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Abstract: For the modelling of time series, multivariate linear and nonlinear
systems of equations became a standard tool. These models are also applied
for non–stationary processes. However, estimation results in finite samples might
depend on the specification of the model dynamics.
We propose a method for automatic identification of the dynamic part of VEC–
models. Model selection is based on a modified information criterion. The resulting
complex discrete optimization problem is tackled using a hybrid heuristic. We
present the algorithm and results of a simulation study indicating the performance
both with regard to the dynamic structure and the rank selection in the VEC–
model. Copyright c©2005 IFAC.
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1. INTRODUCTION

For the modelling of time series, multivariate
linear and nonlinear systems of equations be-
came a standard tool. These models exhibit inter-
esting features, e.g. dealing with non–stationary
processes and cointegration. However, the issue
of finite sample performance is relevant for these
models which typically require the simultaneous
estimation of a large set of parameters. In particu-
lar, vector autoregressive (VAR) models have been
introduced as multivariate analog to the Box–
Jenkins methodology. These models are used as
reduced form approximations to model interde-
pendent economic systems, e.g. for the analysis of
transmission mechanisms. Vector error correction
models (VECM) impose specific restrictions on

1 We are indebted to D. Hendry, S. Johansen, K. Juselius,
H. Lütkepohl, and M. Meyer for helpful comments on an
earlier draft of this paper. All remaining shortcomings lie
solely with the authors.

the coefficients of a VAR in order to take into ac-
count non–stationarity and long–run comovement
of the involved time series.

Both the results for the more traditional VAR–
and the VEC–models depend on the specification
of their dynamics. For example, Bewley and Yang
(1998) compare the performance of different sys-
tem tests for cointegration, i.e. the restrictions
imposed in a VECM, when the lag length is se-
lected by means of a standard information crite-
rion. Both under– and overspecification of the lag
length appear to have a negative impact. Ho and
Sørensen (1996) considered higher dimensional
systems and found that the negative impact of
overspecification increases with the dimension.

In order to avoid or reduce this unwelcome specifi-
cation effect, we propose an alternative approach.
First, we employ a modified information criterion
discussed by Chao and Phillips (1999) for the case
of partially nonstationary VAR–models. Second,



we allow for “holes” in the lag structures, i.e. lag
structures are not constrained to sequences of lags
up to lag k. Using this approach, different lag
structures can be used for different variables and
in different equations of the system. This feature
has to be taken into account in the estimation
procedure for a given dynamic structure. For this
purpose, we use a SUR–like modification of the
two step reduced rank estimator proposed by Ahn
and Reinsel (1990).

Consequently, the problem of model specification
becomes an integer optimization problem on the
huge set of all possible lag structures. In the con-
text of VAR–models several methods have been
proposed to tackle this problem of high compu-
tational complexity. In particular, heuristic op-
timization techniques which have already been
applied to the linear VAR (Winker, 2000) can be
extended to structural VAR– and VEC–models.
However, the numerical methods used in estimat-
ing the model for a given dynamic structure be-
come more involved in a VEC setting.

Section 2 introduces the model selection problem
in the context of VEC–models. Section 3 describes
the implementation of the optimization heuristic
used to tackle the model selection problem in a
VEC–setting. In section 4, we present some Monte
Carlo evidence on the performance of the method.
Section 5 summarizes the findings and provides an
outlook to further steps of our analysis.

2. THE MODEL SELECTION PROCEDURE

The standard procedure for model selection in a
VEC–model setting is sequential. First, informa-
tion criteria are used to choose a lag length k for
the unrestricted VAR–model. Then, it is assumed
that the correct specification of the lag structure
is given. However, for the sample size typically
observed in economics, this assumption does not
has to be fulfilled. In particular, by imposing the
additional restriction that all lags up to k of all
variables are included in all equations a correct
lag specification becomes even less likely. The
second step of the analysis consists in performing
a sequence of cointegration tests. The statistical
properties of this sequential procedure are difficult
to assess. Consequently, it cannot be guaranteed
that the final estimate of the cointegration rank
obtained by this procedure is a consistent estimate
of the true model structure (Johansen, 1992; Ja-
cobson, 1995; Chao and Phillips, 1999).

Chao and Phillips (1999) propose to approach
the task of rank determination as a model se-
lection problem. They introduce a modification
of the BIC and a posterior information criterion
(PIC) for VEC–models. Using these criteria ex-
hibits three advantages: First, lag structure and

the cointegration rank can be selected in a single
step. Second, the penalty function of both crite-
ria reacts to under– and over–parameterization,
which both might have a detrimental effect on
the estimation of the cointegration rank. Third,
the method can easily be extended to cover the
case of different lag structures across equations
including “holes”.

