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1. INTRODUCTION

Nonlinear H∞ control design has been extensively
studied by a number of researchers over the past
two decades; see, for instance, (Ball et al. , 1993;
Ball and Helton, 1989; Basar and Olsder, 1982;
Isidori and Astolfi, 1992; Isidori, 1991; Nguang
and Shi , 2000a,b; Nguang and Fu , 1996; Nguang ,
1996; van der Schaft, 1992; van der Schaft , 1991).
This problem can be stated as follows: given a
dynamic system with the exogenous input and
measured output, design a control law such that
the L2 gain of the mapping from the exogenous
input to the regulated output is minimised or no
larger than some prescribed level. Solutions to this
problem can be characterized in terms of the so-
called Hamilton-Jacobi equation (HJE). However,
until now, the problem of finding a global solution

to the HJE either analytically or numerically is an
open research area.

Over the past two decades, there has been rapidly
growing interest in application of fuzzy logic to
control problem. Researches have been focused
on its application to industrial processes and a
number of successful results have been reported
in the literature. In spite of these successes, there
are many basic issues remain to be addressed. One
of them is how to achieve a systematic design
that guarantees closed-loop stability and perfor-
mance. Recently, a great amount of effort has been
devoted to describing a nonlinear system using
a Takagi-Sugeno fuzzy model; see (Assawinchai-
chote and Nguang, 2004a,b; Cao et al., 1996; Chen
et al., 2000; Lee et al., 2001; Ma et al., 1998;
Nguang and Shi, 2003; Nguang and Shi , 2001a,b;
Tanaka et. al., 1996; Tanaka , 1995; Tanaka and



Sugeno , 1992; Takagi and Sugeno, 1985). The
Takagi-sugeno fuzzy model represents a nonlinear
system by a family of local linear models which
smoothly blended together through fuzzy mem-
bership functions. Unlike conventional modelling
techniques which uses a single model to describe
the global behavior of a nonlinear system, fuzzy
modelling is essentially a multi-model approach
in which simple sub-models (typically linear mod-
els) are fuzzily combined to described the global
behavior of a nonlinear system. Based on this
fuzzy model, a number of systematic model-based
fuzzy control design methodologies have been de-
veloped.

The aim of this paper is to study the problem of
designing an output feedback controller for a class
of fuzzy uncertain systems that guarantees i) the
L2-gain from an exogenous input to a regulated
output is less or equal to a prescribed value, and ii)
the closed-loop system to be quadratically stable
in a pre-specified LMI stability region. Based
on an LMI approach, sufficient conditions for
quadratic D-stabilization of the uncertain Takagi-
Sugeno fuzzy model with an H∞ performance
are derived in terms of a family of linear matrix
inequalities.

This paper is organized as follows. In Section
II, system descriptions and definitions are pre-
sented. Based on an LMI approach, we develop
a technique in Section III for designing a fuzzy
H∞ controller that guarantees the L2-gain of the
mapping from the exogenous input noise to the
regulated output is less than a prescribed value
and the closed-loop system to be quadratically
stable within a pre-specified LMI stability region,
D. The validity of this approach is demonstrated
by using the chaotic Lorenz system from the lit-
erature in Section IV. Finally, in Section V, the
conclusion is drawn.

2. SYSTEM DESCRIPTIONS AND
DEFINITIONS

The class of nonlinear uncertain systems under
consideration is described by the following fuzzy
system model:

Plant Rule i:

IF ν1(t) is Mi1 and · · · and νϑ(t) is Miϑ THEN

ẋ(t) = [Ai + ∆Ai]x(t) + [B1i
+ ∆B1i

]w(t)
+[B2i

+ ∆B2i
]u(t), x(0) = 0

z(t) = [C1i
+ ∆C1i

]x(t) + [D12i
+ ∆D12i

]u(t)
y(t) = [C2i

+ ∆C2i
]x(t) + [D21i

+ ∆D21i
]w(t)

