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Abstract: In this paper, the approximation of nonlinear systems using unscented Kalman 
filter (UKF) is discussed, and the conditions for the convergence of the UKF are derived. 
The detection of faults from residuals generated by the UKF is presented. As fault 
detection often reduced to detecting irregularities in the residuals, such as the mean, the 
local approach, a powerful statistical technique to detect such changes, is used to detect 
fault from the residuals generated from the UKF. The properties of the proposed method 
are also presented. To illustrate the performance of the proposed method, it is applied to 
detect faults in the attitude sensors of a satellite.  Copyright © 2005 IFAC 
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1. INTRODUCTION  
 
Fault detection for nonlinear system is an important 
research area attracting considerable interest. Model- 
based fault detection techniques are popular. For 
nonlinear systems with additive Gaussian noise, the 
extended Kalman filters (EKF) are used to generate 
residuals for fault detection (Gobbo, et al., 2001). 
However, the EKF suffers from two well-known 
drawbacks: 1) it is a first- order approximation of the 
nonlinear system, introducing large errors in the 
mean and covariance of the state vector, and even 
divergence of the filter, and 2) the derivation of the 
Jacobian matrices is nontrivial and can often lead to 
significant implementation difficulties. 
 
Unscented Kalman filters (UKF) have been proposed 
recently for estimating the state of nonlinear systems. 
Another important method in state estimation for 
nonlinear systems is presented by (Ravn, etal., 2000). 
The UKF is derived using the unscented 
transformation (UT) involving a set of carefully 
chosen sample points, called the sigma points. It has 
shown that the UKF outperforms the EKF (Julier, et 
al., 2000), as it is able to approximate the posterior 
mean and covariance of the output variable with a 
second order accuracy instead of a first order 

accuracy in the EKF. Further, as it is not necessary to 
compute the Jacobians or Hessians, it is being widely 
used in applications, such as target tracking (Julier, et 
al., 2000) and multi-sensor fusion (Hall, et al., 2001).  
 
Very few results are available in the literature on the 
convergence of the UKF. In this paper, the sufficient 
conditions for the convergence of the UKF are 
derived based on a new formulation of the unscented 
transform. Based on this result, fault detection for 
nonlinear systems is derived using the local approach, 
a statistical tool that transforms the fault detection 
problem into one that detects changes in the mean of 
a Gaussian random variable (Zhang, et al., 1998). 
The performance of the proposed technique is 
demonstrated by the attitude sensors of a satellite.  
 
The paper is organized as follows. In Section II, a 
brief review of the UT is presented, followed by the 
derivation of the UKF, and the conditions for it to 
converge. In section III, the detection of faults from 
the residuals generated by the UKF using the local 
approach is derived, together with the miss-detection. 
In section IV, the performance of the proposed 
method is illustrated by applying it to detect attitude 
sensor faults of a satellite. 
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2. THE UNSCENTED KALMAN FILTER  

2.1 The unscented transform 

The UT is a method for calculating the statistics of a 
random variable that undergoes a nonlinear 
transformation (Hall, et al., 2001). A discrete 
distribution composed of a number of samples, 
referred to as the sigma points, are computed based 
on the known initial mean and covariance of the state 
variable. Then the nonlinear transformation is 
applied to each sample. As an example, the UT of a 
variable with dimension 2 is shown in Fig. 1. The 
sample mean and covariance of the transformed 
ensemble can then be used to compute the estimate 
of the nonlinear transformation of the original 
distribution. The computed mean and covariance is 
accurate up to second order (Julier, et al., 2000). 

 
Fig. 1. The unscented transformation 
  
Consider a random variable, x ∈ RL. Let  
     (1) LRxfy ∈= )(
where y is a nonlinear mapping of x, and f(x) is a 
known nonlinear function. Denote the mean of x 
by x , and the covariance by Px ∈ RL×L. The statistics 
of y are computed from x using the sigma points χ = 
{χi, i = 0, 1, …, 2L}, as given below. 

