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1. INTRODUCTION

Optimal control problems involving set measures arise
in many physical situations. An example is the prob-
lem of optimal motion planning for a mobile observer
or robot equipped with cameras for planetary explo-
ration or surveillance. It is required to select a path
along which complete or maximum visual coverage
of a given terrain is attained over the shortest or a
specified observation time interval respectively. To fix
ideas, we begin with a detailed discussion of this ex-
ample which provides the motivation for the mathe-
matical formulation of more general optimal control
problems involving set measures. Then, optimality
conditions in the form of variational inequality and
maximum principle for these problems are developed.
The paper concludes with the solutions to the optimal
motion planning problem with a simple terrain.

2. OPTIMAL MOTION PLANNING PROBLEM

Let B = {e1, . . . , en} be an orthonormal basis for the
n-dimensional real Euclidean spaceRn. The represen-
tation of a pointx ∈ Rn with respect toB is denoted
by [x] = (x1, . . . , xn)T , and the usual Euclidean norm

of x by ‖x‖. When ambiguity does not arise,x is
also used to denote[x]. Let S = S(x) be a specified
real-valuedC2-function defined onΩ, a specified sim-
ply connected, compact subset ofR2 with a smooth

boundary∂Ω. Let GS
def= {(x, S(x)) ∈ R3 : x ∈ Ω}

denote thegraph of S; and EpiS
def= {(x, z) ∈ Ω ×

R : z ≥ S(x)}, theepigraph ofS. The spatial profile
of the terrain under observation corresponds toGS ,
The observation platform on which the cameras are
attached corresponds to theelevated surface ofGS

given by GSε , whereSε = S + ε with ε being a
specified positive number. This implies that for any
x ∈ Ω, the cameras are at a fixed vertical heightε
above the surfaceGS .

Definition 2.1 A point (x, S(x)) ∈ GS is said to
be visible from a point (x̃, z̃) ∈ EpiS , if the line
segment{(x′, z) ∈ R3 : (x′, z) = λ(x, S(x)) + (1 −
λ)(x̃, z̃), 0 ≤ λ ≤ 1} joining the points(x, S(x)) and
(x̃, z̃) lies inEpiS .

Definition 2.2 The visible setV((x, z)) of a given
point (x, z) ∈ EpiS is the set of all points inGS that
are visible from(x, z), i.e.V((x, z)) = {(x′, S(x′)) ∈
GS : (x′, S(x′)) is visible from (x, z)}. If V((x, z)) =
GS , thenGS is said to betotally visible from (x, z).



The definitions of visible set and total visibility can
be extended to asetof observation points. Since for
any (x, z) ∈ EpiS , the point(x, S(x)) ∈ GS is al-
ways visible from(x, z), henceV((x, z)) is nonempty.
SinceS is assumed to be aC2-function defined on a
compact setΩ, GS is compact. Moreover,V((x, z))
and its projection onΩ (denoted byΠΩV((x, z)))
are also compact. Thus,(x, z) → V((x, z)) (resp.
ΠΩV((x, z))) is a set-valued mapping onEpiS into
2GS (resp.2Ω), the space of all nonempty compact
subsets ofGS (resp.Ω). In general,ΠΩV((x, z)) may
be the union of disjoint compact subsets ofΩ, and it
may consist of isolated points and/or arcs inΩ. It was
shown by Wang (2003) that for each pointx ∈ Ω,
there exists aminimalor critical heighthc(x) ≥ S(x)
such thatV((x, hc(x))) = GS , orGS is totally visible
from the point(x, hc(x)). Moreover, the set-valued
mappingx → V((x, Sε(x))) on Ω into 2GS may be
discontinuous with respect to the Euclidean metricρE

and Hausdorff metricρH whenGS has flat parts (See
Wang (2003) for an example).

