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Abstract: This paper examines the problem of robust H∞ static output feedback
control of a Takagi-Sugeno (T-S) fuzzy system. The proposed robustH∞ static out-
put feedback controller guarantees the L2 gain of the mapping from the exogenous
disturbances to the regulated output to be less than or equal to a prescribed level.
The existence of a robust H∞ static output feedback control is given in terms of
the solvability of bilinear matrix inequalities. An iterative algorithm based on the
linear matrix inequality is developed to compute robustH∞ static output feedback
gains. To reduce the conservatism of the design, the structural information of
membership function characteristics is incorporated. A numerical example is used
to illustrate the validity of the design methodologies.Copyright c©2005 IFAC
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1. INTRODUCTION

In the past three decades, considerable attention
has been devoted to the problem of nonlinear
H∞ control; see, (Ball and Helton, 1989; Basar
and Olsder, 1982; van der Schaft, 1992; Isidori
and Astolfi, 1992; Isidori, 1991; Basar, 1991; Hill
and Moylan, 1980; Willems, 1972; Nguang, 1996;
Nguang and Fu, 1996) for instance. This problem
can be stated as follows. Given a dynamic system
with the exogenous input and measured output,
design a control law such that the L2 gain of the
mapping from the exogenous input to the regu-
lated output is minimized or no larger than some
prescribed level. In general, there are two common
methods to solve the nonlinear H∞ control prob-
lems. One is based on the dissipativity theory and
theory of differential games; see (Basar, 1991) and
(Ball and Helton, 1989), and the other is based
on the nonlinear version of the classical bounded

real lemma as developed by (Willems, 1972) and
(Hill and Moylan, 1980); see, e.g., (van der Schaft,
1991), (Isidori, 1991), and (Isidori and Astolfi,
1992). Both of these approaches convert the prob-
lem of nonlinear H∞ control to the solvability
of the so-called Hamilton-Jacobi equation (HJE).
However, until now, it is still very difficult to find
a global solution to the HJE.

The static output feedback problem has also at-
tracted attentions of many researchers over the
past two decades (Cao et al., 1998; Geromel et al.,
1998; Kar, 1999; Iwasaki et al., 1994; Benton and
Smith, 1998; Prempain and Postlethwaite, 2001;
Syrmos et al., 1997) . The problem can be stated
as follows: given a system, find a static output
feedback so that the closed-loop system is stable.
Normally, the existence of a full order output
feedback control law is given in terms of to the
solvability of two convex problems. However, the



synthesis of a static output feedback gain or a
fixed order controller is much more difficult. The
main rationale is that the separation principle
does not hold in such cases. A comprehensive
survey on static output feedback can be found in
(Syrmos et al., 1997).

A great amount of researches have been focused
on describing a nonlinear system using a Takagi-
Sugeno fuzzy model in recent years; see (Takagi
and Sugeno, 1985; Wang et al., 1996; Tanaka
et al., 1997; Kim and Lee, 2000; Cao et al.,
1996; Ma et al., 1998; Lo and Lin, 2003; As-
sawinchaichote and Nguang, 2004; Nguang and
Assawinchaichote, 2003; Nguang and Shi, 2003,
2001; Chen et al., 2000; Wang et al., 1992). In
this fuzzy model, local dynamics in different state
space regions are represented by local linear sys-
tems. The overall model of the nonlinear system
is obtained by “blending” of these linear models
through nonlinear fuzzy membership functions.
Unlike conventional modelling techniques which
use a single model to describe the global behavior
of a nonlinear system, fuzzy modelling is essen-
tially a multi-model approach in which simple
sub-models (typically linear models) are fuzzily
combined to described the global behavior of a
nonlinear system. The T-S fuzzy model has been
proved to be a very good representation for a
certain class of nonlinear dynamic systems. Mo-
tivated by the fact that any smooth nonlinear
dynamic system can be approximated by a T-
S fuzzy model with linear models as fuzzy rule
consequences (Takagi and Sugeno, 1985), recently,
in (Lo and Lin, 2003), the problem of H∞ static
output feedback control of T-S fuzzy systems has
been investigated.