 
⎪
⎩

⎪
⎨

⎧

+=−=

=+=
==

− LLiLPax
LiLPax

ix

Lixi

ixi

i

2,,1)(
,,1)(

0

21

21

L

L

χ
χ

χ
 (2) 

where a is the spread of the sigma points around x , 
and 21)( ixLP  is the ith column of the matrix square 
root of LPx. The parameter a is to provide an extra 
degree of freedom to "fine tune" the higher order 
moments of the approximation, and is usually set to a 
small positive value. The sample mean and 
covariance of χ are (Wan and Merwe, 2000): 
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Let γi = f(χi) ∈ RL, for i = 0, 1, …, 2L. The mean and 
covariance for y can be approximated by the sample 
mean and covariance of γ, as given below. 
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The properties of the UT are (Julier, et al., 2000): 

Property 1: The mean and covariance of the set of 
sigma points given by (2) are identical to that of x. 

Property 2: The approximation of the mean and 
covariance of y by γ and Pγ has a second order 
accuracy. 
 
2.2 The unscented Kalman filter (UKF) 

Consider the nonlinear system:  
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where f(.) and h(.) are known nonlinear functions, x(k) 
is the state vector, y(k) is the output vector, w(k) and 
v(k) are normally distributed white noise with zero 
mean and covariance matrices: E[w(k)w(k)T] = Q(k) 
and E[v(k)v(k)T] = R(k). It is assumed that the output 
can be measured, but not the state. Similar to the 
Kalman filter, the UKF is obtained by minimizing 
the mean-squared error. The new state of the system 

)1|(ˆ −kkx , the estimated output  and the 
corresponding covariance matrices are computed 
recursively using the state after applying the UT. The 
procedure for implementing the UKF is as follows 
(Wan and Merwe, 2000), 
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Step 2 Compute the predicted mean, from (4),  
  ))1(()1|( −=− kfkk ii χχ   (6) 
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Step 3 The predicted observation is computed by 
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And the predicted state is computed using the 
classical Kalman filter, 
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Step 4 Repeat steps 1 to 3 for the next sample.  
 
Since the mean and covariance of x(k) are accurate 
up to second order, and the same also applied to the 
computed mean and covariance of y(k), the UKF can 



predict with a second-order accuracy, but without the 
need to compute the Jacobian or Hessian matrix. In 
contrast, the state vector computed by the EKF is 
only a first-order approximation of the nonlinear 
system, and hence can only achieve the first-order 
accuracy. Further, the computational load of UKF is 
only in the same order as that for the EKF. 
 
2.3 Convergence analysis of the UKF 

The convergence analysis of the UKF is derived 
using an approach similar to that of the EKF 
(Boutayeb, et al., 1997). Denote the error of the 
estimated state by  

 )(ˆ)()(~ kxkxkx −=    (10)  

and the prediction error of the state by  

 )1|(ˆ)()1|(~ −−=− kkxkxkkx   (11) 

Assuming that w(k) is neglectable, expanding x(k) 
given by (5) by a Taylor Series about )1(ˆ −kx  
gives, 
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hence, )1|(~ −kkx  can be approximated by, 
 )1(~)1|(~ −≈− kxFkkx   (14) 
where Assuming that v(k) is small, 
expanding and about gives, 
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Similarly, )(ˆ)()( kykyk −=ε  can be approximated 
by, 
 )1|(~)( −≈ kkxHkε    (16) 
where  In general, ε(k) is not 
identically zero, as it is a second order approximation 
of

)).1|(ˆ( −′= kkxhH

).1|(~ −kkx  Hence, (14) and (16) are modified as,  
 )1(~)()1|(~ −=− kxFkkkx β  (17)   
 )1|(~)()( −= kkxHkk αε     (18) 
where α(k) = diag(α1(k), α2(k), …, αN(k)) and  

))(,),(),(()( 21 kkkdiagk Lββββ L=  are unknown 
diagonal matrices. The sufficient condition for the 
convergence of the UKF is given below. 
 
