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1. INTRODUCTION

Human-made systems are heavily dependent on com-
puter technology and automatic control concepts and
algorithms. Control systems analysis and design pro-
cedures often require the solution of general or spe-
cial linear or quadratic matrix equations. Examples
are: invariant or deflating subspaces of matrices or
matrix pairs, block-diagonalization and computation
of matrix functions, controllability and observability
Gramians, Hankel singular values, model and con-
troller reduction, linear-quadratic optimization, con-
dition estimation for eigenvalue problems and lin-
ear or quadratic matrix equations, etc. Theoretical re-
sults devoted to matrix equations and related topics
abound both in systems and control, as well as in
the linear algebra literature. There are also many as-
sociated software implementations, either commercial
(e.g., in MATLAB � (MathWorks, 1998, 1999)), copy-
righted freeware (e.g., in the SLICOT Library (Benner
et al., 1999; Van Huffel and Sima, 2002; Van Huf-
fel et al., 2004)), or in the public domain (e.g., in
Scilab (Gomez, 1999)). The reliability, efficiency, and
functionality of various solvers differ significantly
from package to package.

�
MATLAB is a registered trademark of The MathWorks, Inc.

Although numerical algorithms for linear matrix equa-
tions in control theory were published since 1960, this
is still a hot research topic. The challenge for solv-
ing larger and larger equations has not yet been fully
answered. The proposed techniques are usually not
general enough. There are few comparative studies. It
is the purpose of this paper to investigate the perfor-
mances of several powerful solvers for linear matrix
equations.

The capabilities and limitations of the general-pur-
pose solvers available in the SLICOT Library and
MATLAB are studied, in comparison with some spe-
cialized solvers. SLICOT Library (Subroutine Library
In COntrol Theory) provides Fortran 77 implemen-
tations of many numerical algorithms in systems and
control theory, as well as standardized interfaces to
MATLAB and Scilab. Built around a nucleus of basic
numerical linear algebra subroutines from the state-
of-the-art software packages LAPACK (Anderson et
al., 1999), BLAS (Dongarra et al., 1988, 1990; Law-
son et al., 1979), this library enables to exploit the
potential of modern high-performance computer ar-
chitectures. The SLICOT solvers for linear matrix
equations offer improved efficiency, reliability, and
functionality over the corresponding solvers in other
computer-aided control system design packages.



2. SLICOT LINEAR MATRIX EQUATION
SOLVERS CAPABILITIES

The following equation classes are considered:� Continuous-time Sylvester equations:

op( ���	��
�� op( 
���������� (1)� Generalized Sylvester equations (2) and the “trans-
posed” equations (3):

��������
��������! "�#���%$&���('�� (2)��)*�,+- .)��#�������!��
 ) +���$ ) �/�0�('�� (3)� Discrete-time Sylvester equations:

op( ���	� op( 
1�2
-�3������� (4)� Generalized continuous-time and discrete-time Lya-
punov equations

op( ��� ) � op(  4�4+ op(  "� ) � op( ���.������� (5)

op( ��� ) � op( ���1� op(  "� ) � op(  4�.������� (6)

where the notation op( 5,� denotes either the ma-
trix 5 , or its transpose, 5 ) , � , 
 ,  , and $ , are6�7�6 , 8 7 8 , 697�6 , and 8 7 8 given matrices,
respectively, � , � , and ' are given matrices of ap-
propriate dimensions, � and � are unknown matrices
of appropriate dimensions, and � is a scaling factor,
usually equal to one, but possibly set less than one, in
order to prevent overflow in the solution matrix. The
equations (1) and (2) are called one-sided, since the
unknown matrices are either premultiplied or postmul-
tiplied by known matrices, while the equations (4)–(6)
are similarly called two-sided.

Taking  ���:<; , the identity matrix of order 6 , in (5)
and (6), standard Lyapunov equations are obtained.
Moreover, when the matrix � (or the matrix pair ( � , )) in a (generalized) Lyapunov equation is stable—in
the continuous- or discrete-time sense—and the right
hand side term ��� is specified in a factored form as�0�(= op( >?� ) op( >?� , where op( >?� is 8 7.6 , then the
corresponding Lyapunov equation has a non-negative
definite solution which can be computed in a factored
form, � � op( @%� ) op( @?� , with @ upper trian-
gular. Such equations are called (generalized) stable
continuous- and discrete-time Lyapunov equations.