The major drawback of the above mentioned pa-
pers (Takagi and Sugeno, 1985; Wang et al., 1996;
Tanaka et al., 1997; Kim and Lee, 2000; Cao
et al., 1996; Ma et al., 1998; Lo and Lin, 2003;
Assawinchaichote and Nguang, 2004; Nguang and
Assawinchaichote, 2003; Nguang and Shi, 2003,
2001; Chen et al., 2000; Wang et al., 1992) is
that their design methodologies do not incorpo-
rate membership function characteristics, which
may lead to conservative design methodologies.
Motivated by this drawback, in this paper, S-
procedure has been used to incorporate input
membership function characteristics into our de-
sign. We show that the existence of a robust H∞
static output feedback control can be expressed
in terms of the solvability of bilinear matrix in-
equalities. To compute a solution to these BMIs,
an iterative algorithm (Cao et al., 1998) based on
the linear matrix inequality has been developed.

The rest of this paper is organized as follows.
In Section 2, system description and problem
formulation are given. Main results are presented

in Section 3. The validity of our approach is
demonstrated by an example from literatures in
Section 4. Finally, conclusions are given in Section
5.

2. SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

Consider a nonlinear dynamic plant whose opera-
tion space can be partitioned into several regimes
according to premise variables. The i-th plant
local linear model in the T-S fuzzy model is,

Plant Rule i:

IF ν1 is Mi1 and · · · and νp is Mip, THEN

ẋ = [Ai + ∆Ai]x + B1i
w + [B2i

+ ∆B2i
]u

z = [C1i
+ ∆C1i

]x + [D12i
+ ∆D12i

]u (1)

y = C2x

where i = 1, · · · , r, r is the number of fuzzy rules;
νk are premise variables, Mik are fuzzy sets, k =
1, · · · , p, p is the number of premise variables; x ∈
<n is the state vectors, u ∈ <m is the input, z ∈ <l

and y ∈ <p are controlled and measured output,
respectively. w ∈ <q is the disturbance which
belongs to L2[0,∞). Ai, B1i , B2i , C1i , D12i , C2

are of appropriate dimensions. ∆Ai, ∆B2i , ∆C1i

and ∆D12i represent the uncertainties in the
system and satisfy the following assumption.

Assumption 2.1. The parameter uncertainties con-
sidered here are norm-bounded, in the form[

∆Ai ∆B2i

∆C1i ∆D12i

]
=

[
H1i

H2i

]
Fi(t)

[
E1i E2i

]
(2)

where H1i, H2i, E1i and E2i are known real
constant matrices of appropriate dimensions, and
Fi(t) is an unknown matrix function with Lebesgue-
measurable elements and satisfies FT

i (t)Fi(t) ≤ I,
in which I is the identity matrix of an appropriate
dimension.

By using a center-average defuzzifer, product in-
ference and singleton fuzzifer, the local models can
be integrated into a global nonlinear model:

ẋ =
r∑

i=1

µi[(Ai + ∆Ai)x + B1iw + (B2i + ∆B2i)u]

z =
r∑

i=1

µi[(C1i + ∆C1i)x + (D12i + ∆D12i)u] (3)

y = C2x

where ν = [ν1, ν2, · · · , νp]T , ωi(ν) =
∏p

k=1 Mik(νk),
ωi(ν) ≥ 0,

∑r
i=1 ωi(ν) > 0, µi = ωi(ν)∑r

i=1
ωi(ν)

,

µi ≥ 0,
∑r

i=1 µi = 1. Here, Mik(νk) denote the
grade of membership of νk(t) in Mik.



For the nonlinear plant represented by (3), the
fuzzy static output feedback controller is inferred
as follows:

u(t) =
r∑

i=1

µi(ν(t))Kiy(t). (4)

where Ki is the local controller gain for each plant
rule.

Before proceeding with our controller design,
we recall the following matrix inequality lemma
which will be used throughout the proof.