Theorem 1: Assuming F is a nonsingular matrix, and 
β(k) satisfies the following condition: 
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From the Rayleigh-Ritz theorem (Yu and Shi, 2004), 
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where the subscript j denotes the jth component of the 
diagonal matrix β(k). From (22), the following 
inequality is obtained: 
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The unknown diagonal matrices α(k) and β(k) are 
introduced to evaluate the UT of the state variables 
that propagates through the nonlinear model. If the 
magnitude of the eigenvalue of β(k) is sufficiently 
small, the convergence of the UKF is ensured. If the 
magnitude of αik are small enough, the convergence 
of the UKF may be improved in the sense that the 
domain of λmax(β(k)) will be enlarged. Indeed, the 
sufficient conditions (19) mean that if the error 
introduced by the UT is small enough, V(k) is a 
decreasing sequence. As α(k) and β(k) are unknown 
factors, sigma points should be chosen properly to 
decrease the error of the UT so that (20) is fulfilled. 
 
 
3. FAULT DETECTION BY LOCAL APPROACH  

 
The measurement equation (5) can be rewritten as, 
 )()())(()( kvkkxhky ++= ψ     (26) 



where ))(( kxh  is a measurement model, and 

))(())(()( kxhkxhk −=ψ  is the modelling error. 
Consider the predicted observation  obtained 
from the UKF. Under normal operating condition, 
the residual of the UKF is, 
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)()()( kvkk ++= φψ    (27) 

where ))(ˆ()(ˆ kxhky = is the predicted observation  

and ))(ˆ())(()( kxhkxhk −=φ is the estimation error. 
When there is a sensor fault, the residual becomes, 
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)()()( kvkkb f +++= φψ  (28) 

where bf ≠ 0 is the output arising from the sensor 
fault. However, faults can only be detected if the 
term is large compared with the modelling errors and 
the system noise. For small faults, it is difficult to 
detect bf from ε(k). 
 
The local approach is now applied to the residuals 
generated by the UKF. In the local approach, the 
cumulative sum of the residual Dm is computed for a 
window size of m samples (Wang and Chan, 2002), 
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Assuming the model is accurate and ψ(k) = 0, then 
the residual Dm can now be approximated by 
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From Theorem 1,  holds under 

certain conditions. Assuming h(.) is a continuous 
function, then 
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Consequently, if the sufficient condition (19) is 
satisfied and k is sufficiently large, Dm is Gaussian 
distributed with zero mean. If there is a sensor fault, 
(30) becomes, 
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As bf is non-zero, Dm is also non-zero. 
 
3.1 Fault detection method 

The proposed fault detection scheme can be 
implemented on-line as follows: 

Step 1 Select m, the window size for computing the 
cumulative sum of residual. 

Step 2 Compute the mean of the residual generated 
from the UKF. This is necessary, as ψ(k) is ignored 
in the above analysis. 
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where N is a large positive integer, the subscript i 
denotes the ith component of vector.  

Step 3 At the kth sampling period, the cumulative sum 
of residuals is computed from (29) as given below. 
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2-distributed, λi can be 
obtained from χ2-table for a given confidence level. 

Step 5 Repeat step 3 and 4.  
 
3.2 Properties of the fault detection method 

If there is no fault, ε(k) is Gaussian distributed: N(0, 
Pεε). From (35), the expectation of ε(k) and the 
covariance matrix of Dm are respectively:  
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where E(.) and Cov(.) are respectively the 
expectation and the covariance. Hence Dm is also 
Gaussian distributed: N(0, Pεε). If there is a fault, the 
distribution of ε(k) is: N(bf, Pεε), and the mean and 
covariance of Dm are: 
  f
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The distribution of Dm is: ),( εεPbmN f . The 
miss-detection of the proposed fault detection 
scheme is given in the following theorem. This result 
provides a guideline for choosing m and the 
probability of the miss-detection. The argument t and 
the subscript i are ignored for simplicity. 

Theorem 2: Let λ be obtained for a given confidence 
level. A fault is detected, if . 
The false alarm P

λεε >= −12)( PDS mm

F is independent of m, while the 
miss-detection PM depends on m. 
 
Proof: If there is no fault, the distribution of Dm is 
N(0, Pεε), and the probability density function (pdf) 
of Dm is: 
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The false alarm PF is defined by, 
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independent of m. If there is a fault, the distribution 
of Dm becomes ),( εεPbmN f , and the pdf is: 
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Let H1 be the hypothesis that there is a fault. Then 
the pdf of Sm can be expressed as, 
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From (43), the miss-detection PM is given by, 
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depends on m.        　 
 
