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Abstract: Value at risk (VaR) has become a standard measure of portfolio risk over
the last decade. It even became one of the corner stones in the Basel II accord
about banks’ equity requirements. Nevertheless, the practical application of the
VaR concept suffers from two problems: how to estimate VaR and how to optimize
a portfolio for a given level of VaR? This application to bond portfolios shows that
a solution to the two aforementioned problems gives raise to a third one: the actual
VaR of bond portfolios optimized under a VaR constraint might exceed its nominal
level to a large extent. Thus, optimizing bond portfolios under a VaR constraint
might increase risk. This finding is of relevance not only for investors, but even
more so for bank regulation authorities. Copyright c©2005 IFAC
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1. MOTIVATION

Value at risk (VaR) has become a standard mea-
sure of portfolio risk over the last decade. Given
a portfolio with an initial value of V0, the VaR
for a given probability α until time τ are the
losses which will not be exceeded until τ with
probability α. With respect to the distribution of
the future wealth, the VaR limits the α quantile
that covers the worst outcomes. Alternatively, it
can be interpreted as the loss limit that is likely
to be exceeded only in a fraction of α of the
following τ periods. While other risk measures (as,
e.g., volatility) include both positive and negative
deviations from the expected value, VaR captures
only on losses, i.e., the common notion of risk
that “things can go (utterly) wrong.” The suc-

1 The authors are grateful to S. Heng, M. Kalkbrenner
and C. Kreuter for valuable comments.

cess of this concept might be attributed to three
causes. First, the idea of VaR is highly intuitive
and closely related to investors’ goals. Second,
VaR does not depend on any specific assumptions
about return distributions or risk aversion. Third,
and this might have been the crucial factor, VaR
has been imposed on banks and other financial
institutions by the Basel II accord about banks’
equity requirements. 2 Consequently, VaR can be
considered as a standard instrument in assessing
portfolio risk and credit risk. Unfortunately, the
implementation of VaR is hampered by two ma-
jor problems. First, though easy to interpret, it
turns out to be at least as difficult to estimate as
any other risk measure. Second, when used as a
constraint in portfolio optimization, the resulting

2 See (Basel Committee on Banking Supervision, 2003).
For a critique of the Basel II proposals, see e.g., (Dańıelsson
et al., 2001).



optimization problem cannot be dealt with using
standard routines.

In order to deal with the first problem, three
different approaches have been suggested and are
used in practice: 3 (i) using parametric models
by assuming certain distributional properties of
asset returns, (ii) historic simulation, i.e. using
an empirical distribution of asset returns based
on past returns, and (iii) Monte Carlo approaches
which typically combine (i) and (ii). These three
methods are also explicitly sanctioned by the rules
imposed in the Basel II accord, 4 i.e. banks are free
to choose and implement one of the methods for
assessing the VaR of their asset portfolios. Since
parametric distributions (including the normal)
have difficulties in describing financial data, the
use of empirical distributions is an accepted or
even favored alternative both in theory 5 and
practice. 6

The second problem results from the functional
form of the risk constraint when using VaR in
an optimization context. 7 This problem arises
naturally from requirements imposed by the Basel
II accord on institutional investors such as banks.
According to the minimum capital requirements,
banks have to underlie each investment with a
certain amount of equity depending on the risk
class of the assets considered. Therefore, banks
might want to (i) lock as little equity as possible,
or (ii) construct a yield maximizing portfolio that
(just) meets the VaR limit given the existing
equity. This paper focuses on the second case
assuming that banks’ equity is fixed in the short
run.

After providing a solution approach to the two
problems of portfolio optimization under VaR, a
third problem emerges with important implica-
tions for investors and bank regulation. When
choice of the assumed distribution is left to the
portfolio manager / investor, she will have an
incentive to choose the method that allows high-
est returns, especially when this method is sup-
posedly more reliable than other methods and
is used for ex post evaluation. 8 In the given
setting this method turns out to be the historic
simulation. While this method is useful to provide