(1)
where i = 1, 2, · · · , r, Mij(j = 1, 2, · · · , ϑ) are
fuzzy sets, x(t) ∈ <n is the state vector, u(t) ∈ <m

is the input, w(t) ∈ <p is the disturbance which
belongs to L2[0, Tf ] with Tf > 0, y(t) ∈ <`

is the measurement, z(t) ∈ <s is the controlled
output, the matrices Ai, B1i

, B2i
, C1i

, C2i
, D12i

and D21i
are of appropriate dimensions, r is

the number of IF-THEN rules. The matrices
∆Ai,∆B1i

,∆B2i
,∆C1i

,∆C2i
,∆D12i

and ∆D21i

represent the time-varying uncertainties in the
system and satisfy the following assumption.

Assumption 2.1.

∆Ai = F (x(t), t)E1i
, ∆B1i

= F (x(t), t)E2i
,

∆B2i
= F (x(t), t)E3i

, ∆C1i
= F (x(t), t)E4i

,

∆C2i
= F (x(t), t)E5i

, ∆D12i
= F (x(t), t)E6i

,

∆D21i
= F (x(t), t)E7i

where Eji
, j = 1, 2, · · · , 7 are known matrices

which characterize the structure of the uncertain-
ties. Furthermore, there exists a positive constant
ρ such that the following inequality holds:

‖F (x(t), t)‖ ≤ ρ. (2)

Let $i(ν(t)) =
∏ϑ

k=1 Mik(νk(t)) and µi(x(t)) =
$i(ν(t))

∑

r

i=1
$i(ν(t))

where Mik(νk(t)) is the grade of

membership of νk(t) in Mik. It is assumed in this
paper that $i(ν(t)) ≥ 0 and

∑r
i=1 $i(ν(t)) > 0

for all t. Hence, µi(ν(t)) ≥ 0 and
∑r

i=1 µi(ν(t)) =
1 for all t. For the convenience of notations, we let
$i = $i(ν(t)) and µi = µi(ν(t)).

The resulting fuzzy system model is inferred as
the weighted average of the local models of the
form:

ẋ = [A(µ) + ∆A(µ)]x + [B1(µ) + ∆B1(µ)]w
+[B2(µ) + ∆B2(µ)]u

z = [C1(µ) + ∆C1(µ)]x + [D12(µ) + ∆D12(µ)]u
y = [C2(µ) + ∆C2(µ)]x + [D21(µ) + ∆D21(µ)]w

(3)
where A(µ) =

∑r
i=1 µiAi, B1(µ) =

∑r
i=1 µiB1i

,
B2(µ) =

∑r
i=1 µiB2i

, C1(µ) =
∑r

i=1 µiC1i
,

C2(µ) =
∑r

i=1 µiC2i
, D12(µ) =

∑r
i=1 µiD12i

,
D21(µ) =

∑r
i=1 µiD21i

, ∆A(µ) = F (x, t)E1(µ),
∆B1(µ) = F (x, t)E2(µ), ∆B2(µ) = F (x, t)E3(µ),
∆C1(µ) = F (x, t)E4(µ), ∆C2(µ) = F (x, t)E5(µ),
∆D12(µ) = F (x, t)E6(µ), ∆D21(µ) = F (x)E7(µ)
with Ek(µ) =

∑r
i=1 µiEki

, k = 1, 2, · · · , 7.

