# OPTIMAL CONTROL PROBLEMS INVOLVING SET MEASURES 

P.K.C. Wang<br>Department of Electrical Engineering<br>University of California<br>Los Angeles, CA 90095-1594, U.S.A.


#### Abstract

Various optimal control problems involving set measures are formulated. An example for such problems is that of optimal motion planning for a mobile observer or robot equipped with cameras to obtain maximum visual coverage of a given terrain. Optimality conditions in the form of variational inequality and maximum principle are presented. The results are applied to the optimal motion planning problem with a simple terrain. Copyright ${ }^{\odot} 2005$ IFAC


Keywords: Optimal control, optimization problems, maximum principle, path planning, visibility, mobile robot navigation.

## 1. INTRODUCTION

Optimal control problems involving set measures arise in many physical situations. An example is the problem of optimal motion planning for a mobile observer or robot equipped with cameras for planetary exploration or surveillance. It is required to select a path along which complete or maximum visual coverage of a given terrain is attained over the shortest or a specified observation time interval respectively. To fix ideas, we begin with a detailed discussion of this example which provides the motivation for the mathematical formulation of more general optimal control problems involving set measures. Then, optimality conditions in the form of variational inequality and maximum principle for these problems are developed. The paper concludes with the solutions to the optimal motion planning problem with a simple terrain.

## 2. OPTIMAL MOTION PLANNING PROBLEM

Let $\mathcal{B}=\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis for the $n$-dimensional real Euclidean space $\mathbb{R}^{n}$. The representation of a point $x \in \mathbb{R}^{n}$ with respect to $\mathcal{B}$ is denoted by $[x]=\left(x_{1}, \ldots, x_{n}\right)^{T}$, and the usual Euclidean norm
of $x$ by $\|x\|$. When ambiguity does not arise, $x$ is also used to denote $[x]$. Let $S=S(x)$ be a specified real-valued $C_{2}$-function defined on $\Omega$, a specified simply connected, compact subset of $\mathbb{R}^{2}$ with a smooth boundary $\partial \Omega$. Let $G_{S} \stackrel{\text { def }}{=}\left\{(x, S(x)) \in \mathbb{R}^{3}: x \in \Omega\right\}$ denote the graph of $S$; and $E p i_{S} \stackrel{\text { def }}{=}\{(x, z) \in \Omega \times$ $\mathbb{R}: z \geq S(x)\}$, the epigraph of $S$. The spatial profile of the terrain under observation corresponds to $G_{S}$, The observation platform on which the cameras are attached corresponds to the elevated surface of $G_{S}$ given by $G_{S_{\epsilon}}$, where $S_{\epsilon}=S+\epsilon$ with $\epsilon$ being a specified positive number. This implies that for any $x \in \Omega$, the cameras are at a fixed vertical height $\epsilon$ above the surface $G_{S}$.

Definition 2.1 A point $(x, S(x)) \in G_{S}$ is said to be visible from a point $(\tilde{x}, \tilde{z}) \in E p i_{S}$, if the line segment $\left\{\left(x^{\prime}, z\right) \in \mathbb{R}^{3}:\left(x^{\prime}, z\right)=\lambda(x, S(x))+(1-\right.$ $\lambda)(\tilde{x}, \tilde{z}), 0 \leq \lambda \leq 1\}$ joining the points $(x, S(x))$ and $(\tilde{x}, \tilde{z})$ lies in $E p i_{S}$.

Definition 2.2 The visible set $\mathcal{V}((x, z))$ of a given point $(x, z) \in E p i_{S}$ is the set of all points in $G_{S}$ that are visible from $(x, z)$, i.e. $\mathcal{V}((x, z))=\left\{\left(x^{\prime}, S\left(x^{\prime}\right)\right) \in\right.$ $G_{S}:\left(x^{\prime}, S\left(x^{\prime}\right)\right)$ is visible from $\left.(x, z)\right\}$. If $\mathcal{V}((x, z))=$ $G_{S}$, then $G_{S}$ is said to be totally visible from $(x, z)$.

The definitions of visible set and total visibility can be extended to a set of observation points. Since for any $(x, z) \in E p i_{S}$, the point $(x, S(x)) \in G_{S}$ is always visible from $(x, z)$, hence $\mathcal{V}((x, z))$ is nonempty. Since $S$ is assumed to be a $C_{2}$-function defined on a compact set $\Omega, G_{S}$ is compact. Moreover, $\mathcal{V}((x, z))$ and its projection on $\Omega$ (denoted by $\Pi_{\Omega} \mathcal{V}((x, z))$ ) are also compact. Thus, $(x, z) \rightarrow \mathcal{V}((x, z))$ (resp. $\left.\Pi_{\Omega} \mathcal{V}((x, z))\right)$ is a set-valued mapping on $E p i_{S}$ into $2^{G_{S}}$ (resp. $2^{\Omega}$ ), the space of all nonempty compact subsets of $G_{S}$ (resp. $\Omega$ ). In general, $\Pi_{\Omega} \mathcal{V}((x, z))$ may be the union of disjoint compact subsets of $\Omega$, and it may consist of isolated points and/or arcs in $\Omega$. It was shown by Wang (2003) that for each point $x \in \Omega$, there exists a minimal or critical height $h_{c}(x) \geq S(x)$ such that $\mathcal{V}\left(\left(x, h_{c}(x)\right)\right)=G_{S}$, or $G_{S}$ is totally visible from the point $\left(x, h_{c}(x)\right)$. Moreover, the set-valued mapping $x \rightarrow \mathcal{V}\left(\left(x, S_{\epsilon}(x)\right)\right)$ on $\Omega$ into $2^{G_{S}}$ may be discontinuous with respect to the Euclidean metric $\rho_{E}$ and Hausdorff metric $\rho_{H}$ when $G_{S}$ has flat parts (See Wang (2003) for an example).