3 See, e.g., (Jorion, 2000).
4 (Basel Committee on Banking Supervision, 2003), §490
(c) states: “No particular type of VaR model (e.g. variance-
covariance, historical simulation, or Monte Carlo) is pre-
scribed. However, the model used must be able to capture
adequately all of the matrial risks exposure of the institu-
tion’s equity portfolio.”
5 See, e.g. (Jorion, 2000), (Pritsker, 1997) or (Lucas and
Klaasen, 1998).
6 cf. footnote 4.
7 In this context, see also (Basak and Shapiro, 2001) and
(Alexander and Baptista, 2003).
8 cf. (Basel Committee on Banking Supervision, 2003)
§§149 and 151 – 152.

an ex post assessment of historic value at risk
and also expected VaR for a given portfolio, it
fails in a portfolio optimization setting. In fact,
the optimization procedure results in high return
portfolios just meeting the VaR constraint on the
historic data. However, the actual VaR of these
portfolios out of sample turns out to be much
higher than its nominal level. In fact, optimizing
portfolios under a VaR constraint typically results
in portfolios with a VaR much higher than the
defined constraint. This effect can be described
as the hidden risk of optimizing portfolios under
VaR. To our knowledge, this is the first paper to
provide empirical evidence on this issue based on
optimized portfolios.

The rest of this paper is organized as follows.
Section 2 introduces the optimization problem,
the data used for the empirical analysis, and
the optimization heuristic to solve the complex
portfolio optimization problem under VaR. In
Section 3, some statistics on the distribution of
asset returns and their stability are presented,
before turning to the actual VaR of the optimized
portfolios and summarizing the main findings.
Section 4 concludes.

2. MODEL

2.1 The Optimization Problem

The investor for the chosen problem has an initial
endowment of V0 that can be either invested in
bonds or kept as cash; without loss of generality,
the rate of return of the latter is assumed to be
zero. Given that the losses until time τ must not
exceed a (fixed) value of δV aR · V0 with a given
probability of α, and that this VaR constraint is
the only constraint, a manager of a bond portfolio
will be inclined to find a combination that has
maximum expected yield that does not violate
this VaR constraint.

The optimization model can therefore be written
as

max
ni

E (rP ) =
∑

i

ni · Li ·Di,0

V0
· ri

s.t.
∑

i

ni · Li ·Di,0 ≤ V0, ni ∈ N+
0 ∀i

prob
(
Vτ ≤ V0 ·

(
1− δV aR

))
= α

where Li and Di,0 are the lot size (in CHF) and
current clean price (in per cent), respectively, of
bond i, and ri is its yield to maturity. ni is the
number of lots kept in the portfolio which has
to be non-negative. Moreover, the cash position
must also be non-negative. Vτ is the value of the



portfolio at time τ (consisting of the value of the
bonds including accrued interest) plus cash. For
estimating Vτ , the following methods are applied:

• Assuming normal distribution, the VaR con-
straint can be rewritten as

E (Vτ )− |uα| · σVτ
≥ V0 ·

(
1− δV aR

)

where uα is the respective quantile of the
standard normal distribution s.t. N(uα) = α.
The expected value for Vτ and its volatil-
ity are alternatively estimated from past ob-
servations either in a standard way (“plain
vanilla” or “pv” henceforth) or with weighted
values where more recent observations con-
tribute stronger. The latter version turned
out advantageous for stock portfolios in
a similar setting (see (Maringer, 2005))
with decay factor of 0.99 which is applied
here, too. The weights are therefore ws =
0.99(S+1)−s∑S

t=1
0.99t

where the simulations are ordered

chronologically and s = 1 is the simulation
based on the oldest, s = S on the most recent
of the S observations.

• Assuming empirical distribution, the VaR
constraint can be rewritten as

∑
s bs ≤ α

where bs = 0 if the VaR limit is not ex-
ceeded, otherwise bs = 1/S (bs = ws as
defined above) for the plain vanilla (weighted
average) version.

For the main computational study presented in
the following sections, the investor will be en-
dowed with V0 = CHF 1,000,000, and the VaR
constraint will be that the next day’s wealth will
not be below 990,000 (i.e., δV aR = 0.01) with
a probability of α = [0.025; 0.05; 0.1]. With re-
spect to the available data for the empirical study,
these default probabilities α are higher than those
usually applied in practice; lower values for α
would demand longer time series and are prone
to unwanted data fitting. In preliminary studies,
longer data series were used and alternative values
for α and δV aR were investigated. The findings
confirmed the qualitative results reported for the
main study and are therefore omitted in the sense
of brevity.