For our MC simulations, we consider both the
modified BIC (BICm) and the modified posterior
information criterion (PICm) presented in Chao
and Phillips (1999, p. 236). However, the PICm
is considered solely for a comparison of different
criteria applied to models containing all lags up
to a certain order.

We consider the d–dimensional VAR–model of
order k + 1

Yt =
k+1∑

i=1

ΠiYt−i + εt (1)

with initial values {Y0, Y−1, ..., Y−k}. Thereby, the
error terms εt are assumed to be iid N(0, Ω).
Furthermore, it is assumed that the characteristic
polynomial of the VAR may have roots on the unit
circle, but no explosive components. The VAR–
model (1) can also be expressed in vector error–
correction notation as

∆Yt =
k∑

i=1

Γi∆Yt−i + ΠYt−k−1 + εt . (2)

The matrix Π represents the parameters of the
error correction term of the model. Consequently,
the cointegration rank of the system is given by
the rank of Π. For each 0 ≤ r ≤ d, there exist
d · r matrices α and β of full rank such that Π =
αβ′. 2 Finally, we require that ∆Yt is a stationary
process allowing for a Wold representation.

In the standard approach, only values for k and r
have to be determined. If a maximum lag length
kmax is given, the number of models to be consid-
ered amounts to kmax. A complete enumeration
is feasible and will serve as a benchmark in our
simulation analysis. However, a priori there is no
reason to expect that the dynamic structure is of
this standard type. Therefore, we allow for differ-
ent lag structures across equations and for “holes”
in the lag structure. Consequently, we have to
choose a lag structure out of 2d2·kmax possible sets.
A simple enumeration approach will fail in this
case except for very small instances. As in Winker
(2000) we use an optimization heuristic to tackle
this problem.

For given lag structure and cointegration rank, the
information criterion BICm is calculated using a
modification of the iterative estimation procedure

2 For r = 0, we choose α = β = 0, for r = d, α = Π and
β = I is a solution.



proposed by Ahn and Reinsel (1990) for the re-
duced rank case. The modification takes into ac-
count that different lags might appear in different
equation, i.e. allow for a SUR–like model.

3. THE ALGORITHM

The algorithm for finding the optimal lag struc-
ture is a hybrid heuristic combining ideas of the
Threshold Accepting (TA) algorithm as described
in Winker (2001) and of “Memetic Algorithms”
(Moscato, 1999; Maringer and Winker, 2003). For
a given cointegration rank r, a random initial lag
structure is chosen, the parameters are estimated
and the value for the information criterion BICm
is computed. During the following iteration steps,
a local search strategy is employed where the
structure is modified by either including one ad-
ditional or excluding one hitherto included lagged
variable in one of the equations. If the information
criterion is improved or if the impairment does not
exceed a given threshold, i.e. if ∆BICm ≤ Ti,
the modified lag structure is accepted. Otherwise,
the modification is undone and the previous lag
structure is restored. In the course of the itera-
tions, the threshold is lowered, so that hardly any
impairment is accepted in the last iterations. Con-
sequently, the algorithm is well apt to overcome
local optima and to fine–tune the solution once
the “core structure” has been identified.

Whereas in TA a single agent is representing one
solution per iteration, we enhanced the original
TA concept much in the sense of Memetic Algo-
rithms by replacing the single agent by a popula-
tion of agents each of which follows the TA search
strategy. In addition to their independent local
search, the agents “compete” with each other and
can combine parts of their solutions using a cross–
over operator.

The heuristic optimization is repeated for all
possible values of the rank r, i.e. 0 ≤ r ≤
d − 1. Let BICmr denote the minimum value of
the information criterion obtained by the opti-
mization heuristic for a rank of r. Let ropt =
argmin0≤r≤d−1BICmr, then the finally selected
model is the one with rank ropt and the corre-
sponding dynamic lag structure. The selection of
rank and lag length for the standard “take all up
to the k–th lag” approach is performed in a similar
way.

4. MONTE CARLO SIMULATION

4.1 Motivation

We use the iterative algorithm proposed by (Ahn
and Reinsel, 1990) to estimate the parameters

of the reduced rank models. Unfortunately, this
procedure is quite time consuming even if good
starting values are provided. Therefore, the high
overall computational complexity of automatic
lag order selection in the VEC–models limits the
number of different settings which can be analyzed
by means of MC simulation. Consequently, we
tried to assess the relative performance of the
method by considering a few typical cases. Given
the page constraint of this contribution, we report
only results for two artificial DGPs.