Consider the nontrivial case where $\epsilon<h_{c}(x)$ for all $x \in \Omega$ so that the mobile observer must move to achieve total or maximum visibility. Let $I_{t_{1}}=$ [ $0, t_{1}$ ] denote the observation time interval, where $t_{1}$ may be a finite fixed or variable terminal time. For simplicity, the mobile observer is represented by a point mass $M$. Its position in $\mathbb{R}^{3}$ at any time $t$ is specified by $p(t)$ whose representation with respect to a given orthonormal basis $\mathcal{B}$ is denoted by $[p(t)]=$ $\left(x_{1}(t), x_{2}(t), h(t)\right)^{T}$, where $h(t)$ corresponds to the vertical height along the $z$-axis. The motion of the mobile observer can be described by Newton's law:

$$
\begin{gather*}
M \ddot{x}(t)+D \dot{x}(t)=u(t)  \tag{1}\\
M \ddot{h}(t)+\nu_{z}(x(t), \dot{x}(t), h(t), \dot{h}(t))=\xi(t)-M g, \tag{2}
\end{gather*}
$$

where $x(t)=\left(x_{1}(t), x_{2}(t)\right)^{T} ;(u, \xi)$ is the external force with $u=\left(u_{1}, u_{2}\right)$ being the control; $-M g$ is the gravitational force aligned with the $z$-axis in the downward direction. $D$ is a $2 \times 2$ diagonal matrix with constant diagonal elements $\nu_{x 1}$ and $\nu_{x 2} ; \nu_{z}$ is a specified real-valued function of its arguments describing the $z$-component of the friction force. Assuming that the mobile observer is constrained to move on $G_{S}$ at all times without slipping, the mobile observer motion satisfies a holonomic constraint:

$$
\begin{equation*}
h(t)=S(x(t)) \text { for all } t \in I_{t_{1}}, \tag{3}
\end{equation*}
$$

and a state variable (position) constraint: $x(t) \in$ $\Omega$ for all $t \in I_{t_{1}}$. Since $S$ is a $C_{2}$-function on $\Omega$, we may differentiate (3) twice with respect to $t$ to obtain

$$
\begin{gather*}
\dot{h}(t)=\nabla_{x} S(x(t))^{T} \dot{x}(t) \\
\ddot{h}(t)=\nabla_{x} S(x(t))^{T} \ddot{x}(t)+\dot{x}(t)^{T} H(x(t)) \dot{x}(t), \tag{4}
\end{gather*}
$$

where $\nabla_{x}$ denotes the gradient operator with respect to $x$, and $H(x(t))$ the Hessian matrix of $S$ with respect to $x$ evaluated at $x(t)$. Substituting (4) into (2) gives the required vertical component $\xi(t)$ of the external
force for keeping the mobile observer on the surface $G_{S}$ at all times:

$$
\begin{align*}
\xi(t) & =M\left(\nabla_{x} S(x(t))^{T} \ddot{x}(t)+\dot{x}(t)^{T} H(x(t)) \dot{x}(t)\right. \\
& \left.+\nu_{z}\left(x(t), \dot{x}(t), \nabla_{x} S(x(t))^{T} \dot{x}(t)\right)+g\right) \tag{5}
\end{align*}
$$

Assuming that the mobile observer lies on $G_{S}$ at the starting time $t=0$, then

$$
\begin{equation*}
h(0)=S(x(0)), \quad \dot{h}(0)=\nabla_{x} S(x(0))^{T} \dot{x}(0) \tag{6}
\end{equation*}
$$

Let $s_{x}(t)=(x(t), \dot{x}(t))$ denote the state of system (1) at time $t$. When necessary, $x_{u}\left(t ; s_{x}(0)\right)$ is used to indicate the dependence of a solution of (1) on the control $u$ and $s_{x}(0)$. A control $u=u(t)$ defined on a given time interval $I_{t_{1}}$ is said to be admissible, if it is a measurable function on $I_{t_{1}}$, and takes its values in the control region $U_{2}$, where $U_{m}=\left\{\left(u_{1}, \ldots, u_{m}\right) \in\right.$ $\left.\mathbb{R}^{m}:\left|u_{i}\right| \leq \bar{u}_{i}, i=1, \ldots, m\right\}$, with $\bar{u}_{i}$ 's being given positive constants. The set of all admissible controls defined on $I_{t_{1}}$ is denoted by $\mathcal{U}_{\mathrm{ad}}\left(I_{t_{1}}\right)$, where $t_{1}$ is a fixed or variable terminal time. In what follows, it is assumed that no constraint is imposed on the magnitude of the vertical force $\xi$.

Now, a few physically meaningful optimal motion planning problems incorporating the foregoing notion of visibility into the formulation can be stated as follows:

- P1. Minimum-time Total Visibility Problem. Let $\mathcal{U}_{\mathrm{ad}}=\bigcup_{t_{1}>0} \mathcal{U}_{\mathrm{ad}}\left(I_{t_{1}}\right)$ be the set of all admissible controls. Given $s_{x}(0)=(x(0), \dot{x}(0))$ or the initial state of the mobile observer with initial position $p(0)=(x(0), S(x(0))) \in G_{S}$ and initial velocity $v(0)=\left(\dot{x}(0), \nabla_{x} S(x(0))^{T} \dot{x}(0)\right)$, find the smallest time $t_{1}^{*} \geq 0$ and an admissible control $u^{*}=u^{*}(t)$ defined on $I_{t_{1}^{*}}$ such that its corresponding path $\Gamma^{*}=$ $\left\{\left(x_{u^{*}}(t), S\left(x_{u^{*}}(t)\right) \in \mathbb{R}^{3}: t \in I_{t_{1}^{*}}\right\}\right.$ satisfies the total visibility condition at $t_{1}^{*}$ :