All equation classes and their specializations men-
tioned above are solvable using the SLICOT solvers,
thus illustrating their extended functionality (see also
(Sima and Benner, 2003; Slowik et al., 2004)). LetACBED �GF2�/�IH be a shorthand notation for any of
the above equations, where

A
,
D

, F , and H denote
the corresponding equation formula, data, unknowns,
and right hand side term, respectively. For general
matrices, the solution is obtained by a transformation
method (see, e.g., (Sima, 1996, page 144)). Specif-
ically, the data

D
are transformed to some simpler

forms, JD (usually corresponding to the real Schur
form (RSF) of � , or generalized RSF of a matrix pair),

the right hand side term is transformed accordingly toJH , the reduced equation,
ACB JD � JF2�K� JHL� is solved inJF , and finally, the solution of the original equation is

recovered from JF .

The methods implemented in SLICOT are basically
the following: the Schur method (also known as
Bartels–Stewart method) (Bartels and Stewart, 1972)
for Sylvester or Lyapunov equations, with the vari-
ant from (Barraud, 1977) for the discrete-time case;
the Hessenberg-Schur method in (Golub et al., 1979)
for standard Sylvester equations, i.e., with op( 5,�?�5 ; Hammarling’s variant (Hammarling, 1982) of the
Bartels–Stewart method for stable Lyapunov equa-
tions; and extensions of the above methods for gen-
eralized Sylvester (Kågström and Poromaa, 1996) and
Lyapunov equations (Penzl, 1998).

The ability to work with the op( MN� operator is impor-
tant in many control analysis and design problems.
For instance, the controllability Gramians can be de-
fined as solutions of stable Lyapunov equations with
op( ���O�P� ) , while observability Gramians can be
defined as solutions of stable Lyapunov equations with
op( ���O�P� . When both controllability and observ-
ability Gramians are needed (e.g., in model reduction
computations), then the same real Schur form of �
can be used by a solver able to cope with op( MN� , and
this significantly improves the efficiency.

The solvers for stable Lyapunov equations directly
compute the Cholesky factor @ of the solution � .
Whenever feasible, the use of the stable solvers in-
stead of the general ones is to be preferred, for several
reasons, including the following: � the matrix product
op( >%� ) op( >%� need not be computed; � definiteness
of � is guaranteed. Moreover, often the Cholesky
factors themselves are actually needed, e.g., for model
reduction or for computing the Hankel singular values.

When solving any matrix equation, it is useful to
have estimates of the problem conditioning and of
the solution accuracy, e.g., error bounds. Such mea-
sures are returned by several routines of the SLICOT
Library (Sima et al., 2000), allowing to assess the
quality of the computed solution, and the problem
sensitivity to small perturbations in its data. This il-
lustrates the increased reliability and functionality of
the SLICOT software, in comparison with many other
control packages. The condition estimator for a cer-
tain equation operator uses a fast iterative procedure,
which solves (at each step) the equation and its dual
(with transposed data matrices), for suitable right hand
sides, to estimate the 1-norm of the inverse operator.

3. SPECIALIZED LINEAR MATRIX EQUATION
SOLVERS

The results in (Sima and Benner, 2003; Slowik et
al., 2004) and other papers, as well as those included
below, show that the high-level MATLAB interfaces



to the SLICOT codes offer improved efficiency (at
comparable accuracy) over the existing standard soft-
ware tools. However, the SLICOT solvers do have
some limitations, mainly coming from their general-
ity. These solvers cannot compete in terms of effi-
ciency with specialized solvers designed for specific
classes of large-scale problems. Two types of special-
ized solvers are considered in this investigation: iter-
ative algorithms for stable Lyapunov equations with
low rank solutions, and recursive blocked algorithms
for quasi-triangular linear matrix equations.