4.2 Simulation Setup

The results presented in this section are based
on the simulation of two different DGPs with
different rank and lag structure. The details
of these DGPs are introduced below. The first
DGP (DGP1) is taken from Chao and Phillips
(1999, pp. 242f, Experiment 5). The second DGP
(DGP2) adds a second cointegration vector and
extends the dynamic structure.

For each replication of the two DGPs 300 obser-
vations have been generated from which the first
145 are eliminated, leaving a sample length of T =
155. We ran 100 and 200 replications, respectively,
and for each replication the rank was estimated
by the methods “all up to the k-th lag” (labelled
“all”) and our optimization heuristic allowing for
structures with “holes” in the kmax lags (labelled
“holes”) with kmax = 5 for both methods.

DGP1 Experiment 5 in Chao and Phillips (1999)
is a three dimensional VECM with one cointe-
gration vector entering a single equation of the
system and a lag length of one. Thereby, lagged
differences of the endogenous variables enter only
the equation for the respective variables. The error
correction term is described by the matrix Π, Γ1

provides the coefficients of the dynamic part and
Ωε the variance–covariance matrix of the normally
distributed error terms:

Π =




0
−0.01

0


 (

1 0.25 0.8
)

Γ1 =




0.99 0 0
0 0.9025 0
0 0 0.99


 Ωε =




2.25 2.55 1.95
2.55 3.25 2.81
1.95 2.81 2.78




.

The moduli of nonzero reverse characteristic roots
of the process are 1, 1, 0.99, 0.99, 0.95, 0.95.

DGP2 Modifying the above DGP by adding a
second cointegration vector and lags of order 2
and 3 in the dynamic part, we obtain DGP2 with
an actual rank of 2 and the following parameters:



Π =




0 −0.005
−0.005 0
−0.002 0.003




(
0.8 0.25 0.5
0.4 0.10 −0.3

)

Γ1 =




0.59 0 0
0 0.725 0
0 0 0.84


Γ2 =




0.25 0 0
0.02 0.10 0
−0.05 0 0.05




Γ3 =




0 0.05 −0.1
0 0 0

0.1 −0.1 0.05


 Ωε =




4.5 5.1 3.9
5.1 6.5 5.62
3.9 5.62 5.56




.

The moduli of nonzero reverse characteristic roots
of the process are 1, 0.99755, 0.96160, 0.96160,
0.88443, 0.88443, 0.35230, 0.35230, 0.30986, 0.30986,
0.13375. Obviously, the second root is very close to
one. Thus, although the “true” rank of this model
is two, it is close to a process with rank one.

4.3 Results

The evaluation of the Monte Carlo results fo-
cuses on the estimated cointegration rank. For
the models allowing for “holes”, we also present
information on the average size and the average
power. As a measure of possible overfitting, we
report mean values for the quotient qΣ of the
determinant of the residual covariance matrix for
the selected models and for the true DGP.

Results of the “take all up to the k–th lag” ap-
proach First, we present findings for the “take
all up to the k–th lag” approach comparing differ-
ent methods. Table 1 summarizes the findings for
1 000 replications of DGP1. For the modified BIC
and PIC criterion, the table entries indicate the
number of times the corresponding rank and lag
length has been selected by the criteria. For the
Johansen testing procedure, a two–step approach
is used. First, the lag length of the unrestricted
VAR is selected according to the BIC. Then, the
trace test for the cointegration rank is conducted
using this lag length. The table entries indicate
the number of times the corresponding rank and
lag length is found by this two–step approach
using a 1%– and a 5%–critical value for the trace
test, respectively.

Obviously, for DGP1 all four methods identify
the actual lag length of one for all replications.
Although the lag structure of DGP1 is sparse
since only the diagonal elements are different
from zero, the high numerical values of these
diagonal elements force all methods to choose a
lag length of one. Nevertheless, the four methods
differ markedly in their ability to identify the
actual cointegration rank of the model. While
the modified PIC points to the correct rank of
one in 999 out of 1 000 replications, the share of
correct identifications of the cointegration rank

Table 1. Results for the “take all up to
the k–th lag” approach (DGP1)

Modified BIC Modified PIC

Lags Lags
Rank 0 1 2 3 4 5 Rank 0 1 2 3 4 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 805 0 0 0 0 1 0 999 0 0 0 0
2 0 160 0 0 0 0 2 0 1 0 0 0 0
3 0 35 0 0 0 0 3 0 0 0 0 0 0

Johansen (1%) Johansen (5%)

Lags Lags
Rank 0 1 2 3 4 5 Rank 0 1 2 3 4 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 750 0 0 0 0 1 0 509 0 0 0 0
2 0 210 0 0 0 0 2 0 343 0 0 0 0
3 0 40 0 0 0 0 3 0 148 0 0 0 0

shrinks to 80.5% for the modified BIC and to 75%
and 50.9%, respectively, when using Johansen’s
procedure with a nominal significance level of 1%
and 5%, respectively.