$$
\bigcup_{t \in I_{t_{1}^{*}}} \mathcal{V}\left(\left(x_{u^{*}}(t), S_{\epsilon}\left(x_{u^{*}}(t)\right)\right)=G_{S}\right.
$$

or alternatively,

$$
\begin{equation*}
\mu_{2}\left\{\bigcup_{t \in I_{t_{1}^{*}}} \Pi_{\Omega} \mathcal{V}\left(\left(x_{u^{*}}(t), S_{\epsilon}\left(x_{u^{*}}(t)\right)\right)\right\}=\mu_{2}\{\Omega\},\right. \tag{7}
\end{equation*}
$$

where $\mu_{2}\{\sigma\}$ denotes the Lebesgue measure of the set $\sigma \subset \mathbb{R}^{2}$.

In the foregoing problem statement, condition (7) only involves the position $x_{u^{*}}(t)$, not the velocity $\dot{x}_{u^{*}}(t)$. In certain physical situations, it is required to move the mobile observer from one rest position to another, i.e. $\dot{x}_{u^{*}}(0)=0$ and $\dot{x}_{u^{*}}\left(t_{1}^{*}\right)=0$.

- P2. Maximum Visibility Problem with Fixed Observation Time-Interval. Given a finite observation time interval $I_{t_{1}}$ and $s_{x}(0)=(x(0), \dot{x}(0))$, or the initial state of the mobile observer with initial position $p(0)=(x(0), S(x(0))) \in G_{S}$ and initial velocity $v(0)=\left(\dot{x}(0), \nabla_{x} S(x(0))^{T} \dot{x}(0)\right)$, find an admissible control $u^{*}=u^{*}(t)$ and its corresponding path
$\Gamma^{*}=\left\{\left(x_{u^{*}}(t), S\left(x_{u^{*}}(t)\right)\right) \in \mathbb{R}^{3}: t \in I_{t_{1}}\right\}$ such that the visibility functional given by

$$
\begin{equation*}
J_{1}(u)=\int_{0}^{t_{1}} \mu_{2}\left\{\Pi_{\Omega} \mathcal{V}\left(\left(x_{u}(t), S_{\epsilon}\left(x_{u}(t)\right)\right)\right)\right\} d t \tag{8}
\end{equation*}
$$

is defined, and satisfies $J_{1}\left(u^{*}\right) \geq J_{1}(u)$ for all $u(\cdot) \in$ $\mathcal{U}_{\mathrm{ad}}\left(I_{t_{1}}\right)$.

Another meaningful visibility functional is given by

$$
\begin{equation*}
J_{2}(u)=\mu_{2}\left\{\bigcup_{t \in I_{t_{1}}} \Pi_{\Omega} \mathcal{V}\left(\left(x_{u}(t), S_{\epsilon}\left(x_{u}(t)\right)\right)\right)\right\} . \tag{9}
\end{equation*}
$$

The foregoing problem with $J_{1}$ replaced by $J_{2}$ corresponds to selecting an admissible control $u^{*}$ such that the area of the union of the projected visibility sets on $\Omega$ for all the points along the corresponding path $\Gamma^{*}$ is maximized.

## 3. OPTIMAL CONTROL PROBLEMS

The foregoing example suggests the following optimal control problems involving set measures. As in Sec.2, let $I_{t_{1}}$ denote the control time interval, and $\mathcal{U}_{\mathrm{ad}}\left(I_{t_{1}}\right)$ the set of all admissible controls $u(\cdot)$ defined on $I_{t_{1}}$. Let the system be described by

$$
\begin{equation*}
\dot{x}(t)=A x(t)+\psi(u(t)), \quad x(0)=x_{o} \in \mathbb{R}^{n} \tag{10}
\end{equation*}
$$

where $A$ is a given $n \times n$ constant matrix, and $\psi$ is a specified $C_{1}$-function on $U$ into $R^{n}$, where $U$ is a given compact subset of $\mathbb{R}^{m}$. The set of all admissible controls defined on $I_{t_{1}}$ is denoted by $\mathcal{U}_{\mathrm{ad}}\left(I_{t_{1}}\right)$. Let $x \rightarrow \tilde{\mathcal{V}}(x)$ be a given set-valued mapping on $\mathbb{R}^{n} \rightarrow$ $2^{\mathbb{R}^{n}}$ such that $\tilde{\mathcal{V}}(x)$ is compact, and $\mu_{n}\{\tilde{\mathcal{V}}(x)\} \leq \hat{\mu}<$ $\infty$ for all $x \in \mathbb{R}^{n}$, where $\mu_{n}$ denotes the Lebesgue measure for sets in $\mathbb{R}^{n}$, and $\hat{\mu}$ is a given positive number. Moreover, $\tilde{\mathcal{V}}$ is continuous with respect to metrics $\rho_{E}$ and $\rho_{H}$. Now, optimal control problems similar to P1 and P2 can be stated as follows:

- Problem Pl': Let $\mathcal{U}_{\mathrm{ad}}=\bigcup_{t_{1} \geq 0} \mathcal{U}_{\mathrm{ad}}\left(I_{t_{1}}\right)$ be the set of all admissible controls. Given $x_{o}$ the initial state of (10) at $t=0$, find the smallest time $t_{1}^{*} \geq 0$ and an admissible control $u^{*}=u^{*}(t)$ defined on $I_{t_{1}^{*}}$ such that its corresponding trajectory $x_{u^{*}}$ satisfies the terminal condition at $t_{1}^{*}$ :

$$
\begin{equation*}
\mu_{n}\left\{\bigcup_{t \in I_{t_{1}^{*}}} \tilde{\mathcal{V}}\left(x_{u^{*}}\left(t ; x_{o}\right)\right)\right\}=c_{o}, \tag{11}
\end{equation*}
$$

where $c_{o}$ is a specified positive constant.

