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Abstract: The paper addresses the problem of designing a robust fault detection
filter for an uncertain Takagi-Sugeno fuzzy models. The existence of a robust
fault detection filter that guarantees i) the L2-gain from an exogenous input to
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1. INTRODUCTION

In practices, structures of many systems are sub-
ject to random variations. These variations may
result from component and interconnection fail-
ures, parameters shifting, tracking, sudden envi-
ronmental disturbances, abrupt variations of the
operating condition, etc. In order to avoid produc-
tion deteriorations or damage to machines and hu-
mans, variations have to be detected as quickly as
possible and decisions that stop the propagation
of their effects have to be made.

Over the past two decades, the problem of fault
detection (FD) in dynamic systems has attracted
considerable attention of many researchers. Var-
ious model-based fault detection techniques have
been proposed; see (Basseville, 1988; Frank, 1990;
Isermann, 1984). In (Patton and Chen, 1991)
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and (Frank, 1994a), geometrical fault detection
approaches have been developed to improve ro-
bustness against unknown disturbances. However,
most of the above mentioned techniques rely on
the system parameters to be known. We know that
in reality the system parameters may either be
uncertain or time-dependent. Though the problem
of uncertain parameters is of crucial importance
to the industrial implementation of FD methods,
it has however received little attention with only a
handful of works so far devoted to it. Recently, in
(Ding et al., 1995) and (Frank and Ding, 1994b)
frequency domain approaches have been devel-
oped based on the fact that faults and unknown
input disturbances have different frequency char-
acteristics. An LMI approach to H−/H∞ fault
detection observers has been proposed in (Hou
and Patton, 1996) and (Patton and Hou, 1997).
In their papers, an H− norm is defined as the
smallest nonzero singular value of the transfer
function matrix from faults to residuals at the



zero frequency. Unfortunately, this H− norm is
not directly used in the analysis and synthesis of
a fault detection observer. In (Rank, 1999) and
(Ding et al., 2000), the worst-case fault sensitiv-
ity is measured by the smallest nonzero singular
value of the transfer function matrix from faults
to residuals over a finite frequency range. This
proposed measure, however, can only be evalu-
ated ineffective numerical optimizations such as
nonlinear programming, frequency grid method,
and genetic algorithm. Although many researchers
have studied the problem of fault detection (FD)
in linear systems with or without uncertainties for
many years, the problem of fault detection (FD)
in nonlinear systems remains as an open research
area.

One of the main difficulties in designing a fault
detection filter for nonlinear dynamical systems
is that a rigorous mathematical model may be
very difficult to obtain, if not impossible. How-
ever, many physical systems can be expressed
either in some form of mathematical model lo-
cally or as an aggregation of a set of math-
ematical models. Fuzzy system theory enables
us to utilise qualitative, linguistic information
about a highly complex nonlinear system to con-
struct a mathematical model for it. Recent studies
(Tanaka and Sugeno, 1992; Tanaka et. al., 1996;
Assawinchaichote and Nguang, 2002; Takagi and
Sugeno, 1985; Nguang and Shi, 2003a,b; Nguang
and Assawinchaichote, 2003c; Assawinchaichote
and Nguang, 2004a,b) have shown that a fuzzy
linear model can be used to approximate global
behaviours of a highly complex nonlinear system.
In this fuzzy linear model, local dynamics in dif-
ferent state space regions are represented by local
linear systems. The overall model of the system
is obtained by ”blending” these linear models
through nonlinear fuzzy membership functions.
Unlike conventional modelling which uses a single
model to describe the global behaviour of a sys-
tem, fuzzy modelling is essentially a multi-model
approach in which simple sub-models (linear mod-
els) are fuzzily combined to describe the global
behaviour of the system.