Definition 2.1. (van der Schaft, 1992) Suppose γ
is a given positive number. A system of the form
(3) is said to have L2[0, Tf ] gain less than or equal
to γ if
∫ Tf

0

zT (t)z(t) dt ≤ γ2

[

∫ Tf

0

wT (t)w(t) dt

]

. (4)

Definition 2.2. (Chilali and Gahinet , 1996; Chi-
lali et al., 1994) A subset D of the complex plane
is called an LMI region if there exist a symmetric
matrix Γ ∈ <g×g and a matrix Π ∈ <g×g such
that



D = {z = x + jy ∈ C : fD(z) < 0} (5)

where the characteristic function fD(z) is given as
follows:

fD(z) = Γ + Πz + ΠT z̄. (6)

Definition 2.3. (Quadratic D-stability) Given an
LMI stability region D-stable defined by (5), the
nonlinear system ẋ(t) = f(x(t))x(t) is said to be
quadratically D-stable if there exists a positive
definite symmetric matrix X ∈ <n×n such that

Γ ⊗ X + Π ⊗ (Xf(x)) + ΠT ⊗ (Xf(x))T < 0(7)

where ⊗ denotes the Kronecker product of the
matrices.

In this paper, we seek for an nth-order H∞ fuzzy
output feedback which is inferred as the weighted
average of the local models of the form:

˙̂x(t) = Â(µ)x̂(t) + B̂(µ)y(t)

u(t) = Ĉ(µ)x̂(t)
(8)

Before ending this section, we describe the prob-
lem under our study as follows.

Problem Formulation: Given a prescribed H∞

performance γ > 0 and an LMI stability region
D with the characteristic function (6), design a
robust fuzzy H∞ output feedback controller of the
form (8) such that i) the inequality (4) holds, and
ii) the closed-loop fuzzy system is quadratically
stable in the given LMI stability region D.

Note that for the symmetric block matrices, we
use (∗) as an ellipsis for terms that are induced
by symmetry.

3. MAIN RESULTS

This section provides sufficient conditions for the
system (3) with (8) to be quadratically D stable
and has a prescribed H∞ performance γ > 0.

Theorem 3.1. Consider the system (3) satisfies
Assumption 2.1. Given a prescribed H∞ perfor-
mance γ > 0, an LMI stability region D and a
positive constant δ, if there exists a matrix P > 0
satisfying the following matrix inequalities:











ΠD(Acl(µ), P ) (∗)T (∗)T

Π1 ⊗ (B̌T
cl(µ)P ) −1

ρ
I (∗)T

Π2 ⊗ Čcl(µ) 0 −1

ρ
I











< 0 (9)

and




Acl(µ)P + PAT
cl(µ) (∗)T (∗)T

BT
cl(µ) −γI (∗)T

Ccl(µ)P 0 −γI



 < 0, (10)

where ΠD(Acl(µ), P ) = Γ ⊗ P + Π ⊗ (PAcl(µ))

+ΠT ⊗ (Acl(µ)T P ),B̌cl(µ) =

[

I I 0

0 0 B̂(µ)

]

,

Acl(µ) =

[

A(µ) B2(µ)Ĉ(µ)

B̂(µ)C2(µ) Â(µ)

]

, Čcl(µ) =





E1(µ) 0

0 E3(µ)Ĉ(µ)
E5(µ) 0



 , Bcl(µ) =

[

B̃1(µ)

B̂(µ)D̃21(µ)

]

and Ccl(µ) = [C̃1(µ) D̃12(µ)Ĉ(µ)] with
B̃1(µ) = [δI I δI 0 B1(µ) 0],C̃1(µ) =
[

ρ
δ
ET

1 (µ) 0 ρ
δ
ET

5 (µ)
√

2λρET
4 (µ)

√
2λCT

1 (µ)
]T

,

D̃12(µ) =
[

0 ρ
δ
ET

3 (µ) 0
√

2λρET
6 (µ)

√
2λDT

12(µ)
]T

,

D̃21(µ) = [0 0 0 δI D21(µ) I] and λ2 =
[

1+

ρ2
∑r

i=1

∑r
j=1

{

‖ET
2i

E2j
‖ + ‖ET

7i
E7j

‖
}

]

. Then the

inequality (4) is guaranteed and the closed-loop
system is quadratically stable in the given LMI
stability region D.

