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Abstract: In this paper a new design for controlling dynamical systems has been
applied to buck converters driven with a PWM centered pulse and (Zero Average
Dynamics) ZAD-strategy. Chaotic operation has been stabilized with the so-called
Fixed Point Induced Control (FPIC) technique. Also, the same converter with
delay, whose 1-periodic orbit is always unstable, has been stabilized. Simulations
are compared with the TDAS stabilization technique. Once a 1-periodic orbit has
been stabilized, the dynamics shows the same characteristics and advantages of
the ZAD design, such as robustness, fixed switching frequency (with zero average
on the sliding surface) and a low output error. Copyright c©2005 IFAC
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1. INTRODUCTION

Switching sources are devices used in the im-
plementation of power converters. One of its
main drawbacks is the presence of chattering
due to switching frequency, high order harmonic
distortion and nonlinear phenomena. The latter
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can be dealt with control techniques (Poddar
et al., 1998),(Poddar et al., 1995a),(Poddar et
al., 1995b),(Batlle et al., 1999),(Batlle et al.,
1997),(Batlle et al., 2000) while chattering and
harmonic distortion are inherent to switching and
can not be totally avoided. Fixed switching fre-
quency improves performance even though chat-
tering does not disappear. This is important in
real applications, and to achieve this, some tech-



niques have been developed: adaptive hystere-
sis band (Ruiz et al., 1990),(Yao and Holmes,
1993),(Pinheiro et al., 1994), signal injection with
a selected frequency (Pinheiro et al., 1994),(Silva
and Snia, 1993),(Malesani et al., 1996),(Nicolas
et al., 1996), zero average current in each it-
eration (ZACE) (Borle and Chemmangot, 1995)
and recently zero average error dynamics in each
iteration (ZAD). ZAD control scheme, recently
proposed in (Fossas et al., 2001), tries to conjugate
the advantages of fixed frequency implementa-
tions and the inherent robustness of sliding control
modes. It is based on an appropriate design of
the output that guarantees the fulfilment of the
specifications and on a specific design of the Pulse
Width Modulator duty cycle in such a way that
the output average in each PWM-period is zero. A
comparative study of this algorithm with respect
to some of the previously reported in the literature
can be found in (Biel et al., 2002) and (Ramos et
al., 2003).

There are several possible PWM implementations,
such as leading, trailing and centered pulse. The
novel ZAD algorithm implemented in a single
updated centered PWM results in a very simple
control scheme (CPWM). However, a one period
delay in sampling, which one has to consider in
real applications makes the closed loop system
unstable. This paper deals with a new control
methodology named Fixed Point Induction Con-
trol (FPIC), that combines the unstabilising con-
trol and a nominal control action. The trade off
between the two control action weights guarantees
system stability keeping the advantages of the
ZAD controller. Thus the method is original and
very application oriented.

For robustness purposes a linear combination of
the error and its derivative is considered as in
(Carpita et al., 1988). As it will be seen in the fol-
lowing, the error dynamics time constant appears
as a bifurcation parameter. As it varies, a very rich
dynamics is observed in the controlled system.
A more realistic one-cycle delayed ZAD centered
scheme (DCPWM) results in unstable dynamics
for all of the ks-parameter values. Fig. 1 shows
the bifurcation diagram of the normalized duty-
cycle of a ZAD-CPWM controlled buck converter
with delay. It is worth to notice the instantaneous
presence of chaos for ks = 5 due to a border-
collision bifurcation (the duty cycle drops to zero).
Two of the authors in (Batlle et al., 1999),(Batlle
et al., 1997) applied Time Delayed AutoSynchro-
nisation techniques (TDAS) to stabilize unstable
orbits in a ramp-controlled buck converter. These
techniques have also been applied to stabilize 1-
periodic orbits appearing close to the chaotic at-
tractor in the ZAD-CPWM buck converter. How-
ever TDAS failed in the ZAD-DCPWM. The pro-
posed FPIC methodology succeeds in both cases.
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Fig. 1. Bifurcation diagram for the normalized
duty cycle in a DCPWM Buck converter
when the parameter ks is varied. Instant
chaos is present for ks = 5 after a border-
collision bifurcation (the duty cycle saturates
to zero).