Motivated by the lack of an efficient method to
evaluate the worth-case fault sensitivity. The aim
of this paper is to propose a new worst-case fault
sensitivity measure that can be formulated in
terms of LMIs which can be solved by an effective
algorithm given in Boyd et. al. (1994). These
LMIs can then be combined with other design
objectives, such as robustness, pole constraints
and input constraints to achieve a multi-objective
fault detector. In this paper, the existence of a
fault detection filter that not only guarantees the
L2-gain from an exogenous input to a residual
signal to be less than a prescribed value, but also
guarantees that the L2-gain from a fault signal to

a residual signal to be greater than a prescribed
value is given in terms of the solvability of linear
matrix inequalities.

This paper is organized as follows. In Section 2,
system descriptions and definitions are presented.
Based on an LMI approach, we develop a tech-
nique in Section 3 for designing a fuzzy H∞ filter
that guarantees the L2-gain of the mapping from
the exogenous input noise to the residual signal is
less than a prescribed value. The validity of this
approach is demonstrated in Section 4. Finally, in
Section 5, the conclusion is drawn.

2. SYSTEM DESCRIPTION AND
DEFINITIONS

A fuzzy dynamic model has been proposed by
Takagi and Sugeno (Takagi and Sugeno, 1985)
to represent local linear input/output relations
of nonlinear systems. This fuzzy linear model is
described by IF-THEN rules and has been shown
to be able to approximate a large class of nonlinear
systems. Motivated by this, we generalise the TS
fuzzy model to represent a fuzzy system with
uncertainty and fault whose consequent parts are
linear systems with uncertainty and fault.

As in (Tanaka and Sugeno, 1992) and (Tanaka
et. al., 1996), we examine a TS fuzzy model
with uncertain and fault, in which the ith rule
is formulated as follows: Plant Rule i:

IF ν1 is Mi1 and · · · and νϑ is Miϑ THEN

ẋ = [Ai + ∆Ai]x + [Bi + ∆Bi]w
+[Gi + ∆Gi]f

y = [Ci + ∆Ci]x + [Di + ∆Di]w
+[Ji + ∆Ji]f

(1)

where i = 1, 2, · · · , r, r is the number of IF-
THEN rules, Mij(j = 1, 2, · · · , ϑ) are fuzzy sets,
x ∈ <n is the state vector with x(0) = 0, w ∈ <p

and f ∈ <q are, respectively, disturbances and
faults which belong to L2[0,∞), y ∈ <` is the
measurement. The matrices Ai, Bi, Ci, Di, Gi

and Ji are of appropriate dimensions. The matrix
functions ∆Ai, ∆Bi, ∆Ci, ∆Di, ∆Gi and ∆Ji

represent the time-varying uncertainties in the
system and satisfy the following assumption.

Assumption 2.1.

∆Ai = E1i
F (x, t)H1i

, ∆Bi = E2i
F (x, t)H2i

,

∆Ci = E3i
F (x, t)H3i

, ∆Di = E4i
F (x, t)H4i

,

∆Gi = E5i
F (x, t)H5i

, ∆Ji = E6i
F (x(t), t)H6i

where Hji
and Eji

are known matrices which
characterize the structure of the uncertainties.
Furthermore, there exists a positive function ρ
such that the following inequality holds:

‖F (x, t)‖ ≤ ρ. (2)



Let $i(ν) =
∏ϑ

k=1 Mik(νk) and µi(x) = $i(ν)
∑

r

i=1
$i(ν)

where Mik(νk) is the grade of membership of νk in
Mik. It is assumed in this paper that $i(ν) ≥ 0
for i = 1, 2, ..., r which implies

∑r
i=1 $i(ν) > 0

for all t. Therefore,µi(ν) ≥ 0 for i = 1, 2, ..., r and
∑r

i=1 µi(ν) = 1 for all t.

For the convenience of notations, we let $i
∆
=

$i(ν), µi
∆
= µi(ν) and Sµ

∆
=

∑r
i=1 µi.