2.2 Data

The computational study is based on the fixed
coupon bonds quoted on the Swiss stock exchange
in local currency, i.e. CHF. From all quoted bonds,
42 Swiss and 113 foreign issuers are chosen ran-
domly, though it was sought that no industry sec-
tor or issued volume is over- or under represented.
For these bonds, daily (clean) closing prices (when
traded) for the period January 1999 through June
2003 are available. All included bonds have a time

to maturity of at least two years (typically five
years) and the median issued amount is CHF
100,000,000 and CHF 200,000,000 for domestic
and international bonds, respectively.

From this data set, random selections of bonds
were drawn by first choosing a random date and
then selecting N = 10 (20) different bonds. Any of
these selections was accepted only if a minimum
number of different quotes within the in sample
as well as the out of sample time frames were
observed (in sample frame: chosen date plus 200 in
sample days; out of sample frame: the subsequent
100 trading days). For both values of N , 250 of
such case sets were generated independently.

2.3 Optimization Method

Due to the type of the risk constraint combined
with the integer constraint on the number of
traded lots and the non-negativity constraint, the
optimization problem cannot be solved analyt-
ically, but it can be approached with heuristic
optimization techniques (HO). The recent liter-
ature holds several examples for successful ap-
plications of HO to portfolio optimization, in-
cluding optimization under different risk measures
(e.g., (Dueck and Winker, 1992)), cardinality con-
straints and integer constraints (e.g., (Chang et
al., 2000) or (Maringer and Kellerer, 2003)), in-
dex tracking (e.g. (Gilli and Këllezi, 2002a)) or
optimization under VaR constraints (e.g. (Gilli
and Këllezi, 2002b) or (Maringer, 2005)). For the
given optimization problem, a modified version
of Memetic Algorithms 9 is used where princi-
ples of heuristic local search are combined with
evolutionary search strategies. This approach has
proofed useful and reliable in (Maringer and
Winker, 2003) where stock portfolios are opti-
mized under Value at Risk and where the al-
gorithm and its characteristics are presented in
more detail. The implementation was done on two
standard Pentium IV computers using Matlab 6.
The different values for the shortfall probability
α, the considered methods for estimating a port-
folio’s VaR, and the number of different case sets
resulted in 6,000 different optimization problems
for the main computational study. Each of these
was solved repeatedly and independently, and the
best found solution of any of the runs was used
for the subsequent analyses. Depending on the
problem size and distributional assumptions, the
computational time ranged approximately from
10 to 20 seconds per run.

9 See (Moscato, 1989) and (Maringer and Winker, 2003).



3. RESULTS

3.1 Distribution

The decision of whether to estimate the VaR with
the normal (or any other parametric) rather than
the empirical distribution depends on how well the
main properties of the observed data for the assets
(or at least, via the CLT, the resulting portfolios)
can be captured with the parametric distribution.
For the given data set, the portfolio values appear
far from normally distributed: regardless of the
method for VaR estimation, there is hardly any
optimized portfolio where the null hypothesis of
normal distributed price changes cannot be re-
jected at the usual 5% level of significance both
based on a standard Jarque-Bera test. Using a
Kolmogorov-Smirnow test, or the Selector statis-
tics (see (Schmid and Trede, 2003)) the picture
remains more or less unchanged. Evaluating the in
sample data, only for some 98% of the optimized
portfolios, the H0 of normally distributed returns
has to be rejected, and for the first 100 out of
sample days, the rejection rate is still 90% and
higher. At the same time, a Kolmogorov-Smirnow
test suggests that for 80% of the portfolios, the
same in sample and out of sample distributions
are the same. It appears remarkable that these
rates are the virtually the same regardless of the
number of different assets in the portfolio, N ,
the confidence level, α, – and the four distribu-
tion assumption, i.e., parametric and empirical
in their“plain vanilla” and “weighted average”
versions. Also, testing the distributions of non-
optimized portfolios and of the individual assets
leads to similar results. At first sight, this seems to
confirm the view that the normality assumption
in the optimization process might be inadequate
and that the use of empirical distributions might
be the better choice.