The relation between PM and m is shown in Fig. 2, 
where the shaded part of the curve is PM. Clearly, if 
m is large, the miss-detection from (44) is small, 
    (45) 0)(lim =

∞→
mPMm

However, if m is large, a longer time is required 
before faults are detected (Wang and Chan, 2002). If 
the false alarm and the miss-detection are chosen to 
be small, λ and m can be determined from (41) and 
(44), as illustrated in the example presented below. 

 
Fig. 2 The relation between PM and m 
 
 

4. SIMULATION EXAMPLE  
 
4.1 Satellite attitude determination system 
 
The satellite attitude determination system consists 
of the sun sensor, the earth sensor and the gyroscope, 
described by the following equation (Yang, 2002): 
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I3×3 is the identity matrix, 03×3, the zero matrix, γ, θ 
and ψ are the roll, the pitch and the heading of 
satellite, ω0 is orbit angle velocity, ωIx, ωIy, ωIz are 
the measurement from gyroscope, bIx, bIy, bIz, dIx, dIy, 
dIz are the drifting errors of the gyroscope, τIx, τIy, τIz 
are the first order Markov time constant,  
are the projections of sun vector onto the coordinate 
of the spacecraft, m

000 ,, zyx SSS

γ, mθ, mψ are measurements of sun 
sensor, γh, θh are measurements of earth sensor, W 
and V are zero mean Gaussian white noise. 
 
4.2 Simulation results 

It is assumed in the simulation that the satellite is 
being stabilized relative to the earth. The initial 
values of θ, γ and ψ are set to zero. For a sampling 
interval of 0.1 second, the satellite given by (46) is 
simulated for 50 seconds. The drifting error of the 
parameters of the gyroscope is 10°/h, the 
measurement noises of sun sensor and earth sensor 
are zero-mean, uncorrelated noises with covariance 
given by constants Rii = 0.012, for i = 1, …, 5. The 
proposed fault detection scheme is applied to detect 
the following fault in sun sensor, which occurred 
separately at 30s.  
 02.0)()( 11, += kyky f  , for ; 300≥k

where the constant bf = 0.02 represents a sensor fault 
is being added to the observation mγ, and from (46) 
and (32), there is a drift in ε1(k). Following the 
procedure described in section 2.2, residuals are 



obtained from the UKF. The false alarm is set to: PF 
= 0.1%, and the miss-detection PM is expected to be 
not larger than 6%. From (41), λi obtained from the 
χ2-table for a 0.1% false alarm is: λi = 10.8. When 
the fault occurs, bf = 0.02, the miss-detection rate can 
be computed by (44). For m = 6, PM ≈ 6% from 
statistical table on Gaussian distribution as  is 
set to 0.01

11
εεP

2. So the requirement on miss-detection 
can be satisfied. If m = 1, the miss-detection is about 
90%, and hence the requirement on the 
miss-detection is not satisfied. In this case, it is 
necessary to increase m to reduce the miss-detection. 
   
When the fault occurs, the residuals ε1(k) and ε4(k) 
are shown in Fig. 3, showing a small step change in 
the mean of ε1(k), for k > 300. For m = 6,  

and are shown in Fig. 4. As only is 
greater than the threshold for k > 302, a fault is 
detected in the component of the sun sensor, which 
corresponds to . This result agrees with the 
properties of the fault detection method presented in 
section 3.2, illustrating the ability of the local 
approach in detecting faults. 

)(1 kS m

)(4 kS m )(1 kS m

)(1 kS m
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5. CONCLUSION  
 
In this paper, a fault detection scheme for nonlinear 
systems is derived based on the UKF and the local 

approach. Since the UKF can approximate the mean 
and the covariance of a Gaussian random variable up 
to a second order accuracy, it is used here to generate 
residuals for detecting faults. The sufficient condition 
for the convergence of the UKF is presented. The 
local approach is applied to detect faults from the 
residuals, and properties of this method are derived. 
These properties are then used to devise guidelines 
for choosing the window size in the statistical test. 
The proposed method has been applied successfully 
to detect faults in the satellite attitude determination 
system. 
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