Proof: This theorem can be proved by employ-
ing the approaches given in (Chilali et al., 1994;
Nguang and Shi, 2003; Assawinchaichote and
Nguang, 2004a,b). Due to the page limit, the
detail of the proof has been omitted. �

In general, (9) and (10) are nonconvex nonlinear
matrix inequalities. Fortunately, (9) and (10) can
be transformed to some convex linear matrix
inequalities by the following procedures. Partition
P and its inverse as

P =

[

X M

MT U

]

, P−1 =

[

Y N

NT V

]

,

X ∈ <n×n, Y ∈ <n×n.
(11)

Define the new controller variables as

B(µ) := NB̂(µ)

C(µ) := Ĉ(µ)MT

A(µ) := NÂ(µ)MT + NB̂(µ)C2(µ)X

+Y B2(µ)Ĉ(µ)MT + XA(µ)Y.

(12)

The identity PP−1 = I together with (11) gives

MNT = I − XY (13)

Thus, M ∈ <n×n and N ∈ <n×n are invertible
when I − XY is invertible.

Using this change of variable, and (9) and (10), we
have the following LMI-based sufficient conditions
for the system (3):

Theorem 3.2. Consider the system (3) satisfies
Assumption 2.1. Given a prescribed H∞ perfor-
mance γ > 0, an LMI stability region, D, and
a positive constant δ. If there exist matrices X,
Y , Aij , Bi and Ci satisfying the following matrix
inequalities:



[

X I
I Y

]

> 0 (14)

Ωii < 0, i = 1, · · · , r (15)

Ωij + Ωji < 0, i < j < r (16)

Σii < 0, i = 1, 2, · · · , r (17)

Σij + Σji < 0, i < j < r (18)

where

Σij =

[

Ψ11ij
ΨT

21ij

Ψ21ij
Ψ22ij

]

(19)

Ωij =



































Γ ⊗
[

X I
I Y

]

+Π ⊗ ΦAij

+ΠT ⊗ ΦT
Aij









(∗)T (∗)T

Π1 ⊗ ΦT
Bi

−I

ρ
(∗)T

Π2 ⊗ ΦCi
0 −I

ρ



























(20)

ΦAij
=

[

AiX + B2i
Cj Ai + B2i

C2j

Aij Y Ai + BiC2j

]

ΦBi
=

[

B∆

Y B∆ + BiD∆

]

ΦCi
=

[

C∆i
X + D∆∆i

C∆i

]

Ψ11ij
=

[

AiX + XAT
i + B2i

Cj + CT
i BT

2j
B̃1i

B̃T
1i

−γI

]

Ψ21ij
=

[

Aij + AT
i Y B̃1i

+ BiD̃21j

C̃1i
X + D̃12i

Cj 0

]

Ψ22ij
=

[

AT
i Y + Y Ai + BiC2j

+ CT
2i
BT

j C̃T
1i

C̃1i
−γI

]

with B∆ = [I I 0], C∆i
=

[

ET
1i

0 ET
5i

]T
,

D∆ = [0 0 I], D∆∆i
=

[

0 ET
3i

0
]T

. Then the
inequality (4) holds and the closed-loop system
(3) with (8) is quadratically stable in the given
LMI stability region D. Furthermore, a suitable
controller (Âij , B̂i and Ĉi) is given as follows:

B̂i = N−1Bi

Ĉi = Ci(M
T )−1

Âij = N−1[Aij − Y ÃiX

−BiC̃2j
X − Y B̃2i

Cj ](M
T )−1

(21)

where MNT = I − XY , and M and N are
invertible.