The resulting fuzzy system model is inferred as
the weighted average of the local models of the
form:

ẋ = [A(µ) + ∆A(µ)]x + [B(µ) + ∆B(µ)]w
+[G(µ) + ∆G(µ)]f

y = [C(µ) + ∆C2(µ)]x + [D(µ) + ∆D(µ)]w
+[J(µ) + ∆J(µ)]f

(3)
where A(µ) =

∑

µ Ai, Bi(µ) = SµBi, C1i
(µ) =

SµC1i
, C2i

(µ) = SµC2i
,

∆A(µ) = SµE1i
F (x, t)H1i

:= E1(µ)F (x, t)H1(µ),

∆B(µ) = SµE2i
F (x, t)H2i

:= E2(µ)F (x, t)H2(µ),

∆C(µ) = SµE3i
F (x, t)H3i

:= E3(µ)F (x, t)H3(µ),

∆D(µ) = SµE4i
F (x, t)H4i

:= E4(µ)F (x, t)H4(µ)

∆G(µ) = SµE5i
F (x, t)H5i

:= E5(µ)F (x, t)H5(µ),

∆J(µ) = SµE6i
F (x, t)H6i

:= E6(µ)F (x, t)H6(µ).

In this paper, we seek for an nth-order H∞ fault
detection fuzzy filter which is inferred as the
weighted average of the local models of the form:

˙̂x = Â(µ)x̂ + B̂(µ)y

ŷ = Ĉ(µ)x̂
(4)

where x̂(t) is the filter’s state vector, Â(µ), B̂(µ)
and Ĉ(µ) are the matrix functions of appropriate
dimensions. ŷ is the estimate of y(t). Let the
residual signal be e(t) = y(t) − ŷ(t), the aims of
a robust fault detection filter are to satisfy the
following inequalities:

∫ Td

0

eT (t)e(t) dt < γ

∫ Td

0

wT (t)w(t) dt, (5)

and

∫ Td

0

eT (t)e(t) dt > β

∫ Td

0

fT (t)f(t) dt (6)

where γ represents the performance criterion for
the effect of disturbance on the residual signal e(t)
and it is useful for threshold selection. β stands for
the performance criterion for the sensitivity of the
residual signal e(t) to the fault f(t).

After designing a robust fault detection filter, the
remaining task is to evaluate the residual signal.
One of the widely used approaches is to choose a
so-called threshold Jth > 0, i.e.,

∫ Td

0

eT (t)e(t) dt > Jth ⇒ Faults ⇒ alarm

∫ Td

0

eT (t)e(t) dt≤ Jth ⇒ No Fault

In our system the threshold, Jth = γ and the
detectable fault f(t) is

∫ Td

0

fT (t)f(t) dt >
γ

β

∫ Td

0

wT (t)w(t) dt (7)

The ratio γ
β

is useful for evaluation of fault de-

tection filters, i.e., FD1 is better than FD2 if γ
β

corresponding to FD1 is smaller than the one of
FD2.

Before ending this section, we describe the prob-
lem under our study as follows.

Problem Formulation: Given prescribed γ > 0
and β > 0, design a robust fault detection filter of
the form (4) such that (5) and (6) hold.

3. ROBUST FUZZY H∞ FAULT DETECTION
FILTER DESIGN

This section begins by formulating the fault sen-
sitivity problem in terms of LMIs which can be
solved by an effective algorithms given in Boyd et.
al. (1994). Then, we combine these LMIs with a
disturbance attenuation objective to yield a fault
detection filter that not only guarantees the L2-
gain from a fault signal to a residual signal to be
greater than a prescribed value, but also the L2-
gain from an exogenous input to a residual signal
to be less than a prescribed value.