- Problem P2': Given a finite control time interval $I_{t_{1}}$ and $x_{o}$, the initial state of (10) at $t=0$, find an admissible control $u^{*}=u^{*}(t)$ and its corresponding trajectory $x_{u^{*}}\left(t ; x_{o}\right), t \in I_{t_{1}}$ such that the functional given by

$$
\begin{equation*}
J_{1}^{\prime}(u)=\int_{0}^{t_{1}} \mu_{n}\left\{\tilde{\mathcal{V}}\left(x_{u}\left(t ; x_{o}\right)\right)\right\} d t \tag{12}
\end{equation*}
$$

is defined, and satisfies $J_{1}^{\prime}\left(u^{*}\right) \geq J_{1}^{\prime}(u)$ for all $u(\cdot) \in$ $\mathcal{U}_{\mathrm{ad}}\left(I_{t_{1}}\right)$.

## 4. OPTIMALITY CONDITIONS

In what follows, optimality conditions for Problem $P 1$ ' will be derived under the assumption that a solution exists. Let

$$
\begin{equation*}
w_{u}\left(t ; x_{o}\right)=\mu_{n}\left\{\bigcup_{\tau \in I_{t}} \tilde{\mathcal{V}}\left(x_{u}\left(\tau ; x_{o}\right)\right)\right\} \tag{13}
\end{equation*}
$$

with $w_{u}\left(0 ; x_{o}\right)=\mu_{n}\left\{\tilde{\mathcal{V}}\left(x_{o}\right)\right\}$. It is required to find the smallest time $t_{1}^{*} \in \mathbb{R}^{+}=[0, \infty[$ and an admissible control $u^{*}=u^{*}(t)$ defined on $I_{t_{1}^{*}}$ such that $w_{u^{*}}\left(t_{1}^{*} ; x_{o}\right)=c_{o}$.

A necessary condition for optimality can be derived by considering the augmented system:

$$
\frac{d}{d t}\left[\begin{array}{c}
x  \tag{14}\\
w
\end{array}\right]=\left[\begin{array}{c}
A x+\psi(u) \\
g(x)
\end{array}\right]
$$

where

$$
\begin{gather*}
g\left(x(t) \stackrel{\text { def }}{=} \lim _{\delta t \rightarrow 0^{+}} \sup \frac{1}{\delta t}[w(t+\delta t)-w(t)]\right. \\
=\lim _{\delta t \rightarrow 0^{+}} \sup \frac{1}{\delta t}\left[\mu_{n}\left\{\bigcup_{\tau \in I_{t+\delta t}} \tilde{\mathcal{V}}(x(\tau))\right\}\right. \\
\left.-\mu_{n}\left\{\bigcup_{\tau \in I_{t}} \tilde{\mathcal{V}}(x(\tau))\right\}\right], \tag{15}
\end{gather*}
$$

and the initial state at $t=0$ is given by $s_{(x, w)}(0)=$ $\left(x_{o}, \mu_{n}\left\{\tilde{V}\left(x_{o}\right)\right\}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{+}$. Since for $\delta t \geq 0$, $\bigcup_{\tau \in I_{t}} \mathcal{V}(x(\tau)) \subseteq \bigcup_{\tau \in I_{t+\delta t}} \tilde{\mathcal{V}}(x(\tau)), g(x(t))$ can be rewritten as

$$
\begin{gather*}
g(x(t))=\lim _{\delta t \rightarrow 0^{+}} \sup \frac{1}{\delta t} \mu_{n}\left\{\left[\bigcup_{\tau \in I_{t+\delta t}} \tilde{\mathcal{V}}(x(\tau))\right] \cap\right. \\
\left.\left[\bigcup_{\tau \in I_{t}} \tilde{\mathcal{V}}(x(\tau))\right]^{c}\right\} \tag{16}
\end{gather*}
$$

where $\sigma^{c}$ denotes the complement of the set $\sigma$ in $\mathbb{R}^{n}$.
The target set is a hyperplane specified by $\mathcal{T}=$ $\left\{(x, w) \in \mathbb{R}^{n} \times \mathbb{R}^{+}: w=c_{o}\right\}$. Thus, Problem Pl' can be restated in the form of a standard time-optimal control problem, i.e. find an admissible control $u^{*}(\cdot)$ which steers the initial state $s_{(x, w)}(0)$ of system (14) at $t=0$ to the target set $\mathcal{T}$ in minimum time $t_{1}^{*}$.

Let the Hamiltonian for (14) be defined by:

$$
\begin{equation*}
\mathcal{H}(x, \eta, u)=-1+\tilde{\eta}^{T}(A x+\psi(u))+\eta_{n+1} g(x), \tag{17}
\end{equation*}
$$

where $\eta=\left(\eta_{1}, \ldots, \eta_{n}, \eta_{n+1}\right)^{T}$ corresponds to the state of the adjoint system:

$$
\begin{equation*}
\dot{\tilde{\eta}}=-A^{T} \tilde{\eta}-\eta_{n+1} \nabla_{x} g(x), \quad \dot{\eta}_{n+1}=0 \tag{18}
\end{equation*}
$$

where $\tilde{\eta}=\left(\eta_{1}, \ldots, \eta_{n}\right)^{T}$, and $\nabla_{x}$ denotes the gradient operator with respect to $x$.