Lemma 2.1. (Wang et al., 1992) Let G, H, E and
F (t) be real matrices of appropriate dimensions
with F (t) being a matrix function. Then we have

(a) for any ε > 0 and FT (t)F (t) ≤ I,

HF (t)E + ET FT (t)HT ≤ εHHT +
1
ε
ET E,

(5)
(b) for any ε > 0 such that εET E < I and

F (t)FT (t) ≤ I,

[G + HF (t)E]T [G + HF (t)E] ≤
GT (I − εHHT )−1G +

1
ε
ET E.

(6)

Problem Formulation : Given a prescribed H∞
performance γ > 0, design a fuzzy controller (4)
such that∫ ∞

0

zT (t)z(t)dt ≤ γ2

∫ ∞

0

wT (t)w(t)dt (7)

For the convenience of the notation (∗) as an
ellipsis for terms that are induced by symmetry.

3. MAIN RESULTS

In this section, we shall present our procedure
for designing a robust H∞ static output feedback
control gain for the system (3). In particular, we
are interested in finding a controller of the form
(4) that ensures (7).

The closed-loop system of (3) with (4) can be
written as follows:

ẋ =
r∑

i=1

r∑

j=1

µiµj

{
[Ai + B2iKjC2 +

H1iFi(t)(E1i + E2iKjC2)]x + B1iw(t)
}

(8)

z =
r∑

i=1

r∑

j=1

µiµj

{
C1i + D12iKjC2 +

H2iFi(t)(E1i + E2iKjC2)
}

x(t) (9)

Before presenting the main result, the following
theorem is needed.

Theorem 3.1. Given a prescribed H∞ perfor-
mance γ > 0 and positive constants ε1 and ε2,
if there exist symmetric matrices P and Yij and
matrices Ki satisfying the following conditions:

P > 0 (10)

Ωii +
[

Yiin×n
0

0 0

]
< 0, i = 1, 2, · · · , r (11)

Ωij + Ωji +
[

2Yijn×n 0
0 0

]
< 0, i < j ≤ r (12)




Y11 Y12 · · · Y1r

Y12 Y22 · · · Y2r

...
. . .

...
Y1r Y2r · · · Yrr


 > 0 (13)

where

Ωij =




AT
i P + PAi − PB2i

BT
2i

P (∗)T (∗)T

BT
2i

P + KjC2 −I (∗)T

HT
1iP 0 − 1

ε1
I

E1i + E2iKjC2 0 0
C1i + D12iKjC2 0 0
E1i + E2iKjC2 0 0

BT
1i

P 0 0
(∗)T (∗)T (∗)T (∗)T

(∗)T (∗)T (∗)T (∗)T

(∗)T (∗)T (∗)T (∗)T

−ε1I (∗)T (∗)T (∗)T

0 ε2H2iH
T
2i − I (∗)T (∗)T

0 0 −ε2I (∗)T

0 0 0 −γ2I




(14)
then inequality (7) holds.

Proof: This theorem can be proved by following
the same approach as in (Nguang and Shi, 2001)
and (Nguang and Shi, 2003). The detail of the
proof has been omitted due to the page limit. ¥
Note that the matrix inequalities (11) and (12)
are bilinear matrix inequalities (BMI) and can-
not be solved by a convex optimization algo-
rithm. An iterative algorithm (ILMI) based on
the linear matrix inequality (LMI) has been em-
ployed to solve this BMI problem in (Cao et al.,
1998) and (Kim and Lee, 2000). To apply the
ILMI method on (11) and (12), the negative
quadratic term −PB2iB

T
2i

P has to be replaced by
−XT B2iB

T
2i

P −PB2iB
T
2i

X +XT B2iB
T
2i

X, where
X is the additional design matrix variable. This
replacement is due to the fact that for any X and
P of the same dimension, we have

−PB2iB
T
2i

P ≤−XT B2iB
T
2i

P − PB2iB
T
2i

X

+XT B2iB
T
2i

X (15)

Note that in Lemma 3.1, the membership function
characteristics of the fuzzy system have been ig-



nored. These membership function characteristics
are crucial in many cases and may render less con-
servative results. Based on the so-called (outer)
ellipsoidal approximation algorithm, a new result
is derived in the following text by incorporating
the membership function characteristics. Before
we proceed with the development, the following
definition is needed.