Proof: Using the change of variable defined in
(12), (9) and (10) can be, respectively, re-written
as follows:

Ω(µ) < 0 (22)
[

Ψ11(µ) ΨT
21(µ)

Ψ21(µ) Ψ22(µ)

]

< 0 (23)

where

Ω(µ) =



































Γ ⊗
[

X I
I Y

]

+Π ⊗ ΦA(µ)

+ΠT ⊗ ΦT
A(µ)









(∗)T (∗)T

Π1 ⊗ ΦT
B(µ) −I

ρ
(∗)T

Π2 ⊗ ΦC(µ) 0 −I

ρ



























(24)

ΦA(µ) =









(

A(µ)X
+B2(µ)C(µ)

) (

A(µ)
+B2(µ)C2(µ)

)

A(µ)

(

Y A(µ)
+B(µ)C2(µ)

)









ΦB(µ) =

[

B∆

Y B∆ + B(µ)D∆

]

ΦC(µ) =

[ (

C∆(µ)X
+D∆∆(µ)

)

C∆(µ)

]

Ψ11(µ) =













A(µ)X + XAT (µ)
+B2(µ)C(µ)

+CT (µ)BT
2 (µ)



 B̃1(µ)

B̃T
1 (µ) −γI









Ψ21(µ) =









A(µ) + AT (µ)

(

Y B̃1(µ)

+B(µ)D̃21(µ)

)

(

C̃1(µ)X

+D̃12(µ)C(µ)

)

0









Ψ22(µ) =













AT (µ)Y + Y A(µ)
+B(µ)C2(µ)

+CT
2 (µ)BT (µ)



 C̃T
1 (µ)

C̃1(µ) −γI









with C∆(µ) =
[

ET
1 (µ) 0 ET

5 (µ)
]T

, D∆∆(µ) =
[

0 ET
3 (µ) 0

]T
. Expanding (22) and (23), we, re-

spectively, get

Ω(µ) =

r
∑

i=1

µiµiΩii +

r
∑

i=1

r
∑

i<j

µiµj [Ωij + Ωji] < 0

(25)[

Ψ11(µ) ΨT
21(µ)

Ψ21(µ) Ψ22(µ)

]

=

r
∑

i=1

µiµi

[

Ψ11ii
ΨT

21ii

Ψ21ii
Ψ22ii

]

+

r
∑

i=1

r
∑

i<j

µiµj

{[

Ψ11ij
ΨT

21ij

Ψ21ij
Ψ22ij

]

+

[

Ψ11ji
ΨT

21ji

Ψ21ji
Ψ22ji

]}

< 0. (26)

From (25) and (26), we get (15)-(18). P > 0 in

Theorem 3.1 implies that

[

X I
I Y

]

> 0.

4. ILLUSTRATIVE EXAMPLE

Consider the following chaotic Lorenz system (Lee
et al., 2001) which is described by

ẋ1 =−(σ1 + ∆σ1)x1 + (σ1 + ∆σ1)x2 + 0.1w1 + u

ẋ2 = (σ2 + ∆σ2)x1 − x2 − x1x3 + 0.1w2

ẋ3 = x1(t)x2 − (σ3 + ∆σ3)x3 + 0.1w3



z =





x1

x2

x3



 +





0.1
0
0



 u(t)

y = x1 + 0.1w1

(27)

where x1, x2 and x3 are the state variables, u is
the control input, w1, w2, w3 are the disturbance
noise inputs, y is the measurement output, z is the
controlled output. σ1 = 10, σ2 = 28 and σ3 = 8/3
are the system’s parameters. The uncertain time-
varying system’s parameters are ∆σ1 = f(x, t)σ1,
∆σ2 = f(x, t)σ2 and ∆σ3 = f(x, t)σ3 where
|f(x, t)| ≤ 0.3. Through some simulations, x1(t)
seems to be bounded within [−20, 30].

For the sake of simplicity, we use as few rules as
possible. The nonlinear system (27) can be ap-
proximated by the following two rules TS model:

Plant Rule 1: IF x1 is M1(x1) THEN

ẋ = [A1 + ∆A1]x + B11
w + B21

u,

z = C11
x + D122

u

y = C21
x + D211

w

Plant Rule 2: IF x1 is M2(x1) THEN

ẋ = [A2 + ∆A2]x + B12
w + B22

u,

z = C12
x + D122

u

y = C22
x + D212

w

where the membership functions M1(x1) = −x1+30
50

are M2(x1) = x1+20
50 .