If the real-valued function $x \rightarrow g(x)$ on $\Omega \rightarrow \mathbb{R}^{+}$ is smooth, then the following necessary condition for optimality follows from the Pontryagin Maximum Principle (Lee and Markus (1967)):

Theorem 4.1 Suppose that the function $x \rightarrow g(x)$ on $\mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$is $C_{1}$. Let $u^{*}=u^{*}(t)$ be an optimal
control for Problem P1 with corresponding response $x^{*}=x^{*}(t)$ defined on $I_{t_{1}^{*}}$. Then there exists an absolutely continuous function $\tilde{\eta}^{*}=\tilde{\eta}^{*}(t)$ satisfying (18) for almost all $t \in I_{t_{1}^{*}}$ with

$$
\begin{gather*}
\mathcal{H}\left(x^{*}(t), \eta^{*}(t), u^{*}(t)\right) \\
=\mathcal{M}\left(x^{*}(t), \eta^{*}(t)\right) \text { for almost all } t \in I_{t_{1}^{*}} \tag{19}
\end{gather*}
$$

where $\tilde{\eta}=\left(\eta_{1}, \ldots, \eta_{n}\right)^{T}$, and

$$
\begin{equation*}
\mathcal{M}\left(x^{*}(t), \eta^{*}(t)\right) \stackrel{\text { def }}{=} \max _{u \in U} \mathcal{H}\left(x^{*}(t), \eta^{*}(t), u\right) \tag{20}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\mathcal{M}\left(x^{*}(t), \eta^{*}(t)\right) \equiv 0 \text { on } I_{t_{1}^{*}}, \tag{21}
\end{equation*}
$$

and the transversality condition: $-\eta\left(t_{1}^{*}\right)=(0, \kappa)^{T}$ for some $\kappa>0$ (the normal to the target set $\mathcal{T}$ at $\left(x^{*}, w^{*}\right)\left(t_{1}^{*}\right)$ in the positive $w$-direction), or

$$
\begin{equation*}
\tilde{\eta}^{*}\left(t_{1}^{*}\right)=0, \quad \eta_{n+1}^{*}\left(t_{1}^{*}\right)=-\kappa \tag{22}
\end{equation*}
$$

is satisfied.
From Theorem 4.1, it is evident from (17) that the optimal control $u^{*}$ is a function of $\tilde{\eta}$ only. For the special case where $\psi(u)=u$ and $U=U_{n}$ as in system (1), $u^{*}(t)$ takes on the form:

$$
\begin{equation*}
u_{i}^{*}(t)=\bar{u}_{i} \operatorname{sgn}\left(\eta_{i}^{*}(t)\right), \quad i=1, \ldots, n . \tag{23}
\end{equation*}
$$

Equations (14),(18)-(21) with initial conditions $x(0)=$ $\left.x_{o}, w(0)=\mu_{n}\left\{\tilde{\mathcal{V}}\left(x_{o}\right)\right\}\right)$, and terminal conditions $w\left(t_{1}\right)=c_{o}, \tilde{\eta}\left(t_{1}\right)=0, \eta_{n+1}\left(t_{1}\right)=-\kappa$ form a family of two-point-boundary-value problems (TPBVP) with the terminal time $t_{1}$ as a variable parameter. The optimal trajectory is a solution of the TPBVP with the smallest terminal time $t_{1}^{*}$. It is evident from the second equation in (18) and (22), $\eta_{n+1}(t) \equiv-\kappa$ on $I_{t_{1}^{*}}$. Thus, (18) can be rewritten as: $\dot{\tilde{\eta}}=-A^{T} \tilde{\eta}+\kappa \nabla_{x} g(x)$.

Now, consider Problem P2' with the assumption that an optimal control $u^{*}=u^{*}(t)$ defined on $I_{t_{1}}$ exists. Let $\delta u$ be a control perturbation such that $u=u^{*}+$ $\delta u$ is admissible. Let the solutions of (10) at time $t$ corresponding to $u$ and $u^{*}$, and the same initial state $x_{o}$ be denoted by $x_{u}(t)$ and $x_{u^{*}}(t)$ respectively. To derive optimality conditions, consider

$$
\begin{align*}
& \Delta J_{1}^{\prime} \stackrel{\text { def }}{=} J_{1}^{\prime}\left(u^{*}\right)-J_{1}^{\prime}\left(u^{*}+\delta u\right) \\
& \quad=\int_{0}^{t_{1}}\left(\mu_{n}\left\{\tilde{\mathcal{V}}\left(x_{u^{*}}(t)\right)\right\}-\mu_{n}\left\{\tilde{\mathcal{V}}\left(x_{u^{*}+\delta u}(t)\right)\right\}\right) d t \tag{24}
\end{align*}
$$

Using the identity:

$$
\begin{gather*}
\tilde{\mathcal{V}}\left(x_{u^{*}}(t)\right)-\tilde{\mathcal{V}}\left(x_{u}(t)\right) \\
=\left(\tilde{\mathcal{V}}\left(x_{u}(t)\right)\right)^{c} \cap \tilde{\mathcal{V}}\left(x_{u^{*}}(t)\right) \cup\left(\tilde{\mathcal{V}}\left(x_{u^{*}}(t)\right)^{c} \cap \tilde{\mathcal{V}}\left(x_{u}(t)\right)\right), \tag{25}
\end{gather*}
$$

$\Delta J_{1}^{\prime}$ can be rewritten as:

$$
\begin{align*}
& \Delta J_{1}^{\prime}=\int_{0}^{t_{1}}\left(\mu_{n}\left\{\left(\tilde{\mathcal{V}}\left(x_{u^{*}+\delta u}(t)\right)\right)^{c} \cap \tilde{\mathcal{V}}\left(x_{u^{*}}(t)\right)\right\}\right. \\
& \left.\quad-\mu_{n}\left\{\left(\tilde{\mathcal{V}}\left(x_{u^{*}}(t)\right)\right)^{c} \cap \tilde{\mathcal{V}}\left(x_{u^{*}+\delta u}(t)\right)\right\}\right) d t \tag{26}
\end{align*}
$$

