second player whose
control parameter is v ∈ Q = Qγ∗ maximizes this
time. The isochrones or level sets of the value func-
tion of this problem are wave fronts in the wave
propagation problem with the velocity contour

W provided that M generates shear waves with
waves vectors locally transversal to its bound-
ary. Using a further development of algorithms
(see (Patsko and Turova, 1995), (Patsko and Tur-
ova, 2001)) for computation of level sets of value
functions for time-optimal game problems, one
can obtain a portrait of the propagation of wave
fronts for sources with very complicated geome-
tries. The propagation time can also be found very
precisely which might be helpful when estimating
the sensitivity of acoustic sensors.

In Fig. 6, numerically computed wave fronts prop-
agating from a curved source M in x1-direction
are shown. Corner points of the fronts, being
connected, form singular lines. These lines are
classified using the above mentioned algorithm.
Black lines in Fig. 6 are equivocal, white lines are
focal, and gray lines are dispersal. In Fig. 7 the
graph of H(x, λq+(1−λ)p) versus λ is depicted for
the point x = O, see Fig. 6, where two equivocal
lines start, compare also with Fig. 3.

One can see that the dispersal lines correspond
to the intersection of rays (they can be generally
continued beyond the first arrival); equivocal lines
absorb rays from one side, guide them and radiate
to the other side; focal lines guide rays and radiate
them to the both sides.

Regular characteristics are known to represent
physical rays. According to the authors’ conjec-
ture the same is true for singular characteristics
so that the optimal phase portrait of such a game
represents the complete set of rays of first arrival
in the corresponding physical problem. The global
structure of rays depends, of course, upon the
initial conditions in addition to the Hamiltonian.
This knowledge can be useful for the study of
focusing and beam-steering properties of specially
designed transducers.

-6000 -4000 -2000 0 2000 4000 6000

P̃ α∗,β∗

Qγ∗

W̃ ≈ W

Fig. 5. Sets P̃α∗,β∗ , Qγ∗ , W, and W̃.
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Fig. 6. Wave fronts and singular lines for acoustic sensor-like structure.
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Fig. 7. Hamiltonian’s behavior at the stating point
for two equivocal lines.

6. CONCLUSION

Convex-concave Hamiltonians inherent to differ-
ential games can be used to approximate the
Hamilton-Jacobi equations describing the propa-
gation of waves in anisotropic media. With this
approach, the wave fronts are given by level sets
of the value function and the rays can be obtained
through construction of singular lines.

An interesting question for further research is
related to physical interpretation of the objectives
of the players (minimization and maximization
of the propagation time). Physical experiments
confirming the structure of ray fields computed
seam to be very useful.
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