To test whether the distributions are stable and
allow reliable estimates of the VaR, random
weights for any portfolio in the two case sets are
repeatedly generated where the integer and the
budget constraints are the only restrictions. Then,
the share of portfolios with out of sample losses
higher than the expected VaR is determined. As
can be seen in the upper part of Table 1 for the
first out of sample day, the use of the empirical dis-
tributions allows for estimations of the VaR such
that the frequency of larger losses corresponds
more or less to the respective confidence level.
Under the normality assumption, higher values
for α result in overly cautious estimations of the
VaR – violations of which occur less often than
expected. In particular for higher values of α,
the empirical distribution produces more reliable
results than the normal distribution. This relative
advantage remains unaffected when longer out of
sample periods are used for evaluation; the respec-

tive statistics are therefore omitted in the sense of
brevity.

3.2 The Hidden Risks in Optimized Portfolios

Unlike portfolios without optimization, the value
of portfolios that are optimized under the empir-
ical distribution will fall significantly more often
below V0 · E

(
δV aR

)
, the expected VaR 10 , than

the chosen confidence level α. Out of sample the
actual frequency of excessive shortfalls will be 1.5
to three times the frequency originally expected
(depending on α and case set; see Table 1). When
the same portfolios are optimized under the nor-
mal distribution, however, the frequency will be
underestimated only for small α’s, for high con-
fidence levels, on the other hand, the frequency
will be overestimated, i.e., the VaR is estimated
too cautiously. The assumption of the normal dis-
tribution leads (for both optimized and random
portfolios) to more cautious estimates of the VaR
when α is high. The extreme leptokurtosis of the
actual distributions cannot be captured by the
normal distribution, and as a result it is hardly
possible to get reliable estimates for the VaR limit:
For large values of α, the VaR limit is estimated
too far away from the expected value, for lower
values, however, the actually realized values are
within the bandwidth of their accepted value. 11

The empirical distribution virtually always leads
to highly significant deviations between the ac-
cepted and the actually encoutered shortfall prob-
ability, whereas under the normal, virtually all
of the actually realized shortfall probabilities are
within the accepted range.

The advantage of the empirical over the normal
distribution that had been identified for non-
optimized portfolios and the statistical properties
of the actual distribution, seems therefore lost
and in some cases even reverted into the opposite
when a VaR constraint is used in the optimiza-
tion process. Despite its specification errors, the
normal distribution seems to cause less problems
than empirical distribution that has been shown
to be closer to reality for the single assets and
non-optimized portfolios.

The major reason for this is that VaR is a quantile
risk measure and therefore focuses on the number

10Due to the specification and the chosen assets, the
critical VaR, the out of sample data were compared to, is
set to E

(
δV aR

)
≤ δV aR, the loss actually expected with

the planed probability of α. Statistical significance tested
with the statistic by (Kupiec, 1995).
11For very small values of α the opposite can be observed:
the VaR is underestimated, and the limit is violated too
often. With respect to the data set, however, tests with
smaller values of α than the ones presented were not
possible, a more detailed discussion of these effects has
therefore be left to future research.



N = 10, α = ... N = 20, α = ...
variant / method 2.5% 5.0% 10.0% 2.5% 5.0% 10.0%
random weights, Toos = 1
empirical 2.6 % 4.2% 9.1% 3.2% 5.6% 10.2%
empirical, weighted 2.4% 4.1% 8.2% 3.0% 5.4% 9.9%
normal 2.9% 4.1% 6.4%* 3.2% 5.3% 8.1%
normal, weighted 2.8% 4.0% 6.2%* 3.1% 5.1% 8.0%
optimized weights, Toos = 1
empirical 5.2%** 7.6% 16.8%*** 8.8%*** 10.8%*** 16.9%***
empirical weighted 6.0%*** 8.0%* 15.2%*** 8.4%*** 10.8%*** 16.1%***
normal 3.2% 3.6% 7.2% 4.4% 6.8% 8.4%
normal weighted 3.2% 4.0% 6.0%** 3.6% 5.6% 6.8%
optimized weights, Toos = 100
empirical 7.8%*** 10.6%*** 18.6%*** 10.4%*** 14.0%*** 20.1%***
empirical weighted 7.8%*** 10.5%*** 17.2%*** 10.1%*** 13.4%*** 19.2%***
normal 6.2%*** 7.5% 9.6% 8.0%*** 9.6%*** 12.1%
normal weighted 6.0%*** 7.2% 9.3% 7.7% 9.2%*** 11.6%