3.1 Iterative algorithms for stable, low rank Lyapunov
equations

The approach for solving large-scale Lyapunov equa-
tions implemented in the MATLAB package LYAPACK
(LYApunov PACKage) (Penzl, 2000) can be applied to
structured or sparse stable continuous-time equations
of the form QSRUT,V�T�Q W/X0Y R Y�Z (7)

where

Q\[^] _a`cbd`
and Y [3] _0eKbd`

. In many ap-
plications, for instance, model reduction or algebraic
Riccati equations, it is sufficient to obtain a factoriza-
tion of the solution matrix

T
,

T Wgf R f . For solving
continuous-time Riccati equations iteratively, one may
use at each iteration linear equations (7), where the
matrix

Q
has the form

Q WihjXlknmpo , h and k
being the matrices of the system state equation, andm R the regulator gain matrix.

Besides the limitations imposed by the form of the
equation (7) and stability hypothesis, it is also as-
sumed that the number of rows q is small in com-
parison with r , q s r , and that the matrix

Q
is

structured so that efficient solution of linear systems
with coefficient matrices

Q X�tcu ` , where t [v]w
, as

well as efficient computation of matrix-vector prod-
ucts are possible. Moreover, the order r should be
large enough, for instance, r�x9y{z{z , and the equations
be sufficiently well-conditioned.

The LYAPACK approach, implemented in the func-
tion lp lradi, uses the low rank Cholesky fac-
tor technique, in combination with alternating direc-
tions method, abbreviated as LRCF-ADI (Low Rank
Cholesky Factor Alternating Directions Implicit) iter-
ations. The efficiency of LRCF-ADI depends on cer-
tain ADI shift parameters, t}| , computed by an heuris-
tic algorithm. The LRCF technique is based on the
observation that in many problems (7) with q~s�r ,
the eigenvalues of the solution matrix

T
decay very

fast, which suggests the possible existence of very
accurate approximations of rank much smaller than r .
The ADI iteration for Lyapunov equation (7) is given
by� QSR%V t | u `d� T |��(����� W9X0Y R Y�X T |��(� � Q X�t | u `d� Z� QSR%V,�t | u `d� T�R| W9X0Y R Y�X T�R|��(����� � Q X �t | u `d� Z

for � W~�{Z��	Z������ , where

T � W z . Each iteration in-
volves matrix-vector products and solutions of struc-
tured or sparse linear systems. The convergence is
accelerated using the parameters t�| . This method gen-
erates a sequence of matrices

T | which converges
often very fast to the solution, provided that t(| are
suitably chosen. The efficient implementation of the
ADI method replaces the iterates

T | by their low
rank Cholesky factors,

T | W�f R| f | . Let ��� be a
real negative number, or a pair of complex conju-
gated numbers with negative real part. If the matrixT | W�f R| f | is generated by a proper set of param-
eters � t � Z�t � Z������<Z�t |d� W ��� � Z � � Z�������Z � |�� , then

T |
is a real matrix. The problem of finding (sub)optimal
ADI parameters, � W ��� � Z � � Z�������Z ��� � , is strongly
connected to the rational minimax problem applied to
the function �¡ �E¢ � Wj£ ��¢ X%t�� �¥¤2¤�¤�¤4¤ �E¢ X%t � � ££ ��¢ V t � �¥¤2¤�¤�¤4¤ �E¢ V t � � £ �
This problem is stated as ¦1§©¨ ¡ ¦!ª¬«®­°¯{±®²´³cµ  �¡ �E¢ � Z
where ¶ � Q � denotes the spectrum of the matrix

Q
. The

implementation of the heuristic technique first gener-
ates a discrete set, which approximates the spectrum,
using a pair of Arnoldi processes. The first process,
acting on the matrix

Q
, produces ·�¸ Ritz values which

tend to approximate the eigenvalues farest from the
origin. The second process, acting on the matrix

Q ���
,

produces · � Ritz values, approximations of the eigen-
values close to the origin. The set of shift parameters
is then chosen as a subset of the Ritz values, as an
heuristic, suboptimal solution of the resulting discrete
optimization problem.