Definition 3.1. Let Iξ be the set of indices for the
fuzzy rules that contains the origin x = 0:

Iξ ≡ {ξ|hξ(0) 6= 0}.
We also define Rij as the region where the fuzzy
rule i and fuzzy rule j are activated:

Rij ≡ {x|µi(x)µj(x) > 0}

We assume that each region Rij (i, j /∈ Iξ) can be
outer approximated by a union of ellipsoids Eijk

for k = 1, · · · , m, where m is the number of ellip-
soids. That is, matrices Tijk and fijk exist such
that Rij ⊆

⋃m
k=1 Eijk where Eijk = {x| ‖Tijkx +

fijk‖ ≤ 1}. Note that the ellipsoids Eijk can also
be represented as the following LMI form:

[
x
1

]T [
TT

ijkTijk (∗)T

fT
ijkTijk −(1− fT

ijkfijk)

] [
x
1

]
≤ 0(16)

Remark 3.1. Suppose that Rij = {x| d1 ≤ cT x ≤
d2}, then it is easy to see that we can take Tij1 =
2cT /(d2 − d1) and fij1 = −(d2 + d1)/(d2 − d1).

Using (15) and the S-procedure, we have the fol-
lowing theorem which incorporates the member-
ship function characteristics.

Theorem 3.2. Given a prescribed H∞ perfor-
mance γ > 0 and positive constants ε1 and ε2,
if for i = 1, · · · , r, i < j and k = 1, · · · ,m there
exist symmetric matrices P and Yij , matrices Ki,
scalars λiik and λijk, and an auxiliary matrix
variable X satisfying the following conditions:

For region Rij (i, j ∈ Iξ).

P > 0 (17)

Φii +
[

Yii 0
0 0

]
< 0 (18)

Φij + Φji +
[

2Yij 0
0 0

]
< 0 (19)

For the other regions.

λiik > 0, λijk > 0 (20)

Ψiik +
[

Yii 0
0 0

]
< 0 (21)

Ψijk + Ψjik +
[

2Yij 0
0 0

]
< 0 (22)




Y11 Y12 · · · Y1r

Y12 Y22 · · · Y2r

...
. . .

...
Y1r Y2r · · · Yrr


 > 0 (23)

where

Φij =







AT
i P + PAi

−XT B2i
BT

2i
P

−PB2i
BT

2i
X

+XT B2i
BT

2i
X


 (∗)T (∗)T (∗)T

HT
1iP 0 − 1

ε1
I (∗)T

E1i + E2iKjC2 0 0 (∗)T

C1i
+ D12i

KjC2 0 0 −ε1I
E1i + E2iKjC2 0 0 0

BT
1i

P 0 0 0

(∗)T (∗)T (∗)T

(∗)T (∗)T (∗)T

(∗)T (∗)T (∗)T

(∗)T (∗)T (∗)T

ε2H2iH
T
2i − I (∗)T (∗)T

0 −ε2I (∗)T

0 0 −γ2I




(24)

Ψijk =







AT
i P + PAi

−XT B2iB
T
2i

P

−PB2iB
T
2i

X

+XT B2iB
T
2i

X

−λijkTT
ijkTijk




(∗)T (∗)T (∗)T

HT
1iP 0 − 1

ε1
I (∗)T

E1i + E2iKjC2 0 0 (∗)T

C1i + D12iKjC2 0 0 −ε1I
E1i + E2iKjC2 0 0 0

BT
1i

P 0 0 0
−λijkfT

ijkTijk 0 0 0

(∗)T (∗)T (∗)T (∗)T

(∗)T (∗)T (∗)T (∗)T

(∗)T (∗)T (∗)T (∗)T

(∗)T (∗)T (∗)T (∗)T

ε2H2iH
T
2i − I (∗)T (∗)T (∗)T

0 −ε2I (∗)T (∗)T

0 0 −γ2I (∗)T

0 0 0 λijk(1− fT
ijkfijk)




(25)

then inequality (7) holds.