Table 2. Results for the “take all up to
the k–th lag” approach (DGP2)

Modified BIC Modified PIC

Lags Lags
Rank 0 1 2 3 4 5 Rank 0 1 2 3 4 5

0 0 81 376 1 0 0 0 0 18 879 4 0 0
1 0 60 357 17 0 0 1 0 7 65 27 0 0
2 0 14 78 1 0 0 2 0 0 0 0 0 0
3 0 0 15 0 0 0 3 0 0 0 0 0 0

Johansen (1%) Johansen (5%)

Lags Lags
Rank 0 1 2 3 4 5 Rank 0 1 2 3 4 5

0 0 41 23 0 0 0 0 0 11 3 0 0 0
1 0 95 623 25 0 0 1 0 89 451 18 0 0
2 0 19 149 4 0 0 2 0 44 249 9 0 0
3 0 3 17 1 0 0 3 0 14 109 3 0 0

Table 2 exhibits the corresponding results for
DGP2. In contrast to the simpler dynamic struc-
ture of DGP1, all four methods fail to identify the
correct lag length for most replications. However,
given that our main interest is in the long–run
structure of the model, we might concentrate on
the identification of the cointegration rank. The
actual rank of two is found in 17.2% and 30.2% of
the replications when using Johansen’s procedure
with level 1% and 5%, respectively. The modified
BIC results in 9.3% correct estimates of the coin-
tegration rank, while the modified PIC never re-
sults in a cointegration rank of two. These results
confirm the findings by Gonzalo and Pitarakis
(1999) that the relative performance of different
methods might depend strongly on the DGP un-
der consideration. Obviously, the second near unit
root leads to the high rejection rates of the models
with rank 2.

Summarizing the findings for the different criteria,
at least for the two DGPs under consideration, the
modified BIC criterion appears to be a sensible
choice. Thus, the following results of the opti-
mization approach concentrate on this criterion.
Nevertheless, it is left to future research to also



provide results for the PICm and Johansen’s pro-
cedure.

Results of the Optimization Heuristic In the fol-
lowing, we present results of the implementation
of the optimization heuristic described in sec-
tion 3. In order to obtain a concise description of
the results, we concentrate on the identification
of the cointegration rank when using the mod-
ified BIC. Furthermore, we restrict our analysis
to a cointegration rank between 0 and d − 1.
This implies the assumption that the case of a
stationary VAR could be excluded by a standard
unit root pretest. For DGP1 and DGP2 we analyze
200 different realizations with 150 observations.
For each realization, three different methods have
been used to determine the cointegration rank:

“known” The model is estimated for a cointe-
gration rank of p = 0, . . . , d − 1 assuming
that the actual lag structure is known, i.e.
only the non–zero elements of the matrices
Γi are included in the estimation.

“all” The model is estimated for a cointegration
rank of p = 0, . . . , d − 1 and using all lags
up to a given order k = 1, . . . , kmax. For
our application d = 3 and kmax = 5. Conse-
quently, 15 different model specifications are
estimated.

“holes” For each possible cointegration rank of
p = 0, . . . , d − 1 a heuristic optimization is
performed on the lags to be included in the
dynamic part of the model.

For all three methods, the reported cointegration
is defined by the minimum value of BICm ob-
tained for the different rank conditions. Although
the method “known” cannot be used in practical
applications, it is used as a benchmark for our
optimization approach (“holes”). By contrast, the
method “all” represents the state of the art in
criterion based model selection. Consequently, it
is of interest to evaluate the relative performance
of the last two methods.

Table 3 summarizes the results for the three meth-
ods applied to the two DGPs based on 200 repli-
cations. For all methods and DGPs the maximum
lag length kmax has been fixed to five. The num-
bers in the table indicate the percentage share
of replications for which the methods identify a
cointegration rank of p = 0, . . . , 2 based on the
modified BIC.