The use of the LYAPACK package implies that the
user writes specific routines performing the following
operations with a structured or sparse matrix ¹º�» ¹ º or

ºP» ¹ R º Zº�» ¹ ��� º or
ºP» ¹ � R º Zº�» � ¹ V tc|Gu ` � �(� º or

º¼» � ¹ R V tc|�u ` � ��� º Z
where ¹ is

Q
or h , and

º [�]w `cb ­
,
¢ s½r .

3.2 Recursive blocked algorithms for quasi-triangular
linear matrix equations

An approach (Jonsson and Kågström, 2002a, b) which
can be applied to all classes of linear matrix equa-
tions with quasi-triangular matrices is based on the
use of recursive blocked algorithms. The basic ideas
are to recursively decompose the quasi-triangular ma-
trices in blocks until the obtained equations are small
enough for being solved in the very fast cache mem-
ory, and to use some “superscalar” computational ker-
nels for equations of small dimensions. The sizes of
the blocks are variable, and this fact enables their auto-
matic adaptation to the computational platform used,
and the efficient exploitation of the existing memory
hierarchies on modern computing machines.



To illustrate, consider the case of a standard continuous-
time Sylvester equation,¾�¿,À-¿�Á Â�Ã�Ä (8)

where

¾
and

Á
are either upper triangular or in

real Schur form. Depending on the values of Å andÆ , three alternative recursive block decompositions
can be considered. One such alternative is illustrated
below. If ÇLÈ�Å�È Æ*É¬Ê , ¾ is decomposed by rows
and columns, and Ã is decomposed by rows:Ë ¾%Ì�Ì�¾?ÌÎÍÏ ¾�Í�Í*Ð Ë ¿%Ì¿�Í*Ð À Ë ¿%Ì¿�Í*Ð Á Â Ë Ã ÌÃ Í*Ð Ä (9)

or, equivalently,¾ Ì�Ì ¿ Ì À-¿ Ì Á Â�Ã Ì�Ñ ¾ ÌÒÍ ¿ Í Ä¾�Í�ÍÓ¿�Í�À-¿�Í�Á Â�Ã Í¬Ô (10)

Two quasi-triangular Sylvester equations have been
obtained. The second equation is solved in

¿?Í
, and

after a GEMM-type update, Ã Ì�Õ Ã Ì Ñ ¾?ÌÎÍ�¿�Í , the
first Sylvester equation is solved. For solving each
Sylvester equation, one proceeds similarly.

There are three levels of solvers for linear matrix
equations. The recursive block solvers are destined
to the user. Each of these solvers calls a sub-system
block solver, when the dimensions Å and Æ of the
current subproblem in the recursive decomposition
are smaller than a certain block size, blks. Finally,
each sub-system solver calls a superscalar kernel for
solving equations with Å Ä Æ È×Ö . Besides the advan-
tageous use of the memory hierarchies, the recursive
approach allows to consider various forms of paral-
lelism. The major disadvantage of the recursive block
solvers is that they merely solve “reduced” equations.
The initial reduction to the (generalized) RSF is not
covered. The codes are implemented in the RECSY
library, and wrappers to the SLICOT solvers are pro-
vided, so that general equations can be solved, and
condition estimates can be computed.

4. NUMERICAL RESULTS

Some typical results are graphically illustrated in the
figures below. The calculations have been done on a
PC computer with a 500 MHz Intel processor, 128 Mb
memory and the relative machine precision Ø Â Ê Ô ÊÙÊUÚÇ ÏdÛ

ÌÒÜ
, using Compaq Visual Fortran V6.5, optimized

BLAS provided by MATLAB, and MATLAB 6.5.1.

Application 1 has a band matrix

¾ÞÝ^ß à"ácâ	á
with

5 nonzero diagonals, obtained by discretization of a
partial differential equation, using finite differences
on an equidistant grid. The right-hand side matrix has
the form ã%ä*ã , where ã%ä Ý�ß àaá . The data matrices
have been generated by the LYAPACK example codes
fdm 2d matrix and fdm 2d vector.