Consider the nontrivial case whereε < hc(x) for
all x ∈ Ω so that the mobile observer must move
to achieve total or maximum visibility. LetIt1 =
[0, t1] denote the observation time interval, wheret1
may be a finite fixed or variable terminal time. For
simplicity, the mobile observer is represented by a
point massM . Its position inR3 at any timet is
specified byp(t) whose representation with respect to
a given orthonormal basisB is denoted by[p(t)] =
(x1(t), x2(t), h(t))T , whereh(t) corresponds to the
vertical height along thez-axis. The motion of the
mobile observer can be described by Newton’s law:

Mẍ(t) + Dẋ(t) = u(t); (1)

Mḧ(t)+νz(x(t), ẋ(t), h(t), ḣ(t)) = ξ(t)−Mg, (2)

wherex(t) = (x1(t), x2(t))T ; (u, ξ) is the external
force with u = (u1, u2) being the control;−Mg is
the gravitational force aligned with thez-axis in the
downward direction.D is a2×2 diagonal matrix with
constant diagonal elementsνx1 andνx2; νz is a spec-
ified real-valued function of its arguments describing
the z-component of the friction force. Assuming that
the mobile observer is constrained to move onGS at
all times without slipping, the mobile observer motion
satisfies a holonomic constraint:

h(t) = S(x(t)) for all t ∈ It1 , (3)

and a state variable (position) constraint:x(t) ∈
Ω for all t ∈ It1 . SinceS is aC2-function onΩ, we
may differentiate (3) twice with respect tot to obtain

ḣ(t) = ∇xS(x(t))T ẋ(t);

ḧ(t) = ∇xS(x(t))T ẍ(t) + ẋ(t)T H(x(t))ẋ(t), (4)

where∇x denotes the gradient operator with respect
tox, andH(x(t)) the Hessian matrix ofS with respect
to x evaluated atx(t). Substituting (4) into (2) gives
the required vertical componentξ(t) of the external

force for keeping the mobile observer on the surface
GS at all times:

ξ(t) = M(∇xS(x(t))T ẍ(t) + ẋ(t)T H(x(t))ẋ(t)

+νz(x(t), ẋ(t),∇xS(x(t))T ẋ(t)) + g). (5)

Assuming that the mobile observer lies onGS at the
starting timet = 0, then

h(0) = S(x(0)), ḣ(0) = ∇xS(x(0))T ẋ(0). (6)

Let sx(t) = (x(t), ẋ(t)) denote the state of system
(1) at timet. When necessary,xu(t; sx(0)) is used to
indicate the dependence of a solution of (1) on the
control u andsx(0). A control u = u(t) defined on
a given time intervalIt1 is said to beadmissible, if it
is a measurable function onIt1 , and takes its values in
the control regionU2, whereUm = {(u1, . . . , um) ∈
Rm : |ui| ≤ ūi, i = 1, . . . , m}, with ūi’s being given
positive constants. The set of all admissible controls
defined onIt1 is denoted byUad(It1), where t1 is
a fixed or variable terminal time. In what follows,
it is assumed that no constraint is imposed on the
magnitude of the vertical forceξ.

Now, a few physically meaningful optimal motion
planning problems incorporating the foregoing notion
of visibility into the formulation can be stated as
follows:

• P1. Minimum-time Total Visibility Problem.Let
Uad =

⋃
t1≥0 Uad(It1) be the set of all admissi-

ble controls. Givensx(0) = (x(0), ẋ(0)) or the ini-
tial state of the mobile observer with initial position
p(0) = (x(0), S(x(0))) ∈ GS and initial velocity
v(0) = (ẋ(0),∇xS(x(0))T ẋ(0)), find the smallest
time t∗1 ≥ 0 and an admissible controlu∗ = u∗(t)
defined onIt∗1 such that its corresponding pathΓ∗ =
{(xu∗(t), S(xu∗(t)) ∈ R3 : t ∈ It∗1} satisfies the total
visibility condition att∗1:

⋃

t∈It∗
1

V((xu∗(t), Sε(xu∗(t))) = GS

or alternatively,

µ2

{ ⋃

t∈It∗
1

ΠΩV((xu∗(t), Sε(xu∗(t)))
}

= µ2{Ω},

(7)
whereµ2{σ} denotes the Lebesgue measure of the set
σ ⊂ R2.