A1 =





−σ1 σ1 0
σ2 −1 20
0 −20 −σ3



 , A2 =





−σ1 σ1 0
σ2 −1 −30
0 30 −σ3



 ,

B11
= B12

=





0.1 0 0
0 0.1 0
0 0 0.1



 , B21
= B22

=





1
0
0



 ,

C11
= C12





1 0 0
0 1 0
0 0 1



 , D121
= D122

=





0.1
0
0



 ,

C21
= C22

= [1 0 0]D211
= D212

=
[

0.1 0 0
]

,

x(t) = [xT
1 (t) xT

2 (t) xT
3 (t)]T , w(t) = [wT

1 wT
2 wT

3 ]T .

The uncertain time-varying matrices are given as
follows:

∆A1 = F (x, t)E11
and ∆A2 = F (x, t)E12

where E11
= E12

=





−σ1 σ2 0
σ2 0 0
0 0 −σ3



 and

F (x, t) =





f(x, t) 0 0
0 f(x, t) 0
0 0 f(x, t)



 . We would

like the closed-loop system to be quadratically
stable in the LMI conic sector region with θ = 80◦.
Using an LMI optimization algorithm and Theo-
rem 3.2 with γ = 1, we obtain

Â11 =





−52.6459 913.0329 11.1683
0.4211 −93.8119 −1.1292
2.3239 −0.4233 0.0865



,

Â12 =





−52.9740 909.6351 0.8313
0.5070 −93.0535 −0.2157
2.3414 −0.2540 0.1024



,

Â21 =





−54.8390 912.4579 −6.7553
1.4467 −93.6196 0.6829
−3.5367 −0.1599 0.2080



,

Â22 =





−54.7676 913.4610 −17.1638
1.3897 −94.0748 1.5985
−3.5229 −0.0374 0.1865



,

B̂1 =





−110.4306
4.8589
2.9909



,B̂2 =





113.2188
6.1387
−4.5464



,

Ĉ1 =
[

−36.1488 −710.9845 −3.2817
]

,

Ĉ2 =
[

−35.9847 −709.7215 5.1803
]

.

Remark 4.1. The fuzzy controller ensures that the
closed-loop system is quadratically stable within
the pre-specified LMI conic sector region, and the
inequality (4) holds. The ratio of the regulated
output energy to the disturbance input noise en-
ergy obtained is depicted in Figure 1. A square
wave with amplitude=0.8 and frequency=1Hz has
been used to simulate the disturbance input sig-
nals, w1(t), w2(t) and w3(t). The time-vary uncer-
tain function, f(x, t) = sin(x1(t)x2(t)) was chosen
in the simulation. After 3 seconds, the ratio of the
regulated output energy to the disturbance input
noise energy tends to a constant value which is
about 0.21. Thus, γ =

√
0.21 = 0.458 which are

less than the prescribed value 1.

5. CONCLUSION

This paper has proposed a technique for designing
an H∞ output feedback controller for a class
of fuzzy dynamic systems that guarantees i) the
L2-gain from an exogenous input to a regulated
output is less or equal to a prescribed value and
ii) the closed-loop system to be quadratically
stable within a pre-specified region. Based on an
LMI approach, LMI-based sufficient conditions for
quadratic D-stabilization of the uncertain Takagi-
Sugeno fuzzy model with an H∞ performance are
derived. The effectiveness of the proposed design
methodology is demonstrated through numerical
simulation of the chaotic Lorenz system.
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Fig. 1. The ratio of the regulated output energy to

the disturbance noise energy:

∫

Tf

0

zT (t)z(t)dt
∫

Tf

0

wT (t)w(t)dt
.
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