Figures 1, 2 and 3 show the execution times and speed-
up factors for problem orders in the ranges Æ È Ê{Ê{å ,

Ç�æ{ç�È Æ ÈvÖ Ï{Ï , and Ö ÏÙÏ È Æ È�Ç Ï Ê Ö , for the
solvers sllyap, lyap and lp lradi, in SLICOT,
MATLAB and LYAPACK, respectively. The equations
with orders in these ranges could be considered as
“small”, “medium”, and “large”, respectively, for the
computer used for their solution. The results show
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Fig. 1. Application 1, Æ È Ê{Ê{å . Top: The execution
times. Bottom: The speed-up factors.
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Fig. 2. Application 1, ÇÓæ{ç�È Æ ÈèÖ ÏÙÏ . Top: The
execution times. Bottom: The speed-up factors.

that SLICOT routines always outperform MATLAB
calculations (for any order), and also lp lradi,
for problems of small size. It should be mentioned
that the accuracy is comparable for all these solvers
and all equations solved. SLICOT sllyap is 2–3



400 500 600 700 800 900 1000 1100
0

200

400

600

800

1000

1200

1400

n

Tim
e (

s)
SLICOT
MATLAB
LYAPACK

400 500 600 700 800 900 1000 1100
0

0.5

1

1.5

2

2.5

3

3.5

n

Sp
ee

d−
up

 fa
cto

r

SLICOT/MATLAB
SLICOT/LYAPACK

Fig. 3. Application 1, é®ê{ê/ë½ìíëvîÓêÙïðé . Top: The
execution times. Bottom: The speed-up factors.

(or much more) times faster than MATLAB lyap. ñ
Also, sllyap is faster (possibly much faster) than
lp lradi for Lyapunov equations of order smaller
than 275, but slower (possibly much slower) for larger
orders. It should, however, be mentioned that, in con-
trast with (sl)lyap, lp lradi is not a general
solver. Its high efficiency is due to the use of the sparse
structure of the matrix ò in operations like ò�ó oròõô�ö�ó , where ó is a vector. Note also that, besides the
stability and sparsity requirements, lp lradi also
assumes some additional conditions, such as: the so-
lution matrix has a small rank; the equation order is
large enough; the equation is quite well-conditioned.

Figures 4 and 5 present the execution times and the
speed-up factors when calling the recursive blocked
algorithms for another application, Application 2. In
this case, the matrix ò has been obtained starting
from a block Jordan matrix ò�÷ , and applying a simi-
larity transformation, which filled-up the matrix with
nonzero elements and altered its condition number.
But lp lradi cannot efficiently solve an equation
with a dense matrix ò , so the bidiagonal matrix ò�÷
was used; lp lradi becomes more efficient than
sllyap for ì�øùîûú¬ê . Figure 6 shows the resulting
speed-up factors if ò ÷ is also used by (sl)lyap.

5. CONCLUSIONS

Various state-of-the-art, uni-processor linear matrix
equation solvers for automatic control computations
have been investigated and compared for various

ü
The latest lyap versions included in MATLAB 7.0.0/1 (2004), is

not considered, since it is based on the corresponding SLICOT rou-
tines; this version could also be about 20 % slower than sllyap.
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Fig. 4. Application 2, ìýë\éÙêÙê , recursive blocked
algorithm. Top: The execution times. Bottom:
The speed-up factors. lp lradi uses ò�÷ .
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Fig. 5. Application 2, é®ê{ênëþì�ë�îÓê{ê{ê , recursive
blocked algorithm. Top: The execution times.
Bottom: Speed-up factors. lp lradi uses ò�÷ .

problem sizes. The results confirm the natural ex-
pectation that general-purpose solvers, such as those
currently implemented in the SLICOT Library (and,
consequently, in MATLAB 7) cannot compete in ef-
ficiency, for large-scale problems, with specialized
solvers designed for certain problem classes. How-
ever, the SLICOT solvers are the most efficient ones
for small-size problems. Moreover, they are general
solvers and offer extended functionality and broad
computational abilities.
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Fig. 6. The speed-up factors for Application 2, using
the bidiagonal matrix ÿ�� . Top: Non-recursive
algorithm. Bottom: Recursive blocked algorithm.
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