The paper is organized as follows: in Section II
the theoretical results on FPIC methodology is
discussed. In Section III the ZAD strategy is
briefly explained. This Section is also devoted
to control of chaos in the CPWM system, both
with TDAS and FPIC techniques. Section IV
deals with the regulation task in a DCPWM, and
finally, conclusions are summarized in Section V.

2. FIXED POINT INDUCTION CONTROL
(FPIC)

Let Σ be a discrete system

x(k + 1) = f(x(k), u(x(k))) (1)

where x ∈ R
n and f : R

n+1 7→ R
n. Let (x∗, u∗)

be a stable fixed point. Neither assumption is
made on the stability of the controlled system,
nor on the control law u(x(·)). Particularly we
are interested in systems for which the dynamics
defined by the map f(x(k), u(x(k))) is stable but
f(x(k), u(x(k − 1))) becomes unstable.

Result 1: Let (x∗, u∗) be a fixed point of f(x, u)
and assume that the eigenvalues of the linearised
system at the fixed point have modulus less than
1, i.e.
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Then, the control input (FPIC technique)

û(k) =
u(x(k)) + Nu∗

N + 1
(3)

stabilises the fixed point (x∗, u∗) for N sufficiently
high.

Proof:

The equation describing the system with the new
controller is

x(k + 1) = f(x(k), û(k)). (4)



From Eq. (3) we have that (x∗, u∗) is still a
fixed point of the discrete system (4). Linearising
system (4) around the fixed point, we have
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that can be written as

Jn = A1 + A2 (6)

with A1 = ∂f
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∂û
∂û
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and

Jn = A1 +
1

N + 1
Au (7)

Now, using the theorem of continuity of the eigen-
values, we get that if N is sufficiently high, the
eigenvalues of matrix Jn approximate the eigen-
values of matrix Jo, and since all of them are
inside the unit circle, system (4) is stable. �

Let us specify this result to systems operating
with time-delayed signals.

Consequence 2: In the same hypotheses as in
Result 1, the control design (FPIC technique)

û(x(k)) =
u(x(k − 1)) + Nu∗

N + 1
(8)

stabilises the fixed point (x∗, u∗) for N sufficiently
high.

Note: The new signal control generated in this
way does not move the fixed point. However, it is
well-known that systems tend to destabilize when
delay periods are considered.

Proof:

Considering one delay period, the system equa-
tions read as

x(k + 1) = f(x(k), u(x(k − 1))). (9)

The change of variables z1 = x(k) and z2 = x(k−
1), yields to

z1(k + 1) = f (z1(k), u (z2(k)))
z2(k + 1) = z1(k).

Then, with the new control signal

û(k) =
u(x(k − 1)) + Nu∗

N + 1
(10)

state equations can be written as:

z1(k + 1) = f

(

z1(k),
u(z2(k)) + Nu∗

N + 1

)

z2(k + 1) = z1(k)

In this case, matrix A, valued at the fixed point,
can be computed as

A =
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being I the identity matrix and 0 a null matrix of
appropriate dimensions. Then,
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(12)

In a simplified form A = A1 + A2 where A1

corresponds to the first matrix and A2 to the
second one in (12). The eigenvalues of A1 are
the eigenvalues of equation (2) plus n eigenvalues
at the origin. Applying the theorem of continuity
of the eigenvalues for N sufficiently high, the
eigenvalues of A are close to the eigenvalues of
A1, and since all of them are in the unit circle,
the new controlled system is stable. �

3. CONTROL OF CHAOS IN A CPWM BUCK
CONVERTER

This section starts describing the plant, a ZAD
buck converter. Then, a Time-Delay AutoSyn-
chronization (TDAS) as well as Fixed Point In-
ductor Control (FPIC) schemes are used to sta-
bilise 1-periodic orbits close to the chaotic attrac-
tor.