In the foregoing problem statement, condition (7) only
involves the positionxu∗(t), not the velocityẋu∗(t).
In certain physical situations, it is required to move the
mobile observer from one rest position to another, i.e.
ẋu∗(0) = 0 andẋu∗(t∗1) = 0.

• P2. Maximum Visibility Problem with Fixed Obser-
vation Time-Interval.Given a finite observation time
interval It1 and sx(0) = (x(0), ẋ(0)), or the ini-
tial state of the mobile observer with initial position
p(0) = (x(0), S(x(0))) ∈ GS and initial velocity
v(0) = (ẋ(0),∇xS(x(0))T ẋ(0)), find an admissi-
ble controlu∗ = u∗(t) and its corresponding path



Γ∗ = {(xu∗(t), S(xu∗(t))) ∈ R3 : t ∈ It1} such
that the visibility functional given by

J1(u) =
∫ t1

0

µ2{ΠΩV((xu(t), Sε(xu(t))))}dt (8)

is defined, and satisfiesJ1(u∗) ≥ J1(u) for all u(·) ∈
Uad(It1).

Another meaningful visibility functional is given by

J2(u) = µ2

{ ⋃

t∈It1

ΠΩV((xu(t), Sε(xu(t))))
}
. (9)

The foregoing problem withJ1 replaced byJ2 corre-
sponds to selecting an admissible controlu∗ such that
the area of the union of the projected visibility sets on
Ω for all the points along the corresponding pathΓ∗ is
maximized.

3. OPTIMAL CONTROL PROBLEMS

The foregoing example suggests the following optimal
control problems involving set measures. As in Sec.2,
let It1 denote the control time interval, andUad(It1)
the set of all admissible controlsu(·) defined onIt1 .
Let the system be described by

ẋ(t) = Ax(t) + ψ(u(t)), x(0) = xo ∈ Rn, (10)

whereA is a givenn × n constant matrix, andψ is
a specifiedC1-function onU into Rn, whereU is a
given compact subset ofRm. The set of all admissible
controls defined onIt1 is denoted byUad(It1). Let
x → Ṽ(x) be a given set-valued mapping onRn →
2R

n

such that̃V(x) is compact, andµn{Ṽ(x)} ≤ µ̂ <
∞ for all x ∈ Rn, whereµn denotes the Lebesgue
measure for sets inRn, and µ̂ is a given positive
number. Moreover,̃V is continuous with respect to
metricsρE and ρH . Now, optimal control problems
similar toP1andP2can be stated as follows:

• Problem P1’:Let Uad =
⋃

t1≥0 Uad(It1) be the set
of all admissible controls. Givenxo the initial state
of (10) att = 0, find the smallest timet∗1 ≥ 0 and an
admissible controlu∗ = u∗(t) defined onIt∗1 such that
its corresponding trajectoryxu∗ satisfies the terminal
condition att∗1:

µn

{ ⋃

t∈It∗
1

Ṽ(xu∗(t; xo))
}

= co, (11)

whereco is a specified positive constant.

• Problem P2’: Given a finite control time interval
It1 andxo, the initial state of (10) att = 0, find an
admissible controlu∗ = u∗(t) and its corresponding
trajectoryxu∗(t;xo), t ∈ It1 such that the functional
given by

J
′
1(u) =

∫ t1

0

µn{Ṽ(xu(t; xo))}dt (12)

is defined, and satisfiesJ
′
1(u

∗) ≥ J
′
1(u) for all u(·) ∈

Uad(It1).

4. OPTIMALITY CONDITIONS

In what follows, optimality conditions for Problem
P1’ will be derived under the assumption that a so-
lution exists. Let

wu(t;xo) = µn

{ ⋃

τ∈It

Ṽ(xu(τ ; xo))
}

(13)

with wu(0; xo) = µn{Ṽ(xo)}. It is required to find
the smallest timet∗1 ∈ R+ = [0,∞[ and an admis-
sible controlu∗ = u∗(t) defined onIt∗1 such that
wu∗(t∗1; xo) = co.