When the disturbance input, w is zero, the state-
space form of the fuzzy system model (3) with the
filter (4) is given by

˙̌x =

[

A(µ) 0

B̂(µ)C(µ) Â(µ)

]

x̌ +

[

∆A(µ) 0

B̂(µ)∆C(µ) 0

]

x̌

+

[

G(µ) + ∆G(µ)

B̂(µ̂)
{

J(µ) + ∆J(µ)
}

]

f

(8)
where x̌ = [xT x̂T ]T . The closed-loop system (8)
can be re-expressed as follows:

˙̌x = Acl(µ)x̌ + B̃cl(µ)R̃−1ṽ (9)

where ṽ = R̃













F (x, t)H1(µ)x
F (x, t)H3(µ)x
F (x, t)H5(µ)f
F (x, t)H6(µ)f

f













, R̃ = diag
{

δI, δI,

βδI, βI, βI
}

, Acl(µ) =

[

A(µ) 0

B̂(µ)C(µ) Â(µ)

]

and

Bcl(µ) =

[

E1(µ) 0 E5(µ) 0

0 B̂(µ)E3(µ) 0 B̂(µ)E6(µ)



G(µ)

B̂(µ)J(µ)

]

. The following theorem provides suf-

ficient conditions for the closed-loop system (9) to
have (6).

Theorem 3.1. Consider the system (9) satisfies
Assumption 2.1 and Acl(µ) is stable. Suppose
there exist a scalar δ > 0, β > 0, matrices
X > 0, Y > 0, Aij and Bi satisfying the following
inequality:

X − Y > 0 (10)
[

Ψ̃1ii
(∗)T

Ψ̃2ii
Ψ̃3ii

]

< 0 ∀ i = 1, 2, · · · , r (11)

[

Ψ̃1ij
+ Ψ̃1ji

(∗)T

Ψ̃2ij
+ Ψ2ji

Ψ̃3ij
+ Ψ̃3ji

]

< 0 ∀ i < j ≤ r (12)

Ψ̃1ij
=

[

Y Ai + AT
i Y + δρ[HT

1i
H1i

+ HT
3i

H3i
]

Aij

(∗)T





AT
i X + XAi + BiCj

+CT
i BT

j − CT
i Cj

+δρ[HT
1i

H1j
+ HT

3i
H3j

]













(13)

Ψ̃2ij
=

[

E1i
0 E5i

XE1i
BiE3j

− CT
i XE5i

0 Gi

BiE6j
− CT

i XGi + BiJj − CT
i Jj

]T

(14)

Ψ̃3ij
=−













δI (∗)T (∗)T

0 δI + ET
3i

E3j
(∗)T

0 0 βI

0 ET
6i

E3j
0

0 JT
i E3j

0

(∗)T (∗)T

(∗)T (∗)T

(∗)T (∗)T

ET
6i

E6j
+ βI (∗)T

JT
i E6j

JT
i Jj − β(1 + ℵ̃)I













(15)

where ℵ̃ = ρ2
∑r

i=1

∑r
j=1

∥

∥

∥
HT

5i
H5j

+ HT
6i

H6j

∥

∥

∥
.

Then the inequality (6) is guaranteed. Moreover,
a suitable fault detection filter is given as follows:

B̂i = (Y − X)−1Bi (16)

Ĉi = Ci (17)

Âij = (Y − X)−1
{

− XAiY − BiCjY + Aij

−AT
i Y − δρ[HT

1i
H1j

+ HT
3i

H3j
]
}

(18)

Proof: The detail of the proof has been omitted
due to the page limit. ∇∇∇

Remark 3.1. In (Hou and Patton, 1996)-(Ding et
al., 2000), the worst-case fault sensitivity measure

can only be evaluated by algorithms such as non-
linear programming, frequency grid methods, and
also genetic algorithms which are very ineffective.
However, in Theorem 3.1, the worst-case fault
sensitivity of the system (9) is formulated in terms
of LMIs can be solved by an effective algorithm
given in Boyd et. al. (1994).

With f(t) = 0 and x̌ = [xT x̂T ]T , the state-space
form of the fuzzy system model (3) with the filter
(4) can be expressed as follows:

˙̌x = Acl(µ)x̌(t) + Bcl(µ)R−1v (19)

where v = R













F (x, t)H1(µ)x
F (x, t)H3(µ)x
F (x, t)H2(µ)w
F (x, t)H4(µ)w

w













, R = diag
{

δI,

δI, γI, γI, γI
}

, Acl(µ) =

[

A(µ) 0

B̂(µ)C(µ) Â(µ)

]

and

Bcl(µ) =

[

E1(µ) 0 E2(µ) 0

0 B̂(µ)E3(µ) 0 B̂(µ)E4(µ)

B(µ)

B̂(µ)D(µ)

]

.

