
1. INTRODUCTION

Frequency response function measurements of trans-
fer functions (FRF) are intensively used in many en-
gineering fields. For random excitations, these
measurements are disturbed by leakage and noise. For
these reasons we strongly advice to apply periodic ex-
citation signals whenever it is possible (Pintelon and
Schoukens, 2001). However in many applications the
users prefer to apply random noise excitations and
this for psychological or technological reasons. It is
well known that under these conditions, the FRF
measurements are disturbed by leakage (windowing)
errors that are induced by the finite length of the
measurement window. This paper gives a new insight
in the nature of these errors. The kernel idea is based
on the observation that ‘leakage’ errors in an FRF
measurement are highly structured which allows to
split them in two contributions. The first one is due to
initial and end condition (transients) effects, the sec-
ond are due to the interpolation of the transfer func-
tion over neighbouring frequency lines. Replacing the
rectangular window by another one shifts the nature
of the error from the first contribution to the second
one. Explicit expressions are given to describe this
behaviour. Bias and variance expressions are given,
and the results are illustrated on some simulations.

In the literature a large number of windows is defined
and their properties are intensively studied, keeping
essentially spectral analysis applications in mind
(Harris, 1978; Godfrey, 1993). The major contribu-
tion of this paper is to study these properties keeping
FRF-measurements in mind which leads to new in-
sights, and eventually to the definition of a new win-
dow. This allows to reduce the ‘leakage errors’ on the
FRF measurements, while the noise sensitivity is not
increased. On top of that, extremely simple expres-
sions to calculate the leakage induced bias and vari-
ance errors are given.

2. THE GENERAL FRAMEWORK

2.1 Setup

Consider a stable, causal, discrete or continuous time,
single-input-single-output linear time invariant sys-
tem  with impulse response , and transfer func-
tion :

, (1)

with * the convolution,  the exact input and
output signal, and  disturbing noise.  samples
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of the input and output are measured at :

 with . (2)

The results that are reported in this paper are only val-
id for stable systems excited with random inputs. 

Assumption 1: System
The system  with impulse response  is

assumed to be stable such that  for
; and causal such that .

Assumption 2: Excitation
The excitation is a filtered white noise sequence:

, where  is an i.i.d. random
signal with existing moments of any order, and

 for .
For continuous time systems, the power spectrum

 is band limited: .
The band limited assumption is realized by applying
anti-alias filters before sampling, to avoid aliasing.

Assumption 3: Disturbing noise
 is a stationary noise sequence with bounded

second order moments.

2.2. The hidden nature of the leakage errors 

From the measurements (2), the FRF  is re-
trieved at , , with 
the Fourier transform of the impulse response ,
and  for continuous time systems,

and  for discrete time systems. The dis-

crete Fourier transform  of the input/out-
put signal (Brigham, 1974) is :

. (3)

The following remarkably simple relation holds (Pin-
telon et al., 1997; Pintelon and Schoukens, 2001):

, (4)

with  and  smooth rational functions of the fre-
quency .  can be interpreted as a generalized
‘transient’ term. Some of these ideas were already re-
ported before (Rabiner and Allen, 1979; Douce and
Balmer, 1985; Antoni, 2004). With the DFT definition
(3),  are an , and the tran-
sient  is an  (Pintelon and Schoukens,
2001).

In absence of disturbing noise  the FRF esti-
mate is given by: 

. (5)

It is the last term in (5) that causes the leakage errors
in the FRF measurements. These look like noise in
FRF measurements because  is random. Howev-
er, this hides a highly structured nature that can be de-
scribed by a smooth function  in . Windowing
methods exploit this smooth behaviour of  to re-
duce the leakage errors. Note that the leakage errors in
(5) disappear as an .

It is common practice to average  over multiple
measurements (Bendat and Piersol, 1980):

, (6)

where  is the spectrum of the signal in the 
realization of the experiment. This estimate converges
for  to the noise free solution ( ) if the
output noise  is not correlated with the input .
At a given frequency :

(7)

Due to the leakage effects, this limit is still biased.