A necessary condition for optimality can be derived
by considering the augmented system:

d

dt

[
x
w

]
=

[
Ax + ψ(u)

g(x)

]
, (14)

where

g(x(t))def= lim
δt→0+

sup
1
δt

[w(t + δt)− w(t)]

= lim
δt→0+

sup
1
δt

[
µn

{ ⋃

τ∈It+δt

Ṽ(x(τ))
}

−µn

{ ⋃

τ∈It

Ṽ(x(τ))
}]

, (15)

and the initial state att = 0 is given bys(x,w)(0) =
(xo, µn{Ṽ (xo)}) ∈ Rn × R+. Since forδt ≥ 0,⋃

τ∈It
Ṽ(x(τ)) ⊆ ⋃

τ∈It+δt
Ṽ(x(τ)), g(x(t)) can be

rewritten as

g(x(t)) = lim
δt→0+

sup
1
δt

µn

{[ ⋃

τ∈It+δt

Ṽ(x(τ))
]∩

[ ⋃

τ∈It

Ṽ(x(τ))
]c}

, (16)

whereσc denotes the complement of the setσ in Rn.

The target set is a hyperplane specified byT =
{(x,w) ∈ Rn × R+ : w = co}. Thus, ProblemP1’
can be restated in the form of a standard time-optimal
control problem, i.e. find an admissible controlu∗(·)
which steers the initial states(x,w)(0) of system (14)
at t = 0 to the target setT in minimum timet∗1.

Let the Hamiltonian for (14) be defined by:

H(x, η, u) = −1+η̃T (Ax+ψ(u))+ηn+1g(x), (17)

whereη = (η1, . . . , ηn, ηn+1)T corresponds to the
state of the adjoint system:

˙̃η = −AT η̃ − ηn+1∇xg(x), η̇n+1 = 0, (18)

whereη̃ = (η1, . . . , ηn)T , and∇x denotes the gradi-
ent operator with respect tox.

If the real-valued functionx → g(x) on Ω → R+

is smooth, then the following necessary condition
for optimality follows from the Pontryagin Maximum
Principle (Lee and Markus (1967)):

Theorem 4.1 Suppose that the functionx → g(x)
on Rn → R+ is C1. Let u∗ = u∗(t) be an optimal



control for Problem P1 with corresponding response
x∗ = x∗(t) defined onIt∗1 . Then there exists an
absolutely continuous functioñη∗ = η̃∗(t) satisfying
(18) for almost allt ∈ It∗1 with

H(x∗(t), η∗(t), u∗(t))

= M(x∗(t), η∗(t)) for almost allt ∈ It∗1 , (19)

whereη̃ = (η1, . . . , ηn)T , and

M(x∗(t), η∗(t))def= max
u∈U

H(x∗(t), η∗(t), u). (20)

Moreover,

M(x∗(t), η∗(t)) ≡ 0 on It∗1 , (21)

and the transversality condition:−η(t∗1) = (0, κ)T

for someκ > 0 (the normal to the target setT at
(x∗, w∗)(t∗1) in the positivew-direction), or

η̃∗(t∗1) = 0, η∗n+1(t
∗
1) = −κ (22)

is satisfied.

From Theorem 4.1, it is evident from (17) that the
optimal controlu∗ is a function of η̃ only. For the
special case whereψ(u) = u and U = Un as in
system (1),u∗(t) takes on the form:

u∗i (t) = ūisgn(η∗i (t)), i = 1, . . . , n. (23)

Equations (14),(18)-(21) with initial conditionsx(0) =
xo, w(0) = µn{Ṽ(xo)}), and terminal conditions
w(t1) = co, η̃(t1) = 0, ηn+1(t1) = −κ form a family
of two-point-boundary-value problems (TPBVP) with
the terminal timet1 as a variable parameter. The op-
timal trajectory is a solution of the TPBVP with the
smallest terminal timet∗1. It is evident from the second
equation in (18) and (22),ηn+1(t) ≡ −κ onIt∗1 . Thus,

(18) can be rewritten as:˙̃η = −AT η̃ + κ∇xg(x).