Proof: (18) and (19) can be obtained straight
from Theorem 3.1 and (15). (21) and (22) can be
obtained by combining (18) and (19) with (16)
through the S-procedure. ¥



4. NUMERICAL EXAMPLE

To illustrate the validation of the results obtained
previously, we consider the following problem of
balancing an inverted pendulum on a cart. The
equations of motion of the pendulum (Wang et al.,
1996) are

ẋ1 = x2

ẋ2 =
g sin(x1)− amlx2

2 sin(2x1)/2− a cos(x1)u
4l/3− aml cos2(x1)

+w (26)

where x1 denotes the angle of the pendulum
from the vertical position, and x2 is the angular
velocity. g = 9.8m/s2 is the gravity constant, m
is the mass of the pendulum, a = 1/(m + M),
M is the mass of the cart, 2l is the length of the
pendulum, and u is the force applied to the cart.
In the simulation, the pendulum parameters are
chosen as m = 2kg, M = 8kg, and 2l = 1.0m.

We approximate the system (26) by the T-S fuzzy
model given in (Lo and Lin, 2003):

Rule 1 : IFx1 is M1, THEN

ẋ = (A1 + ∆A1)x + B1w + (B21 + ∆B21)u

z = C1x + D12u

y = C2x

Rule 2 : IFx1 is M2, THEN

ẋ = (A2 + ∆A2)x + B1w + (B22 + ∆B22)u

z = C1x + D12u

y = C2x

where A1 =
[

0 1
17.2941 0

]
, B21 =

[
0

−0.1765

]
,

A2 =
[

0 1
9.3600 0

]
, B22 =

[
0

−0.0052

]
, B1 =

[
0
1

]
,

C1 =
[
1 0.3

]
, D12 = 0.01 and C2 =

[
9 0.1

]
.

The disturbance attenuation level γ is set to be
equal to 1 in this example and ε1 = ε2 = 1.
The membership functions for Rule 1 and Rule 2
are shown in Figure 1. Let the uncertain terms

M1
1

M2M2

−pi/2 −pi/4 pi/4 pi/2

0

Fig. 1. Membership functions

be given asH11 = H12 =
[

0 0
0.15 0

]
,, E11 =

E12 =
[

1 0
0 1

]
, E21 = E22 =

[
1
0

]
,H21 = H22 =

0, ‖F (t)‖ ≤ I. From the membership functions
given in Figure 1, we have Iξ = {1}
For R12,

T121 = T122 =
8
π

[
1 0

]
, f121 = 3, f122 = 3.

For R22,

T221 = T222 =
8
π

[
1 0

]
, f221 = 3, f222 = 3

Applying the ILMI method given in (Cao et al.,
1998), we have

P =
[

36.83 −6.78
−6.78 2.26

]
, Y11 =

[
201.71 −49.60
−49.60 12.20

]

Y12 =
[−22.34 5.49

5.49 −1.35

]
, Y22 =

[
96.28 −31.20
−31.20 12.1

]

and the static output feedback gains

K1 = 400.49, K2 = 47.47. (27)

A square wave with amplitude =1 and fre-
quency=0.1Hz was used to simulate the distur-
bance input noise w(t). The ratio of the regu-
lated output energy to the disturbance input noise

energy (
∫ t

0
zT (t)z(t)dt∫ t

0
wT (t)w(t)dt

) obtained using the fuzzy

controller gain (27) is given in Figure 2. We can
see that after 5 seconds, the ratio of the regulated
output energy to the disturbance input noise en-
ergy tends to be a constant value which is about
0.1. Hence, the disturbance attenuation level γ is
about 0.3, which is less than the prescribed level
1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0   

0.5

1

1.5

2

2.5

3

Time (sec)

Fig. 2. The ratio of the regulated output energy
to the disturbance input noise energy

5. CONCLUSION

Design of a robustH∞ static output feedback con-
troller for a T-S fuzzy system has been provided
in this paper. The existence of a static output
feedback control law has been expressed in terms
of the solvability of bilinear matrix inequalities.
To compute a solution to the BMIs, an iterative
algorithm based on the linear matrix inequality
has been proposed. The conservatism of the de-
sign has been reduced by incorporating the input



membership structural information. A numerical
example has been given to illustrate the validity
of our design.
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