Thus, a sufficient but not necessary condition for optimality is given by

$$
\begin{align*}
& \mu_{n}\left\{\left(\tilde{\mathcal{V}}\left(x_{u^{*}+\delta u}(t)\right)\right)^{c} \cap \tilde{\mathcal{V}}\left(x_{u^{*}}(t)\right)\right\} \\
& \quad \geq \mu_{n}\left\{\left(\tilde{\mathcal{V}}\left(x_{u^{*}}(t)\right)\right)^{c} \cap \tilde{\mathcal{V}}\left(x_{u^{*}+\delta u}(t)\right)\right\} \tag{27}
\end{align*}
$$

for almost all $t \in I_{t_{1}}$ and all admissible $u^{*}+\delta u$, where $x_{u^{*}+\delta u}(t)$ can be written in the form:

$$
\begin{equation*}
x_{u^{*}+\delta u}(t)=x_{u^{*}}(t)+\delta x(t)+o(\|\delta x(t)\|) \tag{28}
\end{equation*}
$$

with

$$
\begin{align*}
& x_{u^{*}}(t)=e^{A t} x_{o}+\int_{0}^{t} e^{A(t-\tau)} \psi\left(u^{*}(\tau)\right) d \tau \\
& \delta x(t)=\int_{0}^{t} e^{A(t-\tau)} J_{\psi}\left(u^{*}(\tau)\right) \delta u(\tau) d \tau \tag{29}
\end{align*}
$$

where $J_{\psi}$ denotes the Jacobian matrix of $\psi$ with respect to $u$.
Now, consider perturbed admissible controls of the form $u^{*}+\alpha \delta u$, where $\delta u$ is a given control perturbation, and $0 \leq \alpha<1$. If the real-valued function $x \rightarrow \mu_{n}\{\tilde{\mathcal{V}}(x)\}$ on $\mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$is $C_{1}$, then the Gateaux differential of $J_{1}^{\prime}$ at $x_{u^{*}}(\cdot)$ with increment $\delta x(\cdot)$ exists. Thus, we have the following necessary condition for optimality:

Theorem 4.2 Suppose that an optimal control $u^{*}=$ $u^{*}(t)$ defined on $I_{t_{1}}$ for Problem P2' exists, and the function $x \rightarrow \mu_{n}\{\tilde{\mathcal{V}}(x)\}$ on $\Omega \rightarrow \mathbb{R}^{+}$is $C_{1}$. Then $u^{*}(\cdot)$ must satisfy the following variational inequality:

$$
\begin{align*}
& D J_{1}^{\prime}\left(u^{*} ; \delta u\right)= \\
& \qquad \int_{0}^{t_{1}} \lim _{\alpha \rightarrow 0} \frac{1}{\alpha}\left(\mu_{n}\left\{\tilde{\mathcal{V}}\left(x_{u^{*}+\alpha \delta u(t)}\right)^{c} \cap \tilde{\mathcal{V}}\left(x_{u^{*}}(t)\right)\right\}\right. \\
& \left.-\mu_{n}\left\{\tilde{\mathcal{V}}\left(x_{u^{*}}(t)\right)^{c} \cap \tilde{\mathcal{V}}\left(x_{u^{*}+\alpha \delta u}(t)\right)\right\}\right) d t \geq 0 \tag{30}
\end{align*}
$$

for all admissible $u^{*}+\alpha \delta u$.
Another necessary condition for optimality can be obtained by introducing a new state variable $y$. The evolution of $y(t)$ with time $t$ is described by

$$
\begin{equation*}
\dot{y}(t)=\mu_{n}\left\{\tilde{\mathcal{V}}\left(x_{u}(t)\right)\right\}, \quad y(0)=0 \tag{31}
\end{equation*}
$$

Thus, $J_{1}^{\prime}(u)=y\left(t_{1}\right)$. Let the Hamiltonian associated with the augmented system (10) and (31) be defined by:

$$
\begin{equation*}
\mathcal{H}(x, \eta, u)=\mu_{n}\{\tilde{\mathcal{V}}(x)\}+\eta^{T}(A x+\psi(u)) \tag{32}
\end{equation*}
$$

where $\eta=\left(\eta_{1}, \ldots, \eta_{n}\right)^{T}$ corresponds to the state of the adjoint system:

$$
\begin{equation*}
\dot{\eta}=-\nabla_{x} \mathcal{H} \tag{33}
\end{equation*}
$$

Again, if the function $x \rightarrow \mu_{n}\{\tilde{\mathcal{V}}(x)\}$ on $\mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$ is smooth, then a necessary condition for optimality is given by:

Theorem 4.3 Suppose that the function $x$ $\rightarrow \mu_{n}\{\tilde{\mathcal{V}}(x)\}$ on $\mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$is $C_{1}$. Let $u^{*}=u^{*}(t)$ be an optimal control for Problem P2' with corresponding response $x^{*}=x^{*}(t)$. Then there exists an absolutely continuous function $\eta^{*}=\eta^{*}(t)$ satisfying (33) given explicitly by

$$
\begin{equation*}
\dot{\eta}=-\nabla_{x} \mu_{n}\{\tilde{\mathcal{V}}(x)\}-A^{T} \eta \tag{34}
\end{equation*}
$$

for almost all $t \in I_{t_{1}}$ and terminal condition: $\eta^{*}\left(t_{1}\right)$ $=0$ with

$$
\begin{equation*}
\mathcal{H}\left(x^{*}(t), \eta^{*}(t), u^{*}(t)\right)=\mathcal{M}\left(x^{*}(t), \eta^{*}(t)\right) \tag{35}
\end{equation*}
$$

for almost all $t \in I_{t_{1}}$, where

$$
\begin{equation*}
\mathcal{M}\left(x^{*}(t), \eta^{*}(t)\right) \stackrel{\text { def }}{=} \max _{u \in U} \mathcal{H}\left(x^{*}(t), \eta^{*}(t), u\right) \tag{36}
\end{equation*}
$$

Thus, (10),(31) and (34) with terminal condition $\eta\left(t_{1}\right)=0$ and initial condition $(x, y)(0)=\left(x_{o}, 0\right)$ along with (35) and (36) constitute a nonlinear TPBVP for which the optimal trajectory $\left(x^{*}, y^{*}, \eta^{*}\right)(\cdot)$ must satisfy. For the special case where $\psi(u)=u$ and $U=U_{n}$, Theorem 4.3 implies that $u^{*}(t)$ has the form given by (23).