Fig. 1. Shortfall ratios on the first Toos out of sample days (difference statistically significant at the 5%
(*), 2.5% (**) and 1%(***))

of shortfalls rather than their magnitude. 12 This
can be exploited when empirical distributions
are used. When optimizing under an empirical
distribution, a number of excessive losses beyond
the specified VaR limit will contribute equally
to the confidence level α as would the same
number of small losses; the optimization process
will therefore “favor” those losses that come with
high yields. Since it is usually the high yield bonds
that exhibit massive losses in the past, these
bonds will be given high weights. The problems
arising from this effect are reinforced when the
high yield of a bond comes from a small number of
high losses rather than several small losses: a loss
beyond the specified VaR limit will be considered
a rare event, and the loss limit estimated with
the confidence level α will be distinctly below the
accepted limit, i.e., E

(
δV aR

) ¿ δV aR. Out of
sample, this expected limit might turn out to be
too optimistic and is therefore violated too often,
hence the actual out of sample shortfall rate is
distinctly higher than the originally accepted level
of α.

In addition, there is a hidden danger of data fitting
for the empirical distribution: Slight in sample
violations of the specified VaR limit of δV aR can
(and will) sometimes be avoided by slight changes
in the combination of assets’ weights that have
only a minor effect on the portfolio yield. As a
consequence, there might be more cases close to
the specified VaR than the investor is aware of
since they are just slightly above the limit and
therefore do not count towards the level α; out
of sample, however, this hidden risk causes more
shortfalls than expected. 13

12See also (Artzner et al., 1999).
13Because of the peakedness and the discussed effect, that
E

(
δV aR

)
< δV aR for larger values of α, this effect of

The consequences of these effects are twofold:
First, the “empirical” optimizer underestimates
the chances for exceeding the VaR limit since the
scenarios where the limit is narrowly not exceeded
in sample have a fair chance of actually exceeding
it out of sample – hence the percentage of cases
or days with excessive losses is higher than α,
i.e., the expected percentage. Second, since the
“empirical” optimizer does accept extreme losses
in sample, she has a good chance of facing them
out of sample as well. The “empirical” investor
will therefore not only encounter losses exceeding
the estimated VaR limit more frequently than
the “normal” investor, the “empirical” investor’s
losses will also be higher. It is noteworthy that
these “hidden risks” are not the result from in-
cluding securities with some fancy return distri-
bution that obviously exploit VaR’s properties.

To what extent the deficiencies of empirical dis-
tribution are exploited in the optimization pro-
cess depends on several aspects where the num-
ber of the in sample observations or simulations
certainly is a very crucial one. Long time series,
however, are not always available nor can they
be reliably generated, 14 in addition the stability
of the distribution becomes a major issue, and
including more historic data might bring only
diminishing contributions when weighted values
(or alternative prediction models such as GARCH
models) are used. Detailed tests of these aspects,
however, were not possible with the available data
and have therefore to be left to future research.

data fitting does not show as often as for assets with other
empirical distributions (see (Maringer, 2005)).
14The problem of small sample sizes becomes even more
apparent when, e.g., credit portfolios are considered in-
stead of publicly traded assets.



4. CONCLUSION

During the last years, Value at Risk has become
an industry standard and has been imposed by the
Basel II accords on equity requirements. Mean-
while, the literature has pointed out several short-
falls and theoretical caveats that are associated
with the nature of this risk measure. This paper
adds another aspect to this discussion: the pitfalls
that might come when VaR is used not only for
evaluation purposes of assets or portfolios, but
already as an explicit constraint on the risk in
the portfolio optimization process itself. Meant as
answer to the problem of estimating the amount
of capital that is at stake with a given confidence
level, the suggested solution causes serious new
problems.

The findings from an empirical study are that
exact methods for estimating the risk (such as
the use of empirical distributions) favor portfolios
that actually have serious hidden risk by exploit-
ing the nature and definition of the risk constraint;
on the other side, inexact methods (such as the
normality assumption) have less hidden risk, but
are error prone because of their specification er-
rors. Hence, neither approach appears capable
of justifying VaR as a sole risk measure in the
context of portfolio optimization. The identified
effects are neither in the interest of the investor
nor the regulator. One central issue for future
research is therefore to find a way where either
the advantages of the (originally reliable and flex-
ible) empirical distributions can be preserved for
optimization or the accuracy of parametric can be
improved.
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