2.3 Windows

The Fourier transform of a discrete time signal  is

an infinite sum . This infinite sum is

restricted to a finite one in the DFT by considering
only a finite number of samples: it is calculated on the
‘windowed’ signal:

, (8)

with  if  is outside the interval .
A large number of different windows is proposed in
the literature (Harris, 1978), here we focus on the rec-
tangular and the Hanning window:

Rectangular (Dirichlet) window:

 for . (9)
Hanning window:

. (10)

There exist a simple relation between the DFT spectra
obtained with the Hanning window ( ) and the
rectangular window ( ):

(11)

which is proportional the order difference.

kTs k fs⁄=

u0 k( ) y k( ), k 0 … N 1–, ,=

G g0 t( )

g0 t( ) α1e β1 t–≤
t α1 β1, , 0> g0 t 0<( ) 0=

u0 t( ) f t( )*ρ t( )= ρ t( )

f t( ) α2e β2 t–≤ t α2 β2, , 0>

Su0u0
ω( ) Su0u0

ω π fs>( ) 0=

v t( )

G0 Ωl( )
fl lfs N⁄= l 0 … N 2⁄, ,= G0 Ω( )

g0 t( )
Ωl j2πfl=

Ωl ej2πfl fs⁄=

U0 l( ) Y l( ),

X l( ) 1
N
---- x k( )e

j
2π
N

------– kl

k 0=

N 1–

∑=

Y0 l( ) G0 Ωl( )U0 l( ) T0 Ωl( )+=

G0 T0
Ω T0

U0 l( ) Y0 l( ) V l( ), , O N 1 2/–( )
T0 Ωl( ) O N 1–( )

v t( ) 0=
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Ĝ Ωl( )

Ĝ
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3. ANALYSIS OF THE LEAKAGE ERROR

From (4) it is seen that the leakage errors in an FRF
measurement are due to the presence of the transient
term . Since this is a smooth function it can be
reduced by differencing the spectra  over
neigbouring lines before taking the division (this is the
frequency domain interpretation of windowing in the
time domain). However, a new interpolation error oc-
curs because also  is frequency dependent. The er-
ror due to the transient term (the leakage generating
mechanism) will be called , the ‘interpolation’ error
of  will be called .

In the subsections below the rectangular (no differ-
ence) and the Hanning window (  order difference)
are analysed. Next, a new window is proposed that ap-
plies only a  order difference. It will have slightly
better characteristics than the Hanning window and
can replace it as the default choice in practice. During
these discussions it is assumed that the disturbing
noise . At the end the impact of the disturb-
ing noise is analysed for the three proposed windows.

3.1 Rectangular window

For a rectangular window(Bendat and Piersol, 1980;
Brigham, 1974), it is found immediately that in the
noiseless case:

. (12)

Since there is no averaging over neighbouring lines
. Hence the leakage errors disappear as

an  for stationary random excitations. The
averaged estimate is

(13)

Systematic contributions

In this section we analyse the systematic error that re-
mains if .  is the sum of two transient
contributions at the beginning and the end of the win-
dow and the alias term. Each of these contributions de-
pend on the input signal (  for the begin
transient;  for the end transient;

 for the alias term). Hence, a
weak correlation between  and  will ex-
ist. It is shown (Schoukens et al., 2004) that this re-
sults eventually in a systematic error contribution that
can be bounded at a given frequency by:

, (14)

at all excited frequencies ( ).

. (15)

Variance

In the absence of disturbing noise, the variance of
 is completely set by the variance of

 which is bounded by an  under
Assumptions 1 and 2 (Schoukens et al., 2004). 

3.2 Hanning window

The errors for the rectangular window are completely
due to the leakage term . Differencing
twice the input/output spectra (applying a Hanning
window) results eventually in:

. (16)

Define . Using the smoothness of  and
we have that:

(17)
and  the  derivative of . The last

 is because  is an . Substituting
(17) in (16) results in

(18)
with the leakage ( ) and interpolation ( ) error:

(19)

(20)

In this case the leakage error  is reduced to an
, but compared with the rectangular win-

dow a new ‘interpolation’ term  appears which
is . Hence the Hann window reduces the error
from an  to an , and it switches the
nature of the dominant error from ‘leakage’ errors to
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‘interpolation’ errors.

Again, an averaging procedure is needed:

(21)

Systematic contributions

It is shown (Schoukens et al., 2004) that

(22)
with .

Compared to the rectangular window, the systematic
errors are reduced from  to an .

Remark: for a white noise excitation, .

Variance 

The variance of  is dominated by the first
term in (20) and equals (Schoukens et al., 2004):

. (23)

Estimation of the bias and variance

From equations (22), (23) the level of the systematic
errors (for white noise excitation only) and the vari-
ance can be estimated as (Schoukens et al., 2004)

, 

with (24)
for white noise excitation ( ), and 

. (25)

Hence it is possible to quantify very easily the impact
of the windowing effects.

3.3 The Diff window

The Hanning window reduces the leakage effects on
the FRF-measurements from an  to an 
(systematic error and variance). This error reduction is
obtained due to a shift of the nature of the errors from
‘leakage’ ( ) errors to ‘interpolation’ ( ) errors.
The latter one grow with the width of the interpolation
interval which is 2 bins (3 lines) for the Hanning win-

dow. An alternative window with a smaller width
should allow for a better balancing between the leak-
age and interpolation errors. This idea is elaborated
below.