Now, consider Problem P2’ with the assumption that
an optimal controlu∗ = u∗(t) defined onIt1 exists.
Let δu be a control perturbation such thatu = u∗ +
δu is admissible. Let the solutions of (10) at timet
corresponding tou andu∗, and the same initial state
xo be denoted byxu(t) and xu∗(t) respectively. To
derive optimality conditions, consider

∆J
′
1
def=J

′
1(u

∗)− J
′
1(u

∗ + δu)

=
∫ t1

0

(µn{Ṽ(xu∗(t))} − µn{Ṽ(xu∗+δu(t))})dt,

(24)
Using the identity:

Ṽ(xu∗(t))− Ṽ(xu(t))

= (Ṽ(xu(t)))c∩Ṽ(xu∗(t))∪(Ṽ(xu∗(t))c∩Ṽ(xu(t))),
(25)

∆J
′
1 can be rewritten as:

∆J
′
1 =

∫ t1

0

(µn{(Ṽ(xu∗+δu(t)))c ∩ Ṽ(xu∗(t))}

−µn{(Ṽ(xu∗(t)))c ∩ Ṽ(xu∗+δu(t))})dt. (26)

Thus, a sufficient but not necessary condition for opti-
mality is given by

µn{(Ṽ(xu∗+δu(t)))c ∩ Ṽ(xu∗(t))}
≥ µn{(Ṽ(xu∗(t)))c ∩ Ṽ(xu∗+δu(t))} (27)

for almost allt ∈ It1 and all admissibleu∗+δu, where
xu∗+δu(t) can be written in the form:

xu∗+δu(t) = xu∗(t) + δx(t) + o(‖δx(t)‖), (28)

with

xu∗(t) = eAtxo +
∫ t

0

eA(t−τ)ψ(u∗(τ))dτ,

δx(t) =
∫ t

0

eA(t−τ)Jψ(u∗(τ))δu(τ)dτ, (29)

where Jψ denotes the Jacobian matrix ofψ with
respect tou.

Now, consider perturbed admissible controls of the
form u∗ + αδu, whereδu is a given control pertur-
bation, and0 ≤ α < 1. If the real-valued function
x → µn{Ṽ(x)} onRn → R+ is C1, then the Gateaux
differential ofJ

′
1 atxu∗(·) with incrementδx(·) exists.

Thus, we have the following necessary condition for
optimality:

Theorem 4.2Suppose that an optimal controlu∗ =
u∗(t) defined onIt1 for Problem P2’ exists, and the
functionx → µn{Ṽ(x)} on Ω → R+ is C1. Then
u∗(·) must satisfy the following variational inequality:

DJ
′
1(u

∗; δu) =
∫ t1

0

lim
α→0

1
α

(µn{Ṽ(xu∗+αδu(t))c ∩ Ṽ(xu∗(t))}

−µn{Ṽ(xu∗(t))c ∩ Ṽ(xu∗+αδu(t))})dt ≥ 0 (30)

for all admissibleu∗ + αδu.

Another necessary condition for optimality can be
obtained by introducing a new state variabley. The
evolution ofy(t) with time t is described by

ẏ(t) = µn{Ṽ(xu(t))}, y(0) = 0. (31)

Thus,J
′
1(u) = y(t1). Let the Hamiltonian associated

with the augmented system(10) and (31) be defined
by:

H(x, η, u) = µn{Ṽ(x)}+ ηT (Ax + ψ(u)), (32)

whereη = (η1, . . . , ηn)T corresponds to the state of
the adjoint system:

η̇ = −∇xH. (33)