3.1 The buck converter

Fig. 2 shows a schematic diagram of a buck
converter which can be modelled as the dynamical
system

(
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Fig. 2. Scheme of the blocks diagram of a PWM
driving DC/AC converter.

The capacitor voltage vC and the inductor current
iL are the state variables. The control signal u
takes discrete values {−1, 1} depending on the
switch position. The converter can also be de-
scribed by the dimensionless system

(
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ẋ2

)
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with x1 = v/E, x2 = 1
E

√

L
C

i, t = τ/
√

LC and

γ = 1
R

√

L
C

(Fossas and Zinober, 2001).

The system is controlled by PWM forcing zero
average in the output y = s(x) for each sam-
pling period. For robustness purposes output s,
a proportional-derivative expression in the error,
as in (Carpita et al., 1988), is defined by

s(x) = (x1 − x1ref ) + ks(ẋ1 − ẋ1ref ) (15)

where x1 is the controlled variable, x1ref is the
reference signal and ks is the surface time con-
stant. The control signal provided to the system
is defined as follows

u =







1 if kT ≤ t ≤ kT + d/2
−1 if kT + d/2 < t < kT + (T − d/2)
1 if kT + (T − d/2) ≤ t < (k + 1)T

(16)
where d is computed by

d =







T if T ≤ dc

dc if 0 < dc < T
0 if dc ≤ 0







(17)

and

dc =
2s(kT ) + T ṡ2(kT )

ṡ2(kT ) − ṡ1(kT )
. (18)

In Eq. (18) s(kT ) corresponds to the surface value
when states are evaluated at t = kT . ṡ1(kT ) is
the surface slope with control signal u = 1 and
ṡ2(kT ) is the surface slope with u = −1. More
details abot this strategy can be found in (Fossas
et al., 2001).

3.2 TDAS Control of a CPWM Buck Converter

The goal of this technique is to feedback a time-
delayed variable (Pyragas, 1992). Since the vari-
able inducing instability can be associated to the
duty cycle, we have

d(k) = d + η(d(k) − d(k − 1)) (19)

where d(k) is the duty cycle to be applied, d is
defined in the previous subsection and d(k − 1)
is the duty cycle in the latest iteration (η is the
feedback constant).

Figure 3 shows the duty cycle evolution when
ks = 0.5. The dispersed points corresponds to the
chaotic behavior when the system is not controlled
through TDAS. The continuous line corresponds
to the duty cycle when the system is TDAS-
controlled. The values of the state variables in
the stroboscopic Poincare map, for the stationary
point are x1 = 0.8010 and x2 = 0.2804, with a
regulation error of 0.125%.

0 200 400 600 800 1000 1200 1400 1600
75

80

85

90

95

100

samples

du
ty 

cy
cle

, k
s=0

.5

η=0.1 

without control 

Fig. 3. Duty cycle for the uncontrolled system and
with TDAS control. Points correspond to the
uncontrolled system while the continuous line
corresponds to the TDAS-controlled system,
ks = 0.5.
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Fig. 4. Duty cycle for the uncontrolled system and
for the FPIC-controlled system, ks = 0.5.

3.3 FPIC Control of the CPWM Buck Converter

The duty cycle in the steady-state can be easily
computed, and it is found to be

dss = T
1 + x1ref

2
.

This allows applying the FPIC technique dis-
cussed in the previous Section. Now, the duty
cycle to control the PWM is

d(k) =
d + Ndss

N + 1

where d is defined in equation (17) and N ≥ 1
for the parameter range used. Fig. 4 shows the
results when the system is controlled in this way.
These results were obtained for ks = 0.5 and
N = 1, operating in the chaotic zone. The steady-
state values are x1 = 0.7999 and x2 = 0.2801,
with an error of 0.0125%. Moreover, it is worth to
note that the unstable orbit achieves the stable
1-periodic behavior as fast as using the TDAS
technique. FPIC technique also allows stabilising
higher periods orbits. In (Angulo et al., 2005)
it was shown that when the stability of the 1-
periodic orbit is lost, through a flip bifurcation,
a stable 2-periodic orbit appears together with a
1-periodic unstable orbit.