A new window

An alternative for the 3-lines  order difference of
the Hanning window is to make only a  order dif-
ference of the spectra that combines only 2 lines:

, 

and . (26)

Applying again the Taylor series representation (17),
but this time around  results in:

(27)

with leakage error:

, (28)
and interpolation error  equals

, (29)
 is reduced w.r.t.  by working around the

middle frequency . In that case an approxima-
tion is made over only half a bin to the left and to the
right instead of a full bin for the Hann window. The
leakage error increased to , but this is not
important because it is not the dominating error. More
detailed results are given in the next section, but first a
time domain interpretation is made.

Time domain interpretation

Making the difference over two neighbouring frequen-
cies can be interpreted as applying a complex window
in the time domain (Figure 1):

, (30)

Systematic contributions

It is shown that (Schoukens et al., 2004): 
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std ĜHann
M Ωl( )( )

diff ĜHann
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(31)

which is of the same order as the Hanning window.

Variance 

The variance becomes (Schoukens et al., 2004):

(32)
So the variance is slightly reduced (-1.25 dB) com-
pared to the Hanning window. This allows to reduce
the measurement time with 25% for the same level of
variance of the leakage error on the measured FRF.

Estimation of the bias and variance

Again a simple estimate for the standard deviation is
obtained (Schoukens et al., 2004):

. (33)

No expression is given for the limit error, because the
systematic transient contributions are not simply de-
scribed.

3.4 Conclusion

In Table 1 all the results of the previous discussions
are collected. It is seen that for FRF measurements, the

Hanning window is superior to the rectangular win-
dow, while the diff window even does a little bit better
on all aspects studied. So the diff window can replace
the Hanning window as default choice in FRF meas-
urements. 

4. NOISE ANALYSIS

The analysis in Section 3 was made assuming that the
disturbing noise equals zero. The three windows re-
sulted eventually in the same type of estimates: 

, (34)

where  and  are defined in eq. (12), (16), and (26).
For multiple measurements , 
are available, and the averaging technique is used
(Bendat and Piersol, 1980):

. (35)

The variance for  is approximate-
ly given by

, (36)

This shows that under Assumptions 2 and 3, the noise
sensitivity of all these estimators is the same and the
variance due to the disturbing noise is 

. (37)

with  the expected value taken over the succes-
sive realizations of the input signal.

For small ,  can be significantly

different from . At some frequencies large
drops in the realized power spectrum appear, jeopard-
izing the FRF measurement completely. Therefore, it
is advised to choose  large enough to avoid these
dips (Pintelon and Schoukens, 2001). .
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var ĜDiff
M Ω

l
1
2
---+

( )( )

G0
1( ) Ω

l
1
2
---+

( )∆ 2

4M
-------------------------------------- O M 1– N 2–( )= =

std ĜDiff
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Ĝ
Z
X0
------

Z0 NZ+

X0
-------------------= =

Z X
Z l[ ] X0

l[ ], l 1 … M, ,=
H1

Ĝ
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 Table 1 Comparison of the rectangular, Hanning, and diff window
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5. SIMULATIONS

A discrete time system is excited with white Gaussian
noise.  experiments of 8192 points are proc-
essed, such that 1024 frequency points in the frequen-
cy band of interest are available. This simulation is
repeated 1000 times. No disturbing noise is added
( ) in order to be able to emphasize the effects
that are described in this paper. The mean and the
standard deviation for the three FRF-estimators are
calculated and the results are shown in Figure 2. For

the Hanning window, the theoretically predicted and
experimentally observed standard deviations are com-
pared and a good agreement is found. This is also true
for the systematic error. Note also that the new win-
dow does slightly better than the Hanning window as
was expected from the theory.

6. CONCLUSIONS

In this paper, an analysis of the windowing/leakage ef-
fects on FRF-measurements is made. It turns out that
the leakage errors in FRF-measurements have hidden-
ly a highly structured nature that can be used to reduce
their impact. The arguments used in window analysis
for spectral analysis applications can not be unaltered
transferred to FRF-measurements. Replacing the rec-

tangular window by a Hanning shifts the nature of the
error from leakage to interpolation. It turns out that an
alternative ‘diff’ window can be proposed with slight-
ly better properties. It allows to reduce the measure-
ment time with 25% if leakage errors dominate. If the
output noise is the dominating error source, both win-
dows have the same disturbing noise sensitivity. Even-
tually, simple but accurate expressions to estimate the
variance that is induced by the leakage effect are giv-
en.
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