Again, if the functionx → µn{Ṽ(x)} onRn → R+

is smooth, then a necessary condition for optimality is
given by:

Theorem 4.3 Suppose that the functionx
→ µn{Ṽ(x)} on Rn → R+ is C1. Let u∗ = u∗(t)
be an optimal control for Problem P2’ with corre-
sponding responsex∗ = x∗(t). Then there exists an
absolutely continuous functionη∗ = η∗(t) satisfying
(33) given explicitly by

η̇ = −∇xµn{Ṽ(x)} −AT η (34)



for almost allt ∈ It1 and terminal condition:η∗(t1)
= 0 with

H(x∗(t), η∗(t), u∗(t)) = M(x∗(t), η∗(t)) (35)

for almost allt ∈ It1 , where

M(x∗(t), η∗(t))def= max
u∈U

H(x∗(t), η∗(t), u). (36)

Thus, (10),(31) and (34) with terminal condition
η(t1) = 0 and initial condition(x, y)(0) = (xo, 0)
along with (35) and (36) constitute a nonlinear TPBVP
for which the optimal trajectory(x∗, y∗, η∗)(·) must
satisfy. For the special case whereψ(u) = u and
U = Un, Theorem 4.3 implies thatu∗(t) has the form
given by (23).

The main difficulty in applying Theorems 4.1-4.3 to
concrete problems such as the motion planning prob-
lem is that the mapping̃V derived from physical situ-
ations (e.g. the visible setsV((x, Sε(x))) for x ∈ Ω)
cannot be expressed analytically in term ofx. Conse-
quently, the Gateaux differential in (30);g(x),∇xg(x)
and∇xµn{Ṽ(x)} in (14),(18) and (34) respectively
cannot be readily computed.

5. EXAMPLE

Consider a simple case of the optimal motion planning
problems discussed in Sec.2 in which the visible sets
at any point inGSε can be computed analytically.
Let Ω be the normalized spatial domain specified by
the unit disk{x ∈ R2 : ‖x‖ ≤ 1}, wherex has
been normalized with respect to the radiusro of the
actual spatial domain. The surface under observation
corresponds to the graph of the real-valued functionS
given by

S(x) = 1− ‖x‖2, x ∈ Ω, (37)

wherex = (x1, x2), and‖x‖2 = x2
1 + x2

2. It can be
verified by elementary computations that for any given
ε > 0, the projection of the visible set from a point
(x, Sε(x)) ∈ GSε ontoΩ is simply the intersection of
the unit disk with the disk centered atx with radius√

ε, i.e. ΠΩV((x, Sε(x))) = Ω ∩ {x′ = (x′1, x
′
2) ∈

R2 : ‖x− x′‖ ≤ √
ε}. Moreover, for0 < ε ≤ 1,

µ2{ΠΩV((x, Sε(x)))}

=
{

επ, if 0 ≤ r ≤ 1−√ε;
β(r, r̃), if 1−√ε < r ≤ 1,

(38)

wherer = ‖x‖, r̃ = (1− ε + r2)/2r, and

β(r, r̃) = cos−1(r̃) + ε cos−1

(
r − r̃√

ε

)
− r

√
1− r̃2.

(39)

Note that forε = 1, the surfaceGµ2 is not smooth at
the origin. Moreover,ε = 1 corresponds to the critical
heighthc at the origin defined in Sec.2.

Consider the Minimum-Time Total Visibility Problem
P1. To compute the trajectory and control that satisfy
the necessary condition for optimality for ProblemP1
given by Theorem 4.1, it is convenient to introduce
a normalized timeτ = t/t1 and solve the TPBVP
stated in Theorem 4.1 with a variable parametert1.
However, even for the simpleS given by (37), the
computation ofg(x) defined by (16) for anyx ∈
Ω is a tedious task. The characterization of optimal
control given by (23) suggests seeking “bang-bang”
controls with a finite number of switchings to achieve
total visibility in minimum time. Starting with the
case with no switchings in bothu1 and u2, then
one switching inu1 and no switching inu2 etc, we
obtain a trajectory in the(x1, x2)-plane with total
visibility with the smallest terminal timet1. Figures
1-3 show the results for the case whereε = 1/4. It
can be seen from Fig.1 that the computed trajectory
in the(x1, x2)-plane approaches the circle with radius√

ε = 1/2 as fast as possible, and then stays in the
neighborhood of this circle for the remaining times
until total visibility is attained. At any pointx on this
circle, µ2{ΠΩV((x, Sε(x)))} takes on its maximum
valueπε.