Theorem 3.2. Consider the system (19) satisfies
Assumption 2.1. Suppose there exist a scalar δ >
0, γ > 0, matrices X > 0, Y > 0, Aij and Bi

satisfying the following inequality:

X − Y > 0 (20)
[

Ψ1ii
(∗)T

Ψ2ii
Ψ3ii

]

< 0∀i = 1, 2, · · · , r (21)

[

Ψ1ij
+ Ψ1ji

(∗)T

Ψ2ij
+ Ψ2ji

Ψ3ij
+ Ψ3ji

]

< 0 ∀ i < j ≤ r (22)

Ψ1ij
=

[

Y Ai + AT
i Y + δρ[HT

1i
H1i

+ HT
3i

H3i
]

Aij

(∗)T





AT
i X + XAi + BiCj

+CT
i BT

j + ℵCT
i Cj

+δρ[HT
1i

H1j
+ HT

3i
H3j

]













(23)

Ψ2ij
=

[

Y E1i
0 Y E3i

XE1i
BiE3j

+ ℵCT
i XE2i

0 Y Bi

BiE4i
+ ℵCT

i XBi + BiDi + ℵCT
i Di

]T

Ψ3ij
= −













δI (∗)T (∗)T

0 (δI − ℵET
3i

E3j
) (∗)T

0 0 γI

0 ℵET
4i

E3j
0

0 DT
i E3j

0



(∗)T (∗)T

(∗)T (∗)T

(∗)T (∗)T

(γI − ℵET
4i

E4j
) (∗)T

DT
i E4j

(γI − ℵDT
i Dj)













(24)

where ℵ = 1+ρ2
∑r

i=1

∑r
j=1

∥

∥

∥HT
2i

H2j
+HT

4i
H4j

∥

∥

∥.

Then the inequality (5) is guaranteed. Moreover,
a suitable robust filter is given as follows:

B̂i = (Y − X)−1Bi (25)

Ĉi = Ci (26)

Âij = (Y − X)−1
{

− XAiY − BiCjY + Aij

−AT
i Y − δρ[HT

1i
H1j

+ HT
3i

H3j
]
}

(27)

Proof: The detail of the proof has been omitted
due to the page limit. ∇∇∇

Remark 3.2. When ∆Ai, ∆Bi, ∆Ci and ∆Di

are all zero(i.e., not uncertainty in the system),
Theorem 3.2 will reduce to the result given in
Nguang and Assawinchaichote (2003c).

Combining Theorems 3.2 and 3.1, we have the
following theorem which provides sufficient condi-
tions for the existence of a robust fault detection
filter that guarantees both disturbance rejection
and fault detection.

Theorem 3.3. Consider the system (3) satisfies
Assumption 2.1. For given γ > 0 and β > 0,
suppose there exist a scalar δ > 0, matrices X >
0, Y > 0, Aij and Bi such that the inequalities
(20)-(22) and (10)-(12) hold. Then the conditions
given in (5)-(6) hold. Moreover, a suitable robust
fault detection filter is given as follows:

B̂i = (Y − X)−1Bi (28)

Ĉi = Ci (29)

Âij = (Y − X)−1
{

− XAiY − BiCjY + Aij

−AT
i Y − δρ[HT

1i
H1j

+ HT
3i

H3j
]
}

(30)

Proof: This is the consequence of Theorems 3.1
and 3.2. ∇∇∇

4. ILLUSTRATIVE EXAMPLES

Consider an uncertain nonlinear system which is
governed by the following state equations:

ẋ1 = −0.2x1 − 0.67x3
1 + (0.75 + ∆R)x2

+0.1w − 0.5f
ẋ2 = x1 + 0.1w − 0.5f
y = x1 + x2 + 0.1w + 0.3f

where x1 and x2 are the state vectors, f is the
fault input, w is the disturbance input, y is
the measured output and ∆R is the uncertain
term with ∆R ∈ [0 0.02]. It is assumed that
x1 ∈ [−1.5 1.5]. The nonlinear system (31)
can be exactly represented by two TS fuzzy rules

with the membership functionsM1(x1) = 1 −
x2

1

2.25

and M2(x1) = 1 − M1(x1) =
x2

1

2.25 . Using these
membership functions, the uncertain nonlinear
system can be written by the following TS fuzzy
model:
Plant Rule 1: IF x1 is M1(x1) THEN

ẋ = [A1 + ∆A1]x + Bw + Gf,

y = Cx + Dw + Jf,

Plant Rule 2: IF x1 is M2(x1) THEN
ẋ = [A2 + ∆A2]x + Bw + Gf, ,

y = Cx + Dw + Jf
where

A1 =

[

−0.2 −0.75
1 0

]

, A2 =

[

−1.7275 −0.75
1 0

]

,

B =

[

0.1
0.1

]

, C =
[

1 1
]

, D = 0.1, G =

[

−0.5
−0.5

]

,

J = 0.3,∆A1 = E11
F (x)H11

,∆A2 = E12
F (x)H12

and x = [xT
1 xT

2 ]T . Assuming that ‖F (x, t)‖ ≤ ρ =

1, we have E11
= E12

=

[

0.1 0
0 0.1

]

and H11
=

H12
=

[

0 0.2
0 0

]

. Using the LMI optimization

algorithm and Theorem 3.3 with γ = 1 and
β = 50, we obtain δ = 0.9

X =

[

6.1981 −1.9765
−1.9765 3.8902

]

, Y =

[

2.8156 0.3580
0.3580 1.9811

]

Â11 =

[

−119.5101 −63.8225
−169.8249 −92.0664

]

, B̂1 =

[

35.0705
48.1303

]

Â12 =

[

−121.7980 −70.6690
−172.5591 −101.8545

]

, B̂2 =

[

30.4406
42.8851

]

Â21 =

[

−79.6283 −43.2809
−126.7547 −66.9750

]

, Ĉ1 =
[

1 1
]

Â22 =

[

−82.2281 −50.3366
−129.9071 −77.0323

]

, Ĉ2 =
[

1 1
]

Remark 4.1. A square wave with amplitude =0.1
and frequency=0.1Hz was used to simulate the
input disturbance. The fault input signal was
simulated by a step change at 50 seconds. The
ratio of the filter error energy to the disturbance
input noise energy is depicted in Figure 1. From
Figure 1, one can see that when f(t) = 0 the ratio
of the residual signal energy to the disturbance
input noise noise is less than 1, but when f(t) =
1, t ≥ 50 sec, this ratio becomes greater than the
threshold, Jth = 1 which indicates that the fault
has occurred. This confirms that the proposed
robust fuzzy fault detection filter guarantees both
disturbance rejection and fault detection.
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Fig. 1. The ratio of the filter error en-
ergy to the disturbance noise energy,
(

∫ Td

0
eT (t)e(t)dt/

∫ Td

0
wT (t)w(t)dt

)

.

5. CONCLUSION

The problem of designing a robust fault detection
filter for an uncertain Takagi-Sugeno fuzzy models
has been addressed in the paper. The worst case
fault sensitivity has been formulated in terms of
LMIs which can be effectively solved by an algo-
rithm proposed in Boyd et. al. (1994). Sufficient
conditions for the existence of a robust fault detec-
tion filter have been derived. The proposed fault
detection filter not only guarantees the L2-gain
from an exogenous input to a residual signal is
less than a prescribed value, but also ensures the
L2-gain from a fault signal to a residual signal
is greater than a prescribed value. The effective-
ness of the proposed design techniques has been
demonstrated on a numerical example.
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