In order to get some indications of the robustness
of the method, Fig. 5 shows the behavior of x1

when sudden changes in the load are simulated.
We have computed open-circuit events, which is
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Fig. 5. Voltage behavior for the CPWM with
FPIC. The values of the parameters are ks =
0.5 and N = 1. For t = 18s nominal control
operation is simulated. For t = 36s we simu-
late a change from nominal control to 10% of
the load nominal value.

equivalent to assume γ = 0, and a resistance drop
to a 10% of the nominal value of the load with
γ = 3.5. This sort of phenomena usually happens
in power systems. The open-circuit operation is
simulated for t = 18s. The controller response
takes no more than 20 sampling periods. This is
equivalent to stabilize the system in 1ms. When
t = 36s, the system changes from open-circuit
operation to 10% of the load nominal value. In this
case, the stabilization time is 2.5ms approximately
(50 sampling periods). We assumed that initially
the system was operating in the chaotic region,
with ks = 0.5, and stabilises it with an FPIC-
controller taking N = 1. As a conclusion we set
that the trade off the FPIC holds between the
unstabilising control and a nominal control action,
keeps the robustness of the ZAD controller.

4. CONTROL OF A DCPWM BUCK
CONVERTER

We will show now some results concerning a De-
layed Centered PWM Buck Converter (DCPWM).
These results concern only the Regulation prob-
lem although other simulations not included in
this communication show also very good results
for the Tracking problem.

In this case, since a one period delay is considered,
the fixed point is not moved. Thus the applied
duty cycle d(k) has the same expression that in
the previous case,

d(k) =
d + Ndss

N + 1
(20)

where d is evaluated as in (17), at (k−1)T , namely

dc =
2s(x((k − 1)T )) + T ṡ2(x((k − 1)T ))

ṡ2(x((k − 1)T )) − ṡ1(x((k − 1)T ))
(21)

This expression for dc is different from the CPWM
case and yields to an unstable equilibrium point.
Fig. 1 shows a bifurcation diagram when this
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Fig. 6. Lyapunov exponents for the FPIC-
controlled DCPWM, (a) with N = 1; (b)
with N = 2.

duty cycle is applied. The Lyapunov exponents
of the controlled system (for N = 1) are shown in
Fig. 6 (a). It can be observed that the 1-periodic
orbit has changed, from being unstable for all
ks to being stable for ks > 3.9. If we want to
widen the stability range, one can increase N .
Fig. 6 (b) shows the evolution of the Lyapunov
exponents when N = 2. The stability limit drops
drastically and is located near 0.5. This sudden
change between N and N + 1 allows taking small
values for N generally.

5. CONCLUSIONS

In this paper we have shown the usefulness of a
novel and simple stabilising technique for unstable
and chaotic systems. Only analytical or numerical
values of a steady-state control input guarantee-
ing a stable equilibrium point are needed. This
technique has been checked to be efficient for a
PWM-controlled buck converter with ZAD strat-
egy. It has also been checked for a CPWM with
1-period delay and ZAD strategy, with very good
results. The controller stability is guaranteed by
computing the Lyapunov exponents.

Simulations also show that the trade off the FPIC
holds between the unstabilising control and a



nominal control action, keeps the properties of the
closed-loop controller.

The behavior of the dynamics in the PWM-
controlled buck converter with ZAD strategy was
compared using TDAS and FPIC techniques. The
latter shows better response in robustness, conver-
gence velocity, less error in the steady state, with
the important advantage that it does not require
state extra-measurements.

The design value for N , analytically, is currently
the objective of further work.
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