For the first DGP with its quite simple dynamic
structure, all three methods appear to work rea-
sonably well. Nevertheless, the chance of identify-
ing the actual cointegration rank p = 1 based on
150 observations is best if the true dynamics are
known. The optimization procedure increases the
frequency of finding the right cointegration rank

Table 3. Cointegration rank estimates

Method
Rank “known” “all” “holes”

DGP1 (200 replications)

0 0.0% 0.0% 0.0%
1 95.0% 80.5% 88.0%
2 5.0% 19.5% 12.0%

DGP2 (200 replications)

0 13.0% 50.5% 13.4%
1 73.8% 35.8% 74.8%
2 13.2% 13.7% 11.8%

from 80% to 89% as compared to the standard
method.

For DGP2 with its quite complex lag structure
and the second near unit root (0.99755), even
when assuming that the true lag structure is
known, only in 13% of all replications the actual
cointegration rank of 2 is found. Further analy-
sis is required to identify the reasons for this
outcome. The two methods which can be used
in applications, i.e. “all” and “holes”, report the
correct cointegration rank with frequency 13.7%
and 11.8%, respectively. Although, “all” appears
to have a slight advantage in finding the cor-
rect cointegration rank, it also results in a more
than 50% chance of finding no cointegration at
all, whereas the “holes” approach provides results
quite similar to the ones obtained when the true
DGP was known.

Although our main interest is in a correct specifi-
cation of the cointegration part of our models, we
finish by a short look on the dynamic structures
selected by the three methods. Of course, this
choice appears to be crucial for the determina-
tion of the cointegration rank. Table 4 reports on
the dynamic structure for the three DPGs. The
rows labelled ν shows the mean number of non
zero elements estimated in the dynamic part of
the model, i.e. the number of non zero entries
in Γ̂1, . . ., Γ̂5. In the rows with label “cl” we
provide the share of lags present in the DGP which
are included in the estimated models (“average
power”), while “wl” provides the share of lags
included in the estimated model, but not present
in the DGPs (“average size”). Finally, qΣ indicates
the quotient of the determinant of the residual
covariance matrices for the model under consider-
ation as compared to the true DGP.

For a simple dynamic structure like DGP1, the op-
timization method appears to work extremely well
by finding the relevant lags (on the diagonal of
Γ̂1) for all replications and including only a small
number of additional lags. The standard method
has to include all nine first order lags in order
to capture the relevant lags. Consequently, the
share of non relevant lags increases as the mean
number of lags included (ν = 9). Only for this
rather simple DGP, qΣ indicates a slight tendency



Table 4. Reported lag structure for dif-
ferent selection methods

Method
“known” “all” “holes”

DGP1 (200 replications)

ν 3 9 4.47
cl 100% 100% 100%
wl 0% 14.3% 3.5%
qΣ 1.00 0.92 0.94

DGP2 (200 replications)

ν 13 19.89 17.15
cl 100% 69.2% 52.0%
wl 0% 30.7% 27.1%
qΣ 1.00 1.16 0.99

of overfitting for the “take all up” approach and
– to a smaller extent – for the “holes” method.
For the other DGP no overfitting is indicated by
this measure, but the “holes” approach results in
better fitting models with a determinant of the
residual covariance matrix close to that of the
true DGP. The share of relevant lags identified
by the optimization heuristic is smaller than for
the “all” heuristic, which is surprising at first sight
given the larger search space. This result deserves
further attention. Nevertheless, it is remarkable
that the optimization heuristic seems to identify
those lags allowing for a correct estimation of
the cointegration rank more often than the “all”
heuristic (see Table 3). Our preliminary results
support earlier findings that the performance of
model selection procedures in the context of coin-
tegration depends heavily on the specific DGP.
In particular, as Gredenhoff and Karlsson (1999,
p. 184) we might conclude that “choosing the lag–
length in VAR–models is not an easy task”.

5. CONCLUSION

We compare different methods for model selec-
tion in VEC–models including methods based on
information criteria and a two–step procedure em-
ploying Johansen’s testing strategy. We introduce
a discrete optimization heuristic allowing for the
selection of lag structures with “holes”. By means
of a MC simulation, we find that the modelling of
the dynamic part of VEC–models is crucial for a
correct rank identification. Already our small set
of DGPs indicates that this effect differs markedly
for different DGPs. In particular, the practical
guideline rather to include too many lags is not
supported for all DGPs by our findings. However,
we find that the optimization heuristic approach
in combination with a modified BIC performs
relatively well.

Future research will apply our method to a much
larger set of different DGPs in order to find out
how robust our results are and which factors
are responsible for differences in the (relative)
performance. Second, we want to include other

procedures in our approach, in particular the
modified PIC suggested by (Chao and Phillips,
1999) and Johansen’s procedure.

Finally, the algorithm for model selection pre-
sented in this paper can also be applied for other
model selection problems arising in economic ap-
plications and beyond.
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