The main difficulty in applying Theorems 4.1-4.3 to concrete problems such as the motion planning problem is that the mapping $\tilde{\mathcal{V}}$ derived from physical situations (e.g. the visible sets $\mathcal{V}\left(\left(x, S_{\epsilon}(x)\right)\right)$ for $\left.x \in \Omega\right)$ cannot be expressed analytically in term of $x$. Consequently, the Gateaux differential in (30); $g(x), \nabla_{x} g(x)$ and $\nabla_{x} \mu_{n}\{\tilde{\mathcal{V}}(x)\}$ in (14),(18) and (34) respectively cannot be readily computed.

## 5. EXAMPLE

Consider a simple case of the optimal motion planning problems discussed in Sec. 2 in which the visible sets at any point in $G_{S_{\epsilon}}$ can be computed analytically. Let $\Omega$ be the normalized spatial domain specified by the unit disk $\left\{x \in \mathbb{R}^{2}:\|x\| \leq 1\right\}$, where $x$ has been normalized with respect to the radius $r_{o}$ of the actual spatial domain. The surface under observation corresponds to the graph of the real-valued function $S$ given by

$$
\begin{equation*}
S(x)=1-\|x\|^{2}, \quad x \in \Omega \tag{37}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}\right)$, and $\|x\|^{2}=x_{1}^{2}+x_{2}^{2}$. It can be verified by elementary computations that for any given $\epsilon>0$, the projection of the visible set from a point $\left(x, S_{\epsilon}(x)\right) \in G_{S_{\epsilon}}$ onto $\Omega$ is simply the intersection of the unit disk with the disk centered at $x$ with radius $\sqrt{\epsilon}$, i.e. $\Pi_{\Omega} \mathcal{V}\left(\left(x, S_{\epsilon}(x)\right)\right)=\Omega \cap\left\{x^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in\right.$ $\left.\mathbb{R}^{2}:\left\|x-x^{\prime}\right\| \leq \sqrt{\epsilon}\right\}$. Moreover, for $0<\epsilon \leq 1$,

$$
\begin{align*}
& \mu_{2}\left\{\Pi_{\Omega} \mathcal{V}\left(\left(x, S_{\epsilon}(x)\right)\right)\right\} \\
& \quad=\left\{\begin{array}{cl}
\epsilon \pi, & \text { if } 0 \leq r \leq 1-\sqrt{\epsilon} ; \\
\beta(r, \tilde{r}), & \text { if } 1-\sqrt{\epsilon}<r \leq 1,
\end{array}\right. \tag{38}
\end{align*}
$$

where $r=\|x\|, \tilde{r}=\left(1-\epsilon+r^{2}\right) / 2 r$, and
$\beta(r, \tilde{r})=\cos ^{-1}(\tilde{r})+\epsilon \cos ^{-1}\left(\frac{r-\tilde{r}}{\sqrt{\epsilon}}\right)-r \sqrt{1-\tilde{r}^{2}}$.
Note that for $\epsilon=1$, the surface $G_{\mu_{2}}$ is not smooth at the origin. Moreover, $\epsilon=1$ corresponds to the critical height $h_{c}$ at the origin defined in Sec.2.

Consider the Minimum-Time Total Visibility Problem P1. To compute the trajectory and control that satisfy the necessary condition for optimality for Problem P1 given by Theorem 4.1, it is convenient to introduce a normalized time $\tau=t / t_{1}$ and solve the TPBVP stated in Theorem 4.1 with a variable parameter $t_{1}$. However, even for the simple $S$ given by (37), the computation of $g(x)$ defined by (16) for any $x \in$ $\Omega$ is a tedious task. The characterization of optimal control given by (23) suggests seeking "bang-bang" controls with a finite number of switchings to achieve total visibility in minimum time. Starting with the case with no switchings in both $u_{1}$ and $u_{2}$, then one switching in $u_{1}$ and no switching in $u_{2}$ etc, we obtain a trajectory in the $\left(x_{1}, x_{2}\right)$-plane with total visibility with the smallest terminal time $t_{1}$. Figures $1-3$ show the results for the case where $\epsilon=1 / 4$. It can be seen from Fig. 1 that the computed trajectory in the ( $x_{1}, x_{2}$ )-plane approaches the circle with radius $\sqrt{\epsilon}=1 / 2$ as fast as possible, and then stays in the neighborhood of this circle for the remaining times until total visibility is attained. At any point $x$ on this circle, $\mu_{2}\left\{\Pi_{\Omega} \mathcal{V}\left(\left(x, S_{\epsilon}(x)\right)\right)\right\}$ takes on its maximum value $\pi \epsilon$.