Next, consider the Maximum Visibility ProblemP2.
Here, the augmented system corresponding to (1) and
(31) has the following form:

d

dt




x
ẋ
y


 =




ẋ
(−Dẋ + u)/M

µ2{ΠΩV((x, Sε(x)))}


 , (40)

where µ2{ΠΩV((x, Sε(x)))} is given by (38). The
adjoint system corresponding to (34) has the following
explicit form:

d

dt




η1

η2

η3

η4


 = −




h1(x)
h2(x)

η1 − (νx1/M)η3

η2 − (νx2/M)η4


 , (41)

wherehi(x) =
{

0, if 0 ≤ r ≤ 1−√ε;

−2xi

√
1− r̃2/r, if 1−√ε < r < 1, i = 1, 2.

(42)
Sincex → µ2{ΠΩV((x, Sε(x)))} given by (37) isC1,
it follows from Theorem 4.3 that the optimal control
u∗ has the form:

u∗1(t) = ū1sgn(η∗3(t)), u∗2(t) = ū2sgn(η∗4(t)). (43)

Consider the nonlinear TPBVP corresponding to (40)-
(43) with initial condition(x, ẋ, y)(0) = (x(0), ẋ(0),
µ2{ΠΩV((x(0), Sε(x(0)))}) and terminal condition
η(t1) = 0. Numerical solutions for this problem
are obtained for specified values of the system pa-
rameters using the MATLAB algorithm “BVP4C”
by Shampine et al. Figures 4-6 show the results for
the case whereε = 1/4; x(0) = (−1, 0), ẋ(0) =
(0.025,−0.05), y(0) = µ2{ΠΩV((x(0), Sε(x(0)))};
M = 10 kg, νx1 = 0.01 N. sec./m,νx2 = 0.02



N.sec./m,t1 = 25 sec., andū = 0.1 N/m. In the
computation, the signum function in (43) was approxi-
mated bytanh(50η∗i (t)), i = 3, 4. It can be seen from
Fig.5 that the main portion of the projected trajectory
on Ω lies inside the diskD with radius

√
ε = 1/2,

whereµ2{ΠΩV((x, Sε(x)))} takes on its maximum
valueπε. This result is consistent with intuition that
in order to maximizeJ1, the trajectory should enter
the diskD as quickly as possible and stay insideD as
long as possible for the remaining times.

6. CONCLUSIONS

In this paper, a class of optimal control problems
involving set measures motivated from optimal mo-
tion planning problems based on visibility has been
studied. These optimization problems are generally
non-smooth. The derived optimality conditions are not
easily applicable to problems derived form real-world
situations. Efficient algorithms are needed for the nu-
merical solution of these problems. Some progress
has been made in this direction recently for optimal
motion planning problems (See Balmes and Wang
(2000), Wang (2004)).
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Fig. 1. Projection of the computed trajectories onto the
(x1, x2)-plane for ProblemP1with ε = 1/4.
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Fig. 2. Computed controlsu1 = u1(t) andu2 = u2(t)
for ProblemP1.
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Fig. 3. Time-domain plot ofw = w(t) along the
computed path for ProblemP1.
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Fig. 4. Computed controlsu1 = u1(t) andu2 = u2(t)
for ProblemP2.
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Fig. 5. Computed solution to TPBVP corresponding to
ProblemP2projected onto the(x1, x2)-plane.
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Fig. 6. Computed visibility functionaly = y(t) for
ProblemP2.