Next, consider the Maximum Visibility Problem P2. Here, the augmented system corresponding to (1) and (31) has the following form:

$$
\frac{d}{d t}\left[\begin{array}{l}
x  \tag{40}\\
\dot{x} \\
y
\end{array}\right]=\left[\begin{array}{c}
\dot{x} \\
(-D \dot{x}+u) / M \\
\mu_{2}\left\{\Pi_{\Omega} \mathcal{V}\left(\left(x, S_{\epsilon}(x)\right)\right)\right\}
\end{array}\right]
$$

where $\mu_{2}\left\{\Pi_{\Omega} \mathcal{V}\left(\left(x, S_{\epsilon}(x)\right)\right)\right\}$ is given by (38). The adjoint system corresponding to (34) has the following explicit form:

$$
\frac{d}{d t}\left[\begin{array}{c}
\eta_{1}  \tag{41}\\
\eta_{2} \\
\eta_{3} \\
\eta_{4}
\end{array}\right]=-\left[\begin{array}{c}
h_{1}(x) \\
h_{2}(x) \\
\eta_{1}-\left(\nu_{x 1} / M\right) \eta_{3} \\
\eta_{2}-\left(\nu_{x 2} / M\right) \eta_{4}
\end{array}\right]
$$

where $h_{i}(x)=$

$$
\left\{\begin{array}{cc}
0, & \text { if } 0 \leq r \leq 1-\sqrt{\epsilon}  \tag{42}\\
-2 x_{i} \sqrt{1-\tilde{r}^{2}} / r, & \text { if } 1-\sqrt{\epsilon}<r<1, \quad i=1,2
\end{array}\right.
$$

Since $x \rightarrow \mu_{2}\left\{\Pi_{\Omega} \mathcal{V}\left(\left(x, S_{\epsilon}(x)\right)\right)\right\}$ given by (37) is $C_{1}$, it follows from Theorem 4.3 that the optimal control $u^{*}$ has the form:

$$
\begin{equation*}
u_{1}^{*}(t)=\bar{u}_{1} \operatorname{sgn}\left(\eta_{3}^{*}(t)\right), u_{2}^{*}(t)=\bar{u}_{2} \operatorname{sgn}\left(\eta_{4}^{*}(t)\right) . \tag{43}
\end{equation*}
$$

Consider the nonlinear TPBVP corresponding to (40)(43) with initial condition $(x, \dot{x}, y)(0)=(x(0), \dot{x}(0)$, $\mu_{2}\left\{\Pi_{\Omega} \mathcal{V}\left(\left(x(0), S_{\epsilon}(x(0))\right)\right\}\right)$ and terminal condition $\eta\left(t_{1}\right)=0$. Numerical solutions for this problem are obtained for specified values of the system parameters using the MATLAB algorithm "BVP4C" by Shampine et al. Figures $4-6$ show the results for the case where $\epsilon=1 / 4 ; x(0)=(-1,0), \dot{x}(0)=$ $(0.025,-0.05), y(0)=\mu_{2}\left\{\Pi_{\Omega} \mathcal{V}\left(\left(x(0), S_{\epsilon}(x(0))\right)\right\} ;\right.$ $M=10 \mathrm{~kg}, \nu_{x 1}=0.01 \mathrm{~N} . \mathrm{sec} . / \mathrm{m}, \nu_{x 2}=0.02$
N.sec. $/ \mathrm{m}, t_{1}=25 \mathrm{sec}$., and $\bar{u}=0.1 \mathrm{~N} / \mathrm{m}$. In the computation, the signum function in (43) was approximated by $\tanh \left(50 \eta_{i}^{*}(t)\right), i=3,4$. It can be seen from Fig. 5 that the main portion of the projected trajectory on $\Omega$ lies inside the disk $D$ with radius $\sqrt{\epsilon}=1 / 2$, where $\mu_{2}\left\{\Pi_{\Omega} \mathcal{V}\left(\left(x, S_{\epsilon}(x)\right)\right)\right\}$ takes on its maximum value $\pi \epsilon$. This result is consistent with intuition that in order to maximize $J_{1}$, the trajectory should enter the disk $D$ as quickly as possible and stay inside $D$ as long as possible for the remaining times.

## 6. CONCLUSIONS

In this paper, a class of optimal control problems involving set measures motivated from optimal motion planning problems based on visibility has been studied. These optimization problems are generally non-smooth. The derived optimality conditions are not easily applicable to problems derived form real-world situations. Efficient algorithms are needed for the numerical solution of these problems. Some progress has been made in this direction recently for optimal motion planning problems (See Balmes and Wang (2000), Wang (2004)).

## REFERENCES

Balmes, C.S. and P.K.C. Wang (2000) Numerical algorithms for optimal visibility problems, UCLA Engr. Report ENG 00-214, June.

Lee, E.B. and L. Markus (1967) Foundations of Optimal Control Theory, New York, NY. John Wiley.
Wang, P.K.C. (2001) A class of optimization problems involving set measures. Nonlinear Analysis, Theory, Methods \& Applications, 47, 25-36.

Wang, P.K.C. (2003) Optimal path planning based on visibility. J. Optimization Theory \& Applications, 117, 157-181.

Wang, P.K.C. (2004) Optimal motion planning for mobile observers based on maximum visibility. Dynamics of Continuous, Discrete and Impulsive Systems. Ser.B, 11, 313-338.


Fig. 1. Projection of the computed trajectories onto the ( $x_{1}, x_{2}$ )-plane for Problem Pl with $\epsilon=1 / 4$.


Fig. 2. Computed controls $u_{1}=u_{1}(t)$ and $u_{2}=u_{2}(t)$ for Problem P1.


Fig. 3. Time-domain plot of $w=w(t)$ along the computed path for Problem P1.


Fig. 4. Computed controls $u_{1}=u_{1}(t)$ and $u_{2}=u_{2}(t)$ for Problem P2.


Fig. 5. Computed solution to TPBVP corresponding to Problem $P 2$ projected onto the $\left(x_{1}, x_{2}\right)$-plane.


Fig. 6. Computed visibility functional $y=y(t)